A Multisignature Scheme with Message Flexibility, Order Flexibility and Order Verifiability

Mitomi, Shirow; Miyaji, Atsuko

Lecture Notes in Computer Science, 1841/2000: 298-312

2000

Journal Article

http://hdl.handle.net/10119/4457

This is the author-created version of Springer, Shirow Mitomi, Atsuko Miyaji, Lecture Notes in Computer Science, 1841/2000, 2000, 298-312. The original publication is available at www.springerlink.com, http://www.springerlink.com/content/f37422w804m67

Information security and privacy : 5th Australasian Conference, ACISP 2000, Brisbane, Australia, July 10-12, 2000 : proceedings / Ed Dawson, Andrew Clark, Colin Boyd (eds.).
A Multisignature Scheme with Message Flexibility, Order Flexibility and Order Verifiability

Shirow Mitomi and Atsuko Miyaji

School of Information Science, Japan Advanced Institute of Science and Technology
miyaji@jaist.ac.jp

Abstract. Multisignature scheme realizes that plural users generate the signature on a message, and that the signature is verified. Various studies on multisignature have been proposed([4, 13, 11, 8, 1]). They are classified into two types: RSA([9])-based multisignature([4, 8]), and discrete logarithm problem(DLP) based multisignature([13, 11, 1]), all of which assume that a message is fixed beforehand. In a sense, these protocols do not have a feature of message flexibility. Furthermore all schemes which satisfy with order verifiability designate order of signers beforehand [13, 1]. Therefore these protocols have a feature of order verifiability but not order flexibility.

For a practical purpose of circulating messages soundly through Internet, a multisignature scheme with message flexibility, order flexibility and order verifiability should be required. However, unfortunately, all previous multisignature do not realize these features. In this paper, we propose a multisignature scheme with flexibility and verifiability. We also present two practical schemes based on DLP based message recover signature([7]) and RSA signature([4]), respectively.

1 Introduction

In proportion as the spread of personal computers and network, messages like documents, data, software, etc., have been circulated through Internet. In such environment, an entity sends/forwards an original message to others, or sends a modified message to others. Through the process of circulation, a message has been improved or added a convenient feature one by one, and finally has been completed. However recently it has been a new problem for computer virus to be mixed into a message through the process of this circulation. Apparently it is an obstacle to circulate messages soundly through Internet. Another problem concerns the copyright: it is necessary to distinguish an original author from authors who modify an original message in a circulating message. This is why a multisignature scheme suitable for such an environment should be required.

Up to the present, various studies on multisignature have been proposed([4, 13, 11, 8, 1]). They are classified into two types: RSA([9]) based multisignature([4, 8]), and discrete logarithm problem(DLP) based multisignature([13, 11, 1]). All
schemes assume that a message is fixed beforehand since they suppose the following scenario: a message fixed beforehand is passed and signed one by one through members in an organization like a company. Therefore these schemes cannot handle the following situation: an original message is passed and modified by unspecified entities. Furthermore we want to guarantee such circulating message in the next point: who writes an original message, who modifies the message, to which the message is modified, and how order the message is modified. In previous multisignature schemes([4, 13, 11, 8, 1]), signing from the first signer is obliged to start only if one of signers wants to modify a message: theses do not have a feature of message flexibility. Furthermore [4, 11, 8] have a feature of order verifiability neither. Order verifiability is first realized in [13, 1]. However they must designate order of signs beforehand. If we want to change order of signers, add a new signer, or exclude a signer, we are obliged to reset some data like public keys [1]: these have a feature of order verifiability but not order flexibility. Therefore previous schemes are not suitable for handling the above situation that a message circulates through unspecified entities.

In this paper, we propose a basic model of multisignature scheme that has the following three features:

Message flexibility: A message does not need to be fixed beforehand. Therefore each signer can modify an original message.

Order flexibility: Neither order of signers nor signers themselves need to be designated beforehand. Therefore we can easily change order of signers, add a new signer and exclude a signer.

Message and order verifiability: Each entity can verify who is an original author of a message, who modifies an original message and furthermore to which or how order a message is modified.

We also present two practical schemes based on the DLP based message recovery signature([7]) and RSA signature([4]). Furthermore we discuss some typical attacks against our scheme like a ordinary forgery, swapping order of signers, excluding a signer. We denote the functions to break DLP, forge our scheme in ordinary assumption, that in swapping order of signers, and that in excluding a signer, by DLP, FORGE, SWAP, and Exclude, respectively. Then we prove the following theorems by using polynomial-time truth-table (≤T) reducibility of function:

(1) \(\text{Forge} \equiv_{IT}^T \text{DLP} \), (2) \(\text{SWAP} \equiv_{IT}^T \text{DLP} \), and (3) \(\text{Exclude} \equiv_{IT}^T \text{DLP} \).

Furthermore we investigate a feature of Robustness in a multisignature scheme: a message cannot be recovered if the signature verification fails. Because unauthentic message might damage a receiver especially in case that a message circulate through unspecified entities. Therefore the following feature should be required:

Robustness: If the signature verification on a message fails, then prevent such an unauthentic message from damaging a receiver.

We also propose a multisignature scheme with Robustness, \(\text{multisigncrypt} \), which
combines our multisignature with a function of encryption. Our multisigncrypt has a feature that a message cannot be recovered if the signature verification fails.

This paper is organized as follows. Section 2 summarizes a multisignature scheme ([1]) and discusses several drawbacks in case that a message circulate through unspecified entities. Section 3 investigates a model of multisignature with flexibility and verifiability. Section 4 presents two practical schemes concretely and discusses the performance. Section 5 discusses the security on our multisignature scheme. Section 6 presents our multisigncrypt scheme.

2 Previous work

In this section, we summarize a previous multisignature scheme ([1]).

2.1 Previous multisignature scheme

We assume that n signers I_1, I_2, \ldots, I_n generate a signature on a fixed message M according to order fixed beforehand.

Initialization: A trusted center generates a prime p, $g \in \mathbb{Z}_p^*$ with prime order q, and set a hash function $h()$. A signer I_i generates a random number $a_i \in \mathbb{Z}_q^*$ as I_i’s secret key. Then I_i’s public key is computed sequentially as follows:

$y_i = g^{a_i} \pmod{p}$, $y_k = (y_{i-1} \cdot g)^{a_i} \pmod{p}$. Then a public key of ordered group (I_1, I_2, \ldots, I_i) is set to $y = y_n$.

Signature generation:

1. I_1 selects $k_1 \in \mathbb{Z}_q^*$ randomly and computes $r_1 = g^{k_1} \pmod{p}$. If $\gcd(r_1, q) \neq 1$, then select new k_1 again.

2. For $i \in \{2, \ldots, n\}$; a signer I_{i-1} sends r_{i-1} to I_i. I_i selects $k_i \in \mathbb{Z}_q^*$ randomly and computes $r_i = r_{i-1} \cdot g^{k_i} \pmod{p}$. If $\gcd(r_i, q) \neq 1$, then select new k_i again.

3. $r = r_i$.

(2) Generation of s: Signer I_1, \ldots, I_n generate s together as follows.

1. I_1 computes $s_1 = a_1 + k_1 r \cdot h(r, M) \pmod{q}$.

2. For $i \in \{2, \ldots, n\}$; I_{i-1} sends s_{i-1} to I_i. I_i verifies that $g^{s_{i-1}} \equiv y_{i-1}^{r \cdot h(r, M)} \pmod{p}$, then computes $s_i = (s_{i-1} + 1)a_i + k_i r \cdot h(r, M) \pmod{q}$.

3. $s = s_i$.

(3) The multisignature on M by order (I_1, \ldots, I_n) is given by (r, s).

Signature Verification: A multisignature (r, s) on M is verified by checking $g^s \equiv y \cdot r^{h(r, M)} \pmod{p}$.
2.2 Drawbacks

In this section, we discuss the drawbacks of the previous scheme in the following situation: each entity sends an original message or a modified message to others. In such a situation, a multisignature scheme should satisfy the following conditions:

Message flexibility: A message does not need to be fixed beforehand. Therefore each signer can modify an original message.

Order flexibility: Neither order of signers nor signers themselves need to be designated beforehand. Therefore we can easily change order of signers, add a new signer and exclude a signer.

Message and order verifiability: Each entity can verify who is an original author of a message, who modifies an original message and furthermore to which or how order a message is modified.

The previous multisignature has the following drawbacks considering the above situation although it realizes order flexibility:

1. A message \(M \) should be fixed beforehand. This scheme does not allow any signer to generate a signature on his modified message.
2. A public key for multisignature should be determined by order of signers. Therefore after setting up a public key for multisignature, a signer can be neither added nor excluded. Even order of signers cannot be changed.
3. The signature generation phase runs two rounds through all signers.

3 Our basic multisignature scheme

This section proposes a basic model of multisignature schemes with flexibility and verifiability for both message and order. First we define the following notations. An original message \(M_1 \) is given by \(I_1 \). \(M_{1,2,...,i} (i > 2) \) denotes a message which is added some modification by the \(i \)-th signer \(I_i \). The difference between \(M_{1,2,...,i-1} \) and \(M_{1,2,...,i} \), which means the modification by \(I_i \), is defined as,

\[
m_i = \text{Diff}(M_{1,2,...,i-1}, M_{1,2,...,i}).
\]

We also define a function \(\text{Patch} \) which recovers a message,

\[
M_{1,2,...,i} = \text{Patch}(m_1, m_2, ..., m_i).
\]

For the sake of convenience, we denoted \(m_1 = \text{Patch}(M_1) \). We use a signature scheme with message recovery feature. The signature generation or message recovery function is denoted by \(\text{Sign}(sk_i, m_i) = sgn_i \), or \(\text{Rec}(pk_i, sgn_i) \), respectively, where \(sk_i \) is \(I_i \)'s secret key and \(pk_i \) is \(I_i \)'s public key. Let \(h_1 \) be a hash function. We also use two operations \(\odot \) and \(\circ \) in a group \(G \)

\[
(A \odot B) \circ B = A \quad (\forall A, B \in G).
\]
For example in case of $G = \mathbb{Z}_p$, \otimes and \odot mean modular multiplication and modular inversion, respectively. Then the signature generation and verification are done as follows. Figure 1 and 2 show the signature generation and verification, respectively.

Signature generation:

![Signature Generation Diagram](image)

Fig. 1. I_j’s signature generation

1. The first signer I_1 generates a signature on $h_1(m_1||ID_1)$ as follows,

$$sgn_1 = Sign(sk_1, h_1(m_1||ID_1)) = (r_1, s_1),$$

where a signature sgn_1 is divided into two parts, r_1 and s_1: r_1 is the next input to I_2’s signature generation, which is recovered by I_2’s signature verification. On the other hand, s_1 is the rest of sgn_1, which is sent to all signers as it is. Then send (ID_1, s_1, r_1, m_1) as a signature on m_1 to the next.

2. A signer I_j receives messages $m_1, m_2, \ldots, m_{j-1}$ from I_{j-1}. If $j > 2$, patch a message $M_{1,2,\ldots,j-1}$ as follows,

$$M_{1,2,\ldots,j-1} = Patch(m_1, m_2, \ldots, m_{j-1}).$$

I_j modifies $M_{1,2,\ldots,j-1}$ to $M_{1,2,\ldots,j-1,j}$, computes the modification m_j,

$$m_j = Diff(M_{1,2,\ldots,j-1}, M_{1,2,\ldots,j}),$$

and generates a signature on m_j by using r_{j-1} of I_j’s signature,

$$sgn_j = Sign(sk_j, r_{j-1} \odot h_1(m_j||ID_j)) = (r_j, s_j),$$

where sgn_j is divided into r_j and s_j in the same way as the above. Then I_j’s signature on m_j is (r_j, s_j).

3. A multisignature of $M_{1,2,\ldots,i} = Patch(m_1, m_2, \ldots, m_i)$ by $I_1, I_2, \ldots, I_{i-1}$ and I_i is given by $(ID_1, s_1, m_1), (ID_2, s_2, m_2), \ldots, (ID_i, s_i, r_i, m_i)$.

Signature verification:

1. A verifier receives $(ID_1, s_1, m_1), (ID_2, s_2, m_2), \ldots, (ID_i, s_i, r_i, m_i)$ from a signer I_i.
2. For $j = i, i - 1, \cdots, 2$; compute

$$T_j = \text{Rec}(pk_j, (r_j, s_j)) = r_{j-1} \otimes h_1(m_j || ID_j),$$

$$r_{j-1} = T_j \otimes h_1(m_j || ID_j).$$

Let $j = j - 1$ and repeat step 2.

3. Finally compute

$$T_1 = \text{Rec}(PK_{p1}, (r_1, s_1)),$$

and verifies

$$T_1 \overset{?}{=} h_1(m_1 || ID_1)$$

Our basic model satisfies the three features, message flexibility, order flexibility, message verifiability and order verifiability. Furthermore, we easily see that any message recovery signature can be applied to the above basic model. In the next section, we present two schemes based on DLP and RSA.

4 Two concrete multisignature schemes

In this section, we give two examples based on DLP and RSA.

4.1 DLP based scheme

There are many variants of DLP based schemes in both types of message with appendix([3, 12, 2]) and message recovery signature([6, 7]). For the sake of convenience, here we use the message recovery signature scheme with DSA-signature equation([7]). Apparently any message recovery signature scheme can be applied to our multisignature scheme.

Initialization: An authenticated center generates a large prime p, $g \in \mathbb{Z}_p^*$ with prime order q. Two \mathbb{Z}_p-operations \otimes and \odot in section 3 are defined as multiplication and inverse in \mathbb{Z}_p, respectively. Each signer generates a pair of secret key $x_i \in \mathbb{Z}_q^*$ and a public key $y_i = g^{x_i} \pmod{p}$, and publish a public key y_i with his identity information ID_i.

Signature generation:
1. The first signer I_1 generates a signature on an original message m_1. First generate $k_1 \in \mathbb{Z}_q$ randomly, compute $R_1 = g^{k_1} \pmod{p}$, $r_1 = (h_1(m_1\|ID_1))^{-1} \cdot R_1 \pmod{q}$, and $s_1 = (x_1r_1 + 1)k_1^{-1} \pmod{q}$, where I_1's signature on m_1 is (r_1, s_1), and send (ID_1, s_1, r_1, m_1) to the next signer I_2.

2. A signer $I_j (j \geq 2)$ receives $M_{1,2,\ldots,j-1} = Patch(m_1, m_2, \ldots, m_{j-1})$, modifies $M_{1,\ldots,j-1}$ to $M_{1,\ldots,j}$. Then I_j generates a signature on the difference $m_j = Diff(M_{1,\ldots,j-1}, M_{1,\ldots,j})$; generate $k_j \in \mathbb{Z}_q$ randomly, and compute $R_j = g^{k_j} \pmod{p}$, $r_j = (h_1(m_j\|ID_j))^{-1} \cdot R_j \pmod{q}$, and $s_j = (x_jr_j + 1)k_j^{-1} \pmod{q}$, where I_j’s signature on m_j is (r_j, s_j).

3. A multisignature of $M_{1,2,\ldots,i} = Patch(m_1, m_2, \ldots, m_i)$ by I_1, \ldots, I_{i-1} and I_i is given by $(ID_1, s_1, m_1), \ldots, (ID_{i-1}, s_{i-1}, m_{i-1}), (ID_i, s_i, r_i, m_i)$.

Signature verification

1. A verifier receives $(ID_1, s_1, m_1), \ldots, (ID_{i-1}, s_{i-1}, m_{i-1}), (ID_i, s_i, r_i, m_i)$ from the signer I_i.

2. For $j = i, i-1, \ldots, 3, 2$; compute $R_j^e = g^{-r_j} g^{s_j} (\pmod{p})$, $T_j = R_j^e \cdot r_j^{-1} \pmod{q}$, and $r_{j-1} = T_j \cdot (h_1(m_j\|ID_j))^{-1} \pmod{q}$ by using I_j’s public keys g^{r_i}. Let $j = j - 1$ and repeat step 2.

3. Finally compute $R_i^e = g^{-r_i} g^{s_i} (\pmod{p})$, and $T_1 = R_i^e \cdot r_i^{-1} \pmod{q}$, and verify $T_1 \equiv h_1(m_1\|ID_1) (\pmod{q})$.

Our multisignature based on ElGamal-type signature has a feature that each signer has only one pair of a public key and a secret key.

4.2 RSA based scheme

Here we present our multisignature scheme based on RSA multisignature[4].

Initialization: An authenticated center publishes small primes $\{r_i\} = \{2, 3, 5, \ldots\}$. A signer I_i with identity information ID_i generates two large primes p_i and q_i secretly, and computes public keys $n_{i,t}$ and $\epsilon_{i,t} \in \mathbb{Z}_{n_{i,t}}^\times$ in such a way that

$n_{i,t} = p_iq_i, L_{i,t} = \text{lcm}(p_i - 1, (q_i - 1), (r_i - 1)), \epsilon_{i,t}d_{i,t} = 1 \pmod{L_{i,t}}$

by using $\{r_i\}$. Signer I_i publishes all his public keys $n_{i,t}$, $\epsilon_{i,t}$ and r_i like Table 1.

In RSA-based multisignature, both operations in $\mathbb{Z}_{n_{i,t}}$ ⊕ and ⊙ are set to ⊕ (EOR), and I_i’s signature sgn_i is just the next input to I_{i+1}’s signature generation: sgn_i is not divided into two parts.

Signature generation:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r_1</td>
<td>r_2</td>
<td>r_3</td>
<td>r_4</td>
</tr>
<tr>
<td>public keys $(n_{i,1}, \epsilon_{i,1})$</td>
<td>$(n_{i,2}, \epsilon_{i,2})$</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>secret keys $d_{i,1}$</td>
<td>$d_{i,2}$</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. I_i’s pairs of secret key and public key
1. The first signer I_1 generates a signature on an original message m_1: select a minimum number $n_{1,i}$ such that $n_{1,i} > h_1(m_1||ID_1)$ and compute $sgn_1 = (h_1(m_1||ID_1))^{d_{1,i}} \pmod{n_{1,i}}$. Then send (ID_1, m_1, l_i, sgn_1) as a signature on m_1 to the next.

2. A signer I_j receives $m_1, m_2, \ldots, m_{j-1}$ from I_{j-1}. If $j > 2$, patch the message $M_{1,2,\ldots,j-1} = \text{Patch}(m_1, m_2, \ldots, m_{j-1})$, modify it to $M_{1,2,\ldots,j}$, then I_j generates a signature on $m_j = \text{Diff}(M_{1,2,\ldots,j-1}, M_{1,2,\ldots,j-1,j})$: select a minimum number $n_{j,i}$ such that $n_{j,i} > sgn_{j-1} \oplus h_1(m_j||ID_j)$, and compute $T = sgn_{j-1} \oplus h_1(m_j||ID_j)$, and $sgn_j = T^{d_{j,i}} \pmod{n_{j,i}}$.

3. A multisignature of $M_{1,2,\ldots,i} = \text{Patch}(m_1, m_2, \ldots, m_i)$ by I_1, \ldots, I_{i-1} and I_i is given by $(ID_1, l_1, m_1), (ID_2, l_2, m_2), \ldots, (ID_i, l_i, m_i, sgn_i)$.

Signature verification:

1. The verifier receives $(ID_1, l_1, m_1), (ID_2, l_2, m_2), \ldots, (ID_i, l_i, m_i, sgn_i)$ from a signer I_i.

2. For $j = i, i-1, \ldots, 2$: compute $T' = (sgn_j)^{e_{j,i}} \pmod{n_{j,i}}$, and $sgn_{j-1} = h_1(m_j||ID_j) \oplus T'$ by using I_j’s public key $(n_{j,i}, e_{j,i})$. Let $j = j - 1$ and repeat step 2.

3. Compute $T' = sgn_{1,i}^{e_{1,i}} \pmod{n_{1,i}}$ by using I_i’s public key $(n_{1,i}, e_{1,i})$, and check $T' = h_1(m_1||ID_1)$.

Our multisignature based on RSA has the following features: 1. The size of multisignature keeps low even if the number of signers increases, compared with DLP based scheme. 2. It is necessary for each signer to have plural pairs of secret and public key.

4.3 Performance evaluation

We evaluate our two multisignature schemes from a point of view of computation amount, the signature size and the number of rounds, where the signature size means that the final multisignature by I_1, \ldots, I_i, and the number of rounds means how many times the process to generate the signature runs among all signers. There has not been proposed a multisignature with message flexibility, order flexibility and order verifiability. One primitive scheme with message flexibility is a simple chain of signature: each signer makes a signature on his own modification and sends it together with the previous signer’s signature. Apparently it does not satisfy order verifiability. We also compare our schemes with the primitive scheme. For a simple discussion, we assume the following conditions: 1. a primitive arithmetic of binary methods([5]) is used for computation of exponentiation; 2. we denote the number of signers and the computation time for one n-bit modular multiplication by i and $M(n)$, respectively, where $M(n) = \left(\frac{n}{2}\right)^2 M(m)$; 3. two primes p and q are set to 1024 and 160 bits respectively, in DLP-based signature schemes; 4. two primes p_j and q_j are set to 512 bits, and r_i is less than 10 bits in RSA-based signature schemes.

DLP based-multisignature schemes are mainly classified into two types, one-round scheme([11]) and two-round scheme in Section 2. Generally, the signature
<table>
<thead>
<tr>
<th>(I_i)'s signature generation</th>
<th># (M(1024))</th>
<th>Signature size (bits)</th>
<th># rounds</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our scheme</td>
<td>243</td>
<td>483(t)</td>
<td>160(t + 1)</td>
<td>1</td>
</tr>
<tr>
<td>Primitive scheme</td>
<td>242</td>
<td>320(t)</td>
<td>1</td>
<td>MF</td>
</tr>
<tr>
<td>Scheme([11])</td>
<td>242</td>
<td>481 + 241(t)</td>
<td>1024(t)</td>
<td>1</td>
</tr>
<tr>
<td>Scheme([11])</td>
<td>483</td>
<td>1778</td>
<td>2048</td>
<td>2</td>
</tr>
</tbody>
</table>

MF: Message Flexibility, OF: Order Flexibility, OV: Order Verifiability

Table 2. Performance of DLP-based multisignature schemes

<table>
<thead>
<tr>
<th>(I_i)'s signature generation</th>
<th># (M(1024))</th>
<th>Signature size (bits)</th>
<th># rounds</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our scheme</td>
<td>1536</td>
<td>9(t)</td>
<td>1024 + 10(t)</td>
<td>1</td>
</tr>
<tr>
<td>Primitive scheme</td>
<td>1536</td>
<td>9(t)</td>
<td>1024(t)</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3. Performance of RSA based signatures

verification phase in two-round scheme is more simple than one-round scheme. However the signature generation phase in two-round scheme, which runs twice through all signers, is rather complicated. Here we compare our scheme with the primitive scheme, one-round scheme([11]) and two-round scheme([11]) Table 2 shows performance of 4 schemes. From Table 2, we see that only the computation amount for signature verification increases, and the signature size is even reduced, compared with the same one-round multisignature. Therefore our protocol can realize three features with message flexibility, order flexibility, and order verifiability only with negligible additional computation amount in signature generation.

Here we compare our RSA-based multisignature scheme with the primitive scheme. Table 3 shows performance of two schemes. From Table 3, we see that our protocol can realize three features, message flexibility, order flexibility, and order verifiability, with neither additional computation amount nor signature size.

5 Security consideration

In this section, we discuss the security relation between our DLP based multisignature scheme and DLP. We assume that all signers except for an honest signer \(I_n\) collude in attacks: attackers use all secret keys \(x_j, j \neq n\), random numbers \(k_j\), public information like public keys, all messages \(m_1, \ldots, m_n \in \mathbb{Z}\) and valid partial signatures. By using these informations, attackers try to forge \(I_i\)'s signatures. For simplicity, we denote the sequence \(x_1, x_2, \ldots, x_n\) by \(x[1,n]\) and the sequence \(x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\) by \(x[i,1,n]\), where \(1 \leq i \leq n\). We also denote
$x_1, x_2, \ldots, x_n \in \mathbb{Z}_q$ by $x_{[1,n]} \in \mathbb{Z}_q$. In our security proof, we use the polynomial-time truth-table($\leq_{k\cdot t_1}^P$) reducibility of the function version([10]), which discusses passive attacks. In $\leq_{k\cdot t_1}^P$ only k non-adaptive queries to an oracle are allowed.

5.1 Functions

First we define some functions.

Definition 1. DL$P(X, g, p, q)$ is the function that on input two primes p, q with $q | (p-1)$, $X, g \in \mathbb{Z}_p^*$ outputs $a \in \mathbb{Z}_q$ such that $X = g^a \pmod{p}$ if such $a \in \mathbb{Z}_q$ exists.

We define the function Forge that forges I_n’s valid signature (r_n, s_n) on $m_{[1,n]}$ in order $I_{[1,n]}$ by using available public information, a signature on $m_{[1,n-1]}$ by $I_{[1,n-1]}$ and available secret data like $x_{[1,n-1]}$ and $k_{[1,n-1]}$ for attackers $I_{[1,n-1]}$.

Definition 2. $\text{Forge}(y_n, g, p, q, m_{[1,n]}, ID_{[1,n]}, x_{[1,n-1]}, s_{[1,n-1]}, r_{n-1}, k_n)$ is the function that on input two primes p, q with $q | (p-1)$, $y_n, g \in \mathbb{Z}_p^*$, $s_{[1,n-1]}, r_{n-1}, x_{[1,n-1]}$, $k_n \in \mathbb{Z}_q^*$, $m_{[1,n]}$, ID$_n \in \mathbb{Z}_p$, outputs $(r_n, s_n) \in \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ such that $t_j = g^{s_j} y_j r_j^{s_j^{-1}} \pmod{p}$, $T_j = t_j \cdot r_j^{s_j^{-1}} \pmod{q}$, and $r_{j-1} = T_j \cdot (h_j(m_j || ID_j))^{-1} \pmod{q}$ for $j = n, n-1, \ldots, 3, 2$ and that $t_1 = g^{s_1} y_1 r_1^{s_1^{-1}} \pmod{p}$ and $T_1 = t_1 \cdot r_1^{s_1^{-1}} \pmod{q}$ if such $(r_n, s_n) \in \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ exists.

Next we define the function Exclude that forges I_n’s valid signature (s'_n, k_n) on $m_{[1,n,n-1]}$ in order $I_{[1,n,n-1]}$ by using available public information, a signature on $m_{[1,n]}$ by $I_{[1,n]}$ and available secret data $x_{[1,n-1]}$ and $k_{[1,n-1]}$ for attackers $I_{[1,n-1]}$.

Definition 3. $\text{Exclude}(y_n, g, p, q, m_{[1,n]}, ID_{[1,n]}, x_{[1,n-1]}, s_{[1,n-1]}, r_{n-1})$ is the function that on input two primes p, q with $q | (p-1)$, $g, y_n \in \mathbb{Z}_p^*$, $m_{[1,n]}$, ID$_n \in \mathbb{Z}_p$, $x_{[1,n-1]}$, $r_{n-1}, s_{[1,n-1]} \in \mathbb{Z}_q^*$ output $(s'_n, k_n) \in \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ such that $R_n = g^{s_n} \pmod{p}$, $r'_n = (h_1(m_n || ID_n) \times r_{n-2})^{-1} R_n \pmod{q}$, and $s'_n = (x_n r'_n + 1) k_n^{-1} \pmod{q}$ for $j = n-2, \ldots, 2$, $t_j = g^{s_j} y_j r_j^{s_j^{-1}} \pmod{p}$, $T_j = t_j \cdot r_j^{s_j^{-1}} \pmod{q}$, and $r_{j-1} = T_j \cdot (h_j(m_j || ID_j))^{-1} \pmod{q}$ and that $t_1 = g^{s_1} y_1 r_1^{s_1^{-1}} \pmod{p}$, $T_1 = t_1 \cdot r_1^{s_1^{-1}} \pmod{q}$ if such $(s'_n, k_n) \in \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ exists.

Next we define the function SWAP that forges valid multisignature on $m_{[1,n-2]}$, m_n, m_{n-1} in order $I_{[1,n-2]}$, I_n, I_{n-1} by using available public information, a valid multisignature $(r_n, s_{[1,n]})$ on $m_{[1,n]}$ by $I_{[1,n]}$ and available secret data $x_{[1,n-1]}$ and $k_{[1,n-1]}$ for attackers $I_{[1,n-1]}$. From the assumption that $I_{[1,n-1]}$ are attackers, the function SWAP that forges I_n’s signature (r_n, s_n) on $m_{[1,n-2]}$, m_n, m_{n-1} in order $I_{[1,n-2]}$, I_n, I_{n-1} for a valid signature $(r_n, s_{[1,n]})$ on $m_{[1,n]}$ by $I_{[1,n]}$ is just the same as the function that computes Exclude and adds attacker I_{n-1}’s signature on $m_{[1,n-2]}$, m_n, m_{n-1} in order $I_{[1,n-2]}$, I_n, I_{n-1}. Oppositely, the function Exclude is just the same as the function that for a valid signature $(r_n, s_{[1,n]})$ on $m_{[1,n]}$ by $I_{[1,n]}$, computes SWAP and outputs only I_n’s multisignature (r_n, s_n). Therefore the following theorem holds.
Theorem 1. SWAP \(\equiv_{p-1}^l\) Exclude.

For the sake of the following proof, we define the function SIGN that generates a valid signature \((r_n, s_{1, n})\) on messages \(m_{1, n}\) by signers \(I_{1, n}\) by using all secret data \(x_{1, n}\) and \(k_{1, n}\) of signers \(I_{1, n}\). This function means just the signature generation function. Apparently it is easy to compute SIGN.

Definition 4. \(\text{SIGN}(g, p, q, x_{1, n}, k_{1, n}, m_{1, n}, ID_{1, n})\) is the function that on input two primes \(p, q\) with \(q|p-1\), \(g \in \mathbb{Z}_p\), \(x_{1, n}, k_{1, n}, m_{1, n}, ID_{1, n} \in \mathbb{Z}\), output \(r_n, s_{1, n} \in \mathbb{Z}_q^*\) such that for \(j = n, \ldots, 3, 2, t_j = g^{r_j^{-1}} y_j^{s_j r_j^{-1}}\) (mod \(p\)), \(T_j = t_j \cdot r_j^{-1}\) (mod \(q\)) and \(r_{j-1} = T_j \cdot (h_j(m_j||ID_j))^{-1}\) (mod \(q\)) and that \(t_1 = g^{r_1^{-1}} y_1^{s_1 r_1^{-1}}\) (mod \(p\)), \(T_1 = t_1 \cdot r_1^{-1}\) (mod \(q\)) if such \(r_n, s_{1, n} \in \mathbb{Z}_q^*\) exists.

5.2 Reduction among functions

Here we show our results. First we set functions \(\psi_i\) to give the \(i\)-th element, \(\psi_i(a_{1, n}) = a_i (i \leq n)\).

Theorem 2. Forge \(\equiv_{p-1}^l\) DLP

proof: First we show that Forge \(\leq_{p-1}^l\) DLP. For inputs \((y_n, g, p, q, m_{1, n}, ID_{1, n}, x_{1, n-1}, s_{1, n-1}, r_{n-1})\) of Forge, fix \(k_n \in \mathbb{Z}_q\) and set \(R_n = g^{k_n}\) (mod \(p\)), \(r_n = r_{n-1}^{-1} \cdot h_1(m_n||ID_n)^{-1} \cdot R_n\) (mod \(p\)). Then

\[\text{Forge}(y_n, g, p, q, m_{1, n}, ID_{1, n}, x_{1, n-1}, s_{1, n-1}, r_{n-1}, k_n)\]

\[= (r_n, (\text{DLP}(y_n, g, p, q) r_n + 1) k_n^{-1} \text{ (mod q)}) \]

Next we show that DLP \(\leq_{p-1}^l\) Forge. For input \((y_n, g, p, q)\) of DLP, fix \(k_{1, n} \in \mathbb{Z}_q^*, m_{1, n}, ID_{1, n}, x_{1, n-1} \in \mathbb{Z}_q^*,\) and set \((r_{n-1}, s_{1, n-1}) = \text{SIGN}(g, p, q, x_{1, n-1}, k_{1, n-1}, m_{1, n-1}, ID_{1, n-1})\), which is computed in time polynomial from the definition. Then

\[\text{DLP}(y_n, g, p, q)\]

\[= (\psi_2(\text{Forge}(y_n, g, p, q, m_{1, n}, ID_{1, n}, x_{1, n-1}, s_{1, n-1}, r_{n-1}, k_n)), k_n - 1) r_n^{-1},\]

where \(r_n = \psi_1(\text{Forge}(y_n, g, p, q, m_{1, n}, ID_{1, n}, x_{1, n-1}, s_{1, n-1}, r_{n-1}, k_n))\) and \(y_n = g^{r_n}\).

Therefore we get DLP \(\equiv_{p-1}^l\) Forge.

Theorem 3. Exclude \(\equiv_{p-1}^l\) DLP

proof: First we show that Exclude \(\leq_{p-1}^l\) DLP. For inputs \((y_n, g, p, q, m_{1, n}, ID_{1, n}, x_{1, n-1}, s_{1, n-1}, r_n)\) of Exclude, fix \(k_n \in \mathbb{Z}_q\) and set \(R_n = g^{k_n}\) (mod \(p\)), and \(r_n = r_{n-2}^{-1} \cdot h_1(m_n||ID_n)^{-1} \cdot R_n\) (mod \(p\)). Then

\[\text{Exclude}(y_n, g, p, q, m_{1, n}, ID_{1, n}, x_{1, n-1}, s_{1, n-1}, r_{n-1}, k_n)\]

\[= (\text{DLP}(y_n, g, p, q) r_n + 1) k_n^{-1} \text{ (mod q), k_n} \]

Next we show that DLP \(\leq_{p-1}^l\) Exclude. For inputs \((y_n, g, p, q)\) of DLP, fix \(k_{1, n-1} \in \mathbb{Z}_q^*, m_{1, n}, ID_{1, n} \in \mathbb{Z}, x_{1, n-1} \in \mathbb{Z}_q^*\) and set...
\((r_{n-2}, s_{[1,n-2]}) = \text{SIGN}(g, p, q, x_{[1,n-2]}, k_{[1,n-2]}^0, m_{[1,n-2]}, ID_{[1,n-2]})\),
which is computed in time polynomial from the definition. Then
\[
\text{DLP}(y_n, g, p, q) = (s_n^\prime \cdot k_n^0 - 1) \cdot r_n^\prime, \\
\text{where}
\]
\[s_n^\prime = \psi_1(\text{Exclude}(y_n, g, p, q, m_{[1,n]}, ID_{[1,n]}, x_{[1,n-1]}, s_{[1,n]}r_n)),
\]
\[k_n = \psi_2(\text{Exclude}(y_n, g, p, q, m_{[1,n]}, ID_{[1,n]}, x_{[1,n-1]}, s_{[1,n]}r_n)),
\]
\[R_n = g^{k_n} \pmod{q}, \text{ and } r_n^\prime = (r_{n-2} \cdot h_1(m_n||ID_n))^{-1} \cdot R_n \pmod{q}.
\]
Then we get \(\text{DLP}\equiv_{[p_i]}^{\text{Exclude}}\).

6 Further discussion

We discuss how to add the following feature to our multisignature scheme.

Robustness: If the signature verification fails, then prevent such an unauthentic message from damaging a receiver.

We realize robustness by combining our multisignature with an encryption function. So we call it multisigncrypt. Multisigncrypt nd has a feature that a message cannot be recovered if the signature verification fails, in addition to message flexibility, order flexibility, and order verifiability. Therefore a multisigncrypt can prevent computer virus mixed into a message from damaging a receiver since unauthentic message can not be recovered.

6.1 Multisigncrypt scheme

For simplicity, we present the multisigncrypt scheme by using our basic multisignature scheme.

Initialization: A center publishes two hash functions \(h_1\) and \(h_2\), and an encryption and the decryption function, \(E(K_i, m_i)\) and \(D(K_i, C_i)\), in addition to initialization in basic multisignature scheme, where \(h_2\) is used for computing a session key \(K_i\) for \(E\) and \(D\), and \(C_i\) is a cipher text.

Signature generation:

![Signature Generation Diagram](image)

\[\text{Fig. 3. } I_j\text{'s signature generation}\]

1. The first signer \(I_1\) computes
\[s_{\text{gn}_1} = \text{sign}(sk_1, h_1(m_1||ID_1)) = (r_1, s_1),\]
where \(sgn_1 \) is divided into two parts of \(r_1 \) and \(s_1 \) in the same way as Section 3, generates a session key \(K_1 \),

\[
K_1 = h_2(h_1(m_1||ID_1)),
\]

and encrypts \(m_1||ID_1 \) by an encryption function \(E \),

\[
C_1 = E(K_1, m_1||ID_1),
\]

and sends \((ID_1, s_1, r_1, C_1)\) to the next signer \(I_2 \).

2. A signer \(I_j \) verifies the signature from \(I_{j-1}, m_1, \cdots, m_{j-1} \) according to the verification step in the next page, and modifies \(M_1, \cdots, j-1 = Patch(m_1, \cdots, m_{j-1}) \) to \(M_1, \cdots, j \). Then \(I_j \) generates a signature on the difference \(m_j = Diff(M_1, \cdots, j-1, M_1, \cdots, j-1, j) \):

compute

\[
sgn_j = Sign(sk_j, r_{j-1} \otimes h_1(m_j||ID_j)) = (r_j, s_j),
\]

\[
K_j = h_2(r_{j-1} \otimes h_1(m_j||ID_j)),
\]

and encrypts \(m_j||ID_j \) by using the session key \(K_j \),

\[
C_j = E(K_j, m_j||ID_j).
\]

3. A multisignature on \(M_1, \cdots, i = Patch(m_1, m_2, \cdots, m_i) \) by \(I_1, \cdots, I_i \) is given by \((ID_1, s_1, C_1), (ID_2, s_2, C_2), \cdots, (ID_i, s_i, r_i, C_i)\).

![Fig. 4. \(I_j \)'s signature verification step](image)

Signature verification:

1. The verifier receives \((ID_1, s_1, C_1), \cdots, (ID_{i-1}, s_{i-1}, r_{i-1}, C_{i-1}), (ID_i, s_i, r_i, C_i)\) from the signer \(I_i \).

2. For \(j = i, \cdots, 3, 2 \): compute

\[
T_j = Rec(pk_j, (s_j, r_j)), \text{ and } K_j = h_2(T_j),
\]

and decrypts \(m_j \) and \(ID_j \) by

\[
m_j'||ID_j' = D(K_j, C_j).
\]
If $ID_j' \equiv ID_j$ holds, then accept the signature and recover r_{j-1},

$$r_{j-1} = T_j \oplus h_1(m_j'||ID_j').$$

Set $j = j - 1$ and repeat step 2.

3. Compute

$$T_1 = Rec(pk_1, (s_1, r_1)) and K_1 = h_2(T_1),$$

and decrypt m_1 and ID_1 by

$$m_j'||ID_1' = D(K_1, C_1).$$

If $h_1(m_j'||ID_1') \equiv T_1$ holds, then accept the signature and finally patch all messages,

$$M_1, \ldots, i = Patch(m_1, \cdots, m_i).$$

In both cases of DLP- and RSA-based multisignature schemes, we can also add the feature of Robustness in the same way as the above.

7 Conclusion

In this paper, we have proposed a new multisignature scheme suitable for circulating messages through Internet. Our multisignature scheme realizes the three features, Message flexibility, Order flexibility and Order verifiability, maintaining both signature size and computation amount in signature generation/verification low; only the computation amount for the signature verification increases, and the signature size is even reduced compared with one round previous multisignature scheme. We have also proposed the multisigncryption scheme, which realizes Robustness in addition to Message flexibility, Order flexibility and Order verifiability. Furthermore, we have proved the following equivalences between our DLP-based multisignature and DLP in some typical attacks by using the reducibility of functions.

1. $\text{FORGE} \equiv_{\mu} \text{DLP}$
2. $\text{SWAP} \equiv_{\mu} \text{DLP}$
3. $\text{EXCLUDE} \equiv_{\mu} \text{DLP}$

References