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E�cient elliptic curve exponentiation using

mixed coordinates

Henri Cohen�� Atsuko Miyaji�� and Takatoshi Ono�

� Laboratoire A�X� Universit�e Bordeaux I
� Multimedia Development Center� Matsushita Electric Industrial Co�� Ltd�
� Matsushita Information Systems Research Laboratory Nagoya Co�� Ltd�

Abstract� Elliptic curve cryptosystems� proposed by Koblitz ����	
 and
Miller ����	
� can be constructed over a smaller �eld of de�nition than
the ElGamal cryptosystems ���	
 or the RSA cryptosystems ���	
� This
is why elliptic curve cryptosystems have begun to attract notice� In this
paper� we investigate e�cient elliptic curve exponentiation� We propose a
new coordinate system and a new mixed coordinates strategy� which sig�
ni�cantly improves on the number of basic operations needed for elliptic
curve exponentiation�

key words� elliptic curve exponentiation� coordinate system

� Introduction

Koblitz ������ and Miller ���	�� proposed a method by which public key cryptosys

tems can be constructed on the group of points of an elliptic curve over a �nite
�eld instead of a �nite �eld� If elliptic curve cryptosystems satisfy both MOV

conditions ���� ���� and FR
conditions ������ and avoid p
divisible elliptic curves
over IFpr ����� ��� ���� then the only known attacks are the Pollard ��method
������ and the Pohlig
Hellman method ������� Hence with current knowledge� we
can construct elliptic curve cryptosystems over a smaller de�nition �eld than the
discrete
logarithm
problem �DLP�
based cryptosystems like the ElGamal cryp

tosystems ��	�� or the DSA ���� and RSA cryptosystems ������� Elliptic curve
cryptosystems with a �	�
bit key are thus believed to have the same security as
both the ElGamal cryptosystems and RSA with a �����
bit key� This is why ellip

tic curve cryptosystems have been discussed in ISO�IEC CD �����
�� ISO�IEC
DIS �����
�� ANSI ASC X��� X���	�� and IEEE P��	� ������� As standardization
advances� fast implementations of elliptic curve cryptosystems has been reported
���� ��� ��� �� ����

There are two approaches for e�cient elliptic curve exponentiation� One uses
general methods valid for any elliptic curve� The other uses ad
hoc methods
for special elliptic curves� which use the complex multiplication �eld ���	� �����
For security purposes� an elliptic curve should not be �xed and be changed
periodically� Therefore an e�cient algorithm valid for any elliptic curve and not
for a �xed elliptic curve is desirable� This paper explores an e�cient algorithm
valid for any elliptic curve�



Elliptic curve exponentiations involve three di�erent factors� the �eld of de�

nition� the addition
chains ����� ��� ��� ����� and the coordinate systems� For the
�eld of de�nition� we may choose optimal �elds on which modular reduction is
e�cient ����� or on which inversion is e�cient ������� For the addition
chains�
the addition
subtraction method is usually mixed with the window method
����� ��� ��� ��� ���� On the other hand� the optimal coordinate systems have
not been so thoroughly studied� though there have been some proposals ������ In
this paper� we study optimal coordinates for the case of a �eld of de�nition IFp
�with p larger than ��� We propose a new coordinate system and a new mixed
coordinates strategy for elliptic curve exponentiation�

�� Coordinates of an elliptic curve
An elliptic curve can be represented using several coordinate systems� For each
such system� the speed of additions and doublings is di�erent� Therefore a good
choice of coordinate system is an important factor for elliptic curve exponentia

tions� A�ne coordinates and projective coordinates are well known ������� Two
more coordinate systems� the Jacobian coordinates and the �ve element Jaco

bian coordinates �which we will call the Chudnovsky Jacobian coordinates� have
been proposed in ���� The e�ciency of Jacobian coordinates for elliptic curve
exponentiation is discussed in ����

In the present paper� we introduce what we call modi�ed Jacobian coordi

nates� which gives faster doublings than a�ne� projective� Jacobian and Chud

novsky Jacobian coordinates� Since doublings take the largest part of the time
for an elliptic curve exponentiation� this leads to noticeable improvements�

�� Strategy of elliptic curve exponentiation
Although we have at our disposal �ve coordinate systems including our new one�
there is no single system which gives both fast doublings and fast additions� for
example� the Jacobian coordinates have faster doublings but slower additions
than the Chudnovsky Jacobian coordinates� Up to now� for fast elliptic curve
exponentiation� a single coordinate system has been used which minimizes the
total computation time ���� ��� ��� �� ���� This is not the best method since
some coordinates are good at additions and others are good at doublings� In this
paper� we propose a new strategy using mixed coordinate systems for e�cient
elliptic curve exponentiation� for doublings� we use the best possible system for
doublings� and for additions� we use the best possible system for additions�

This paper is organized as follows� Section � discusses the four known coor

dinate systems� Section � presents our new coordinate system and investigates
strategies using mixed coordinate systems� The number of basic �eld operations
for elliptic curve exponentiation using mixed coordinates is also estimated� Sec

tion  presents an implementation of our strategy�

� The coordinate systems

An elliptic curve can be represented by several coordinate systems� We give
here the addition and doubling formulas for a�ne coordinates ������� projective



coordinates ������� Jacobian coordinates ���� ���� and Chudnovsky Jacobian co

ordinates ������ as well as the necessary number of �eld operations� From now
on� we assume that IFp is a �eld with p � ��

��� The addition formulas in a�ne coordinate

Let

E � y� � x� � ax� b �a� b � IFp� �a
� � ��b� �� ���

be the equation of an elliptic curve E over IFp�
The addition formulas for a�ne coordinates are the following� Let P �

�x�� y��� Q � �x�� y�� and P �Q � �x�� y�� be points on E�IFp��
� Curve addition formulas in a�ne coordinates �P �� �Q�

x� � �� � x� � x�� y� � ��x� � x��� y�� ���

where � � �y� � y����x� � x���
� Curve doubling formulas in a�ne coordinates �P � Q�

x� � �� � �x�� y� � ��x� � x��� y�� ���

where � � ��x�� � a����y���

Here we discuss the computation times for these formulas in detail� For simplicity�
we neglect addition� subtraction and multiplication by a small constant in IFp
because they are much faster than multiplication and inversion in IFp� Let us
denote the computation time of an addition �resp� a doubling� by t�A � A�
�resp� t��A�� and represent multiplication �resp� inverse� resp� squaring� in IFp
by M �resp� I � resp� S�� Then we see that t�A�A� � I ��M � S and t��A� �
I � �M � �S�

��� The addition formulas in projective coordinates

For projective coordinates� we set x � X�Z and y � Y�Z� giving the equation

EP � Y �Z � X� � aXZ� � bZ��

The addition formulas in projective coordinates are the following� Let P �
�X�� Y�� Z��� Q � �X�� Y�� Z�� and P �Q � R � �X�� Y�� Z���
� Curve addition formulas in projective coordinates �P �� �Q�

X� � vA� Y� � u�v�X�Z� �A�� v�Y�Z�� Z� � v�Z�Z�� ���

where u � Y�Z� � Y�Z�� v � X�Z� �X�Z�� A � u�Z�Z� � v� � �v�X�Z��
� Curve doubling formulas in projective coordinates �R � �P �

X� � �hs� Y� � w��B � h�� �Y�
�s�� Z� � �s�� ���

where w � aZ�
� � �X�

�� s � Y�Z�� B � X�Y�s� h � w� � �B�

The computation times are t�P �P� � ��M ��S and t��P� � �M �S� where
P means projective coordinates�



��� The addition formulas in Jacobian and Chudnovsky Jacobian
coordinates

For Jacobian coordinates� we set x � X�Z� and y � Y�Z�� giving the equation

EJ � Y � � X� � aXZ� � bZ��

The addition formulas in the Jacobian coordinates are the following� Let P �
�X�� Y�� Z��� Q � �X�� Y�� Z�� and P �Q � R � �X�� Y�� Z���
� Curve addition formulas in Jacobian coordinates �P �� �Q�

X� � �H� � �U�H
� � r�� Y� � �S�H

� � r�U�H
� �X��� Z� � Z�Z�H� ��

where U� � X�Z
�
� � U� � X�Z

�
� � S� � Y�Z

�
� � S� � Y�Z

�
� � H � U��U�� r � S��S��

� Curve doubling formulas in Jacobian coordinates �R � �P �

X� � T� Y� � ��Y�
� �M�S � T �� Z� � �Y�Z�� �	�

where S � �X�Y
�
� �M � �X�

� � aZ�
� � T � ��S �M��

The computation times are t�J �J � � ��M ��S and t��J � � �M �	S� where
J means Jacobian coordinates�

We see that Jacobian coordinates o�er a faster doubling and a slower ad

dition than projective coordinates� In order to make an addition faster� we
should represent internally a Jacobian point as the quintuple �X�Y� Z� Z�� Z��
������ This is called the Chudnovsky Jacobian coordinate and denoted by J c�
The addition formulas in the Chudnovsky Jacobian coordinates are the follow

ing� Let P � �X�� Y�� Z�� Z

�
� � Z

�
� �� Q � �X�� Y�� Z�� Z

�
� � Z

�
� � and P � Q � R �

�X�� Y�� Z�� Z
�
� � Z

�
� ��

� Curve addition formulas in Chudnovsky Jacobian coordinates �P ��
�Q�

X� � �H
�
��U�H

��r�� Y� � �S�H
��r�U�H

�
�X�
� Z� � Z�Z�H�Z

�
� � Z

�
� � Z

�
� � Z

�
� �

��


where U� � X��Z
�
� �� U� � X��Z

�
� �� S� � Y��Z

�
� �� S� � Y��Z

�
� �� H � U� � U�� r �

S� � S��
� Curve doubling formulas in Chudnovsky Jacobian coordinates �R �
�P �

X� � T� Y� � ��Y�
� �M�S � T �� Z� � �Y�Z�� Z

�
� � Z�

� � Z
�
� � Z�

� � ���

where S � �X�Y
�
� �M � �X�

� � a�Z�
� �

�� T � ��S �M��

The computation times are t�J c � J c� � ��M � �S and t��J c� � M � 	S�

� A new strategy for elliptic curve exponentiation

In this section� we investigate a new strategy for elliptic curve exponentiation�
Up to now� since only one kind of coordinate system is used� it has been necessary
that it should o�er both an addition and a doubling with reasonable speed �not
the fastest but not too slow� ���� �� ��� �	� ��� ���� The Chudnovsky Jacobian



coordinate system is a good example� it reduces the computation time of an
addition by slightly increasing the doubling time� but this is still worthwhile
since Jacobian coordinates have a rather faster doubling but slower addition
times than projective coordinates�

On the contrary� here we further improve on the Jacobian coordinate system
in order to o�er even faster doublings� and there will be no loss in elliptic curve
exponentiation since we are going to use a new strategy of mixed coordinate
systems�

��� The modi�ed Jacobian coordinates

Here we modify the Jacobian coordinates in order to obtain the fastest possi

ble doublings� For this� we represent internally the Jacobian coordinates as a
quadruple �X�Y� Z� aZ��� We call this the modi�ed Jacobian coordinate system�
and denote it by Jm� The addition formulas in the modi�ed Jacobian coordi

nates are the following� Let P � �X�� Y�� Z�� aZ

�
� �� Q � �X�� Y�� Z�� aZ

�
� � and

P �Q � R � �X�� Y�� Z�� aZ
�
���

� Curve addition formulas in modi�ed Jacobian coordinates �P �� �Q�

X� � �H
�
��U�H

��r�� Y� � �S�H
��r�U�H

�
�X�
� Z� � Z�Z�H� aZ

�
� � aZ

�
� � ��


where U� � X�Z
�
� � U� � X�Z

�
� � S� � Y�Z

�
� � S� � Y�Z

�
� � H � U��U�� r � S��S��

� Curve doubling formulas in modi�ed Jacobian coordinates �R � �P �

X� � T� Y� �M�S � T �� U� Z� � �Y�Z�� aZ
�
� � �U�aZ�

��� ����

where S � �X�Y
�
� � U � �Y�

��M � �X�
� � �aZ�

� �� T � ��S �M��

The computation times are then t�Jm � Jm� � ��M � 	S and t��Jm� �
�M � �S� Obviously a modi�ed Jacobian coordinate doubling is faster than a
projective� Jacobian or Chudnovsky Jacobian coordinate doubling� Furthermore
it is faster than an a�ne coordinate doubling unless I � ��	M �S is set to ���M��
which seems extremely unlikely if p is larger than ��� bits� independently of the
�eld of de�nition IFp and of the implementation of inversion�

��� Using mixed coordinates

It is evidently possible to mix di�erent coordinates� i�e� to add two points where
one is given in some coordinate system� and the other point is in some other
coordinate system� We can also choose the coordinate system of the result� Since
we have �ve di�erent kinds of coordinate systems �represented by the symbols
A� P � J � J c� and Jm�� this gives a large number of possibilities� Generalizing
slightly the notation used above� let us denote by t�C� � C� � C�� the time for
addition of points in coordinates C� and C� giving a result in coordinates C�� and
by t��C� � C�� the time for doubling a point in coordinates C� giving a result in
coordinates C�� Table � gives the computation times for additions and doublings
in various coordinates �not all possible combinations are given� only the most
useful ones��



A small discussion is necessary if we want to compare computation times�
The ratio S�M is almost independent of the �eld of de�nition and of the imple

mentation� and can be reasonably taken equal to ���� On the other hand� the
ratio I�M deeply depends on the �eld of de�nition and on the implementation�
it can be estimated to be between �M and ��M in the case of p larger than ���
bits� From Table �� we see that for a doubling using a �xed coordinate system�
Jm is the best choice� On the other hand� for an addition using a �xed coordi

nate system� we cannot decide what is the best coordinate system independently
of the relative speed of inversion� it will usually be J c� unless I�M � ���	� in
which case it will be A�

doubling addition

operation computation time operation computation time

t��P
 �M � �S t�Jm � Jm
 ��M � �S

t��J c
 �M � �S t�Jm � J c � J
m
 ��M � �S

t��J 
 �M � �S t�J � J c � Jm
 ��M � �S

t��Jm � J
c
 �M � �S t�J � J 
 ��M � �S

t��Jm
 �M � �S t�P � P
 ��M � �S

t��A � J
c
 �M � �S t�J c � J c � J

m
 ��M � �S

t��Jm � J 
 �M � �S t�J c � J c
 ��M � �S

t��A � Jm
 �M � �S t�J c � J � J 
 ��M � �S

t��A � J 
 �M � �S t�J c � J c � J 
 �M � �S

� � t�J �A � J
m
 �M � �S

� � t�Jm �A � Jm
 �M � �S

� � t�J c �A � J
m
 �M � �S

� � t�J c �A � J
c
 �M � �S

� � t�J �A � J 
 �M � �S

� � t�Jm �A � J 
 �M � �S

� � t�A�A � J
m
 �M � �S

� � t�A�A � J c
 �M � �S

t��A
 �M � �S � I t�A�A
 �M � S � I

Table �� Computation amount of addition and doubling

��� Use of mixed coordinate systems

Elliptic curve exponentiation kP usually combines the addition
subtraction me

thod with the window method ���� ��� �	� ��� ���� We will set n � blog��k�c� �
�i�e� n is the number of bits of k�� and we denote the width of a window by
w� Some representations in signed binary are reported in ���� ��� ��� Since our
discussion does not depend on this representation� we restrict here k to be in
the following representation�

k � �k���k��� � � �kv����kvW �v� �W �v � ��� � � �� �W ���� ����



where W �i� is an odd integer in the range ��w � � � W �i� � �w � � for all i�
W �v� � �� k� � � and ki � w�� for i � �� This representation is easy to obtain
inductively by looking at the bit pattern of k ������ Then kP can be computed
using the following procedure� �rst precompute points Pi � iP for odd integers
i and � � i � �w � �� set P�i � �Pi for each i� and then repeat doublings and
addition�subtractions with these precomputed points�

The �rst stage of computation� that is �kvPW �v�� can be modi�ed in order to
reduce the computation amount as follows� In the case ofW �v� � �� kv doublings
are reduced to �kv � w� doublings and � addition by setting

�kvP� � �kv�w�P�w�� � P���

In the case of W �v� � �� kv doublings are reduced to �kv �w��� doublings and
� addition by setting

�kvP� � �kv�w	��P�w�� � P�w��	���

Similar modi�cations can be made for all W �v� � �w��� and one can show that
the most signi�cant doublings �kvPW �v� can be reduced by �w

��w������w���
doublings minus �w � ����w � �� additions on average�

Up to now� we have used a single coordinate system in all the procedure� Here
we propose to mix di�erent coordinate systems by dividing the computation into
three parts� we will use the coordinate system C� for repeated main doublings
�i�e� �ki��P ��� the coordinate system C� for the result of a �nal doubling �i�e�
���ki��P ��� and the coordinate system C� for the precomputed points� where P �

is an intermediate point in the computation of kP � Summarizing� the computa

tion of kP is done by repeating �kiP � � PW �i��� � ���ki��P �� � PW �i���� whose
computation time is equal to

�ki � ��t��C�� � t��C� � C�� � t�C� � C� � C���

Let us now discuss suitable coordinate systems for C�� C�� and C�� Since
doublings in C� are repeated the most frequently� we should choose C� such that
t��C�� is the fastest� hence we set C� equal to Jm�

We now look at the coordinates suitable for C� and C�� In this case� we
must also consider the computation time necessary for constructing the table of
precomputed points� which requires addition routines� For those� Table � says
that

t�J c � J c� � t�A�A� 	
 �M � �S � I� ����

where t�J c � J c� is the fastest of all addition routines with no inversions and
a �xed coordinate system� From equation ����� the optimal coordinate system
depends on the relative speed of inversion� Roughly speaking� when the relative
speed of I toM is fast� we use a�ne coordinates as C�� When the relative speed
of I to M is slow� we use Chudnovsky Jacobian coordinates as C�� In the next
section� we �rst discuss each case generally� and then investigate the ratio of I
to M in the case where k has �	�
bits� ���
bits� and ���
bits�



��	 Precomputed points in a�ne coordinates

We assume here that we choose C� to be A� For C�� we search for the coordinate
system such that t��Jm � C�� � t�C� �A � Jm� is as small as possible� From
Table �� we see that both J c and J are suitable choices for C�� Thus� we choose
the simplest system J � To summarize� we set �C�� C�� C�� � �Jm�J �A��

To compute the table of precomputed points Pi� we have two methods� We
can compute it in the straightforward way� which requires a time of

�w��I � �wM � ��w�� � ��S� ����

Or we can use the well known Montgomery trick of simultaneous inversions� the
inverses modulo p of m numbers can be computed in time I���m���M �see for
example ���� Algorithm �������� We compute ��P �� then ��P� �P �� �P� �P� �P �����
���w�� � ��P� ���� ��w�� � ��P� �w��P �� ���w�� � ��P� ���� ��w � ��P �� giving a
computation time of

wI � � � �w�� � �w � ���M � ��w�� � �w � ��S� ����

This will be almost always less than the time given in Equation ���� �for example�
if w � �� it will be the case if I � 	��M�� Furthermore the memory size necessary
for constructing the table in Montgomery�s trick is just the same as that in the
above straightforward way� Thus� we will use this method for computing the
table�

To compute the �rst stage of doublings� that is �kvPW �v�� we use the modi�

cation discussed in Section ���� for example if W �v� � � we compute

t��kvPW �v�� � t�A�A � Jm� � �kv � w � ��t��Jm� � t��Jm � J �

On the other hand� in the �nal stage� that is �k��P ��PW ����� we use t�J�A � J �
instead of t�J �A � Jm� if k� � �� and otherwise we use t��Jm � J � instead
of t��Jm� as the �nal doubling�

We now discuss the total computation time� From Equations ���� and �����
the total computation time T �

w�n� including the time for constructing a table of
Pi �i odd� � � i � �w � �� is equal to

T �
w�n� � wI�� ��w������

��

w � �
��u��v�M���w���	�

��

w � �
��u�v�S�

���
where u is equal to

Pv

i
� ki� It is easily shown that the average interval between
two windows is � bits ������ More precisely� one can show that we have approxi

mately u � n�w���	 and v � �n�w���	���w���� where 	 � �������w����
Thus� if we set n� � n � w��� T �

w�n� is approximately given by the following
formula�

T �
w�n� � wI � � � �w�� � �	 �

��

�
� �n� �

�

w � �
�n� � 	��M

���w�� � �	 � �n� �


w � �
�n� � 	��S� ��	�



��
 Precomputed points in Chudnovsky Jacobian coordinates

We assume here that we choose C� to be J c� For C�� we search for the coordinate
system such that t��Jm � C�� � t�C� �J c � Jm� is as small as possible� From
Table �� we see that both J c and J are suitable choices for C�� Thus� we choose
the simplest system J � To summarize� we set �C�� C�� C�� � �Jm�J �J c��

The computation time for constructing a table of Pi �i odd� � � i � �w � ��
is

t��A � J
c
���w����
t�J c�J c
�t�A�J c � J

c
 � �����w�����
M�����w����
S�

The �rst computation of �P can be done instead using a�ne coordinates� In this
case� the computation time for a table is

t��A
���w����
t�A�J c � J
c
�t�A�A � J

c
 � I���w����
M��� ��w����
S�

However� this is never optimal if ��� � k � ��� so we omit this case�

To compute the �rst stage of doublings� that is �kvPW �v�� we use the modi�

cation discussed in Section ���� for example if W �v� � �� we compute

t��kvPW �v�� � t�A� J c � Jm� � �kv � w � ��t��Jm� � t��Jm � J �

On the other hand� in the �nal stage of addition� that is �k��P � � PW ����� we
use t�J � J c � J � instead of t�J � J c � Jm� if k� � �� and otherwise we use
t��Jm � J � instead of t��Jm� as the �nal doubling�

Here we discuss the total computation amount� We obtain a total compu

tation time T �

w�n� including the time for constructing a table of Pi �i odd�
� � i � �w � ��� given by

T �
w�n� � ��� � �w�� � �w � ��

�

w � �
� �u� ���� ���w���v�M

��� � �w�� � �w � � �
��

w � �
� �u� v�S� ����

Note that the term ���w�� comes from the fact that although the Pi for i � �
are in Chudnovsky Jacobian coordinates� P� is in a�ne coordinates so addition
with P� is faster�

In the same way as in Section ��� with n� � n� w��� we get approximately

T �
w�n� � ��� � �w�� � �w � �	 � � � �n� �

��� ���w��

w � �
�n� � 	��M

��� � �w�� � �w � �	 �  � �n� �


w � �
�n� � 	��S� ����



� Time comparisons depending on the ratio I�M

	�� The case of k � �� bits

To �x ideas� we assume here that k has �	� bits and that S � ���M � In this
case� the optimal value of w is equal to �� u is approximately equal to ������
and v is approximately equal to �	���� We obtain the following results�

�� I � ���M
The optimal mixed coordinate system is as in Section ���� �C�� C�� C�� �
�Jm�J �A�� In other words� we use a�ne coordinates for computing the
table� modi�ed Jacobian coordinates in the main doublings �i�e� �ki��P ���
and we compute the result of a �nal doubling �i�e� ���ki��P ��� using Jacobian
coordinates� The computation time is given by T �

� ��	�� � �I � ������M
�Equation �����

�� I � ���M
The optimal mixed coordinate system is as in Section ��� �C�� C�� C�� �
�Jm�J �J c�� In other words� we use Chudnovsky Jacobian coordinates for
computing the table� modi�ed Jacobian coordinate in the main doublings
�i�e� �ki��P ��� and we compute the result of a �nal doubling �i�e� ���ki��P ���
using Jacobian coordinates� The computation time is given by T �

� ��	�� �
�	����M �Equation ������

Let us compare our new method using mixed coordinate systems with the tra

ditional method using a single coordinate system� If we use Jacobian coordinates
and addition
subtraction with the window method as above� the computation
time for elliptic curve exponentiation is approximately ��	���M � which is the
best known among projective� Jacobian or Chudnovsky Jacobian coordinate sys

tems� If we use our new modi�ed Jacobian coordinates instead of the Jacobian
coordinates� the computation time of elliptic curve exponentiation is improved to
approximately ������M � On the other hand� a�ne coordinates would be worse�
We thus see that the use of modi�ed Jacobian coordinate Jm� together with
a clever use of mixed coordinate systems� with a computation time of at most
�	����M � gives a very signi�cant improvement�

	�� The case of k � ��� bits

We assume here that k has ��� bits and that S � ���M � In this case� the
optimal value of w is equal to �� u is approximately equal to ������� and v is
approximately equal to ���	�� We obtain the following results�

�� I � ����M
The optimal mixed coordinate system is as in Section ���� �C�� C�� C�� �
�Jm�J �A�� The computation time is given by T �

� ����� � �I � ������M
�Equation �����

�� I � ����M
The optimal mixed coordinate system is as in Section ��� �C�� C�� C�� �
�Jm�J �J c�� The computation time is given by T �

� ����� � �����M
�Equation ������



Let us compare our new method using mixed coordinate systems with the
traditional method using a single coordinate system� If we use Jacobian coordi

nates and addition
subtraction with the window method as above� the computa

tion time for elliptic curve exponentiation is approximately �����	M � If we use
our new modi�ed Jacobian coordinates instead of the Jacobian coordinates� the
computation time of elliptic curve exponentiation is improved to approximately
������M � We thus see that the use of modi�ed Jacobian coordinate Jm� to

gether with a clever use of mixed coordinate systems� with a computation time
of at most �����M � gives a very signi�cant improvement�

	�� The case of k � ��	 bits

We assume here that k has ��� bits and that S � ���M � In this case� the
optimal value of w is equal to � except for the mixed coordinate system of
�C�� C�� C�� � �Jm�J �A� in Section ���� In the case of �C�� C�� C�� � �Jm�J �A��
the optimal value of w is determined by the relative speed of I to M � if I �
����M � then w � �� otherwise w � � Here we assume that w is equal to � since
I � ����M in our implementation� Then u is approximately equal to ������� and
v is approximately equal to �	���� We obtain the following results�

�� I � ����M
The optimal mixed coordinate system is as in Section ���� �C�� C�� C�� �
�Jm�J �A�� The computation time is given by T �

� ����� � �I � ������M
�Equation �����

�� I � ����M
The optimal mixed coordinate system is as in Section ��� �C�� C�� C�� �
�Jm�J �J c�� The computation time is given by T �

� ����� � ���	��M
�Equation ������

Let us compare our new method using mixed coordinate systems with the
traditional method using a single coordinate system� If we use Jacobian coordi

nates and addition
subtraction with the window method as above� the computa

tion time for elliptic curve exponentiation is approximately �����M � If we use
our new modi�ed Jacobian coordinates instead of the Jacobian coordinates� the
computation time of elliptic curve exponentiation is improved to approximately
����M � We thus see that the use of modi�ed Jacobian coordinate Jm� to

gether with a clever use of mixed coordinate systems� with a computation time
of at most ���	��M � gives a very signi�cant improvement�

� Implementation


�� Elliptic curves

Elliptic curves E�IFp with order divisible by a prime of at least �	�
bits are
secure if the trace of E ������ is equal to neither � nor � ���� ����� Here we
implement two elliptic curves with �	�
bit� ���
bit and ���
bit key size�
Elliptic curve E� ����bit key size�



� a �eld of de�nition IFp� � p� � ���� � ����
� an elliptic curve E�� y

� � x� � a�x� b�� where
a� � ���������������������������������������������

b� � �������������������������������������������������

�E��IFp�� � � �  � �� � q�� where q� is a prime
q� � ������������������������������������������

� a point P�� �x�� y�� � E��IFp�� with order q�� where
x� � ���� ���� ����� ���� ���� ���� ����� ����� ���� ����

y� � ��� ���� ���� ���� ���� ����� ���� ����� ����� �����

Elliptic curve E� �����bit key size�

� a �eld of de�nition IFp� � p� � ���� � ���
� an elliptic curve E�� y

� � x� � a�x� b�� where
a� � ���������������������������������������������������

b� � ���������������������������������������������������

�E��IFp�� � � � q�� where q� is a prime
q� � ��������������������������������������������������

� a point P�� �x�� y�� � E��IFp�� with order q�� where
x� � ��� ���� ����� ����� ����� ���� ����� ����� ���� �����

y� � �� ���� ����� ��� ����� ���� ���� ����� ���� ����

Elliptic curve E� ���	�bit key size�

� a �eld of de�nition IFp� � p� � ���� � ���
� an elliptic curve E�� y

� � x� � a�x� b�� where
a� � ���������������������������������������������������������������

b� � ������������������������������������������������������������

�E��IFp�� � 	� � q�� where q� is a prime
q� � ��������������������������������������������������������������

� a point P�� �x�� y�� � E��IFp�� with order q�� where
x� � ��������������������������������������������������������

y� � ���������������������������������������������������������������


�� The running time

We present the running times of elliptic curve exponentiation over our �	�
bit
and ���
bit �eld of de�nition using our methods� We compare each strategy of
Section ��� with the traditional method using a single coordinate� Our modulo
arithmetic uses the GNU MP Library GMP ������ so as to make easy comparisons
possible� since GMP may well be the most popular multiprecision library� The
platform is an UltraSPARC ���� MHz�Solaris ����� Table � shows the running
times� We see that our new strategy gives a very signi�cant improvement�

� Conclusion

In this paper� we have introduced modi�ed Jacobian coordinates Jm� which o�er
the fastest doubling of all known coordinate systems� The new modi�ed Jacobian



�� bit key ��� bit key ��� bit key

�eld operations ��sec


���������� bit addition ��� ��� ���

���������� bit multiplication ��� ���� ���

���������� bit squaring ���� ���� ���

reduction ����������� � ���������� bit
 ���� ���� ����

���������� bit inverse ��� ��� ���

elliptic curve operations �msec


addition �t�A�A

 ��� ���� ����

addition �t�J c � J c

 ��� ���� ����

addition �t�J � J 

 ���� ���� ����

doubling �t��Jm

 ��� ��� ����

doubling �t��J 

 ��� ���� ����

elliptic curve exponentiation �msec


mixed coordinates �case �
 ����� ����� �����

mixed coordinates �case �
 ����� ����� �����

single coordinate �Jacobian coordinate
 ����� ����� �����

single coordinate �projective coordinate
 ���� ���� �����

Table �� Times for elliptic curve operations �UltraSPARC�

coordinates improve the computation time of �	�
bit elliptic curve exponentia

tion to approximately ������M even with the traditional method which uses a
single coordinate system� the use of modi�ed Jacobian coordinates reduces the
computation time of the best known method by ���

Furthermore we have proposed a new method using mixed coordinate sys

tems� which divides elliptic curve exponentiation into three parts� and in each
part we choose the optimal system� For these choices we have presented three
cases according to the relative speed of inversion to multiplication over IFp� We
have seen that the use of modi�ed Jacobian coordinates together with a clever
use of mixed coordinate systems� having a computation time of at most �	����M �
gives a very signi�cant improvement� Our new strategy with modi�ed Jacobian
coordinates reduces the computation time of the best known method by more
than ����
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