
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Efficient elliptic curve exponentiation

Author(s) Miyaji, Atsuko; Ono, Takatoshi; Cohen, Henri

Citation
Lecture Notes in Computer Science, 1334/1997:

282-290

Issue Date 1997

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/4459

Rights

This is the author-created version of Springer,

Atsuko Miyaji, Takatoshi Ono, Henri Cohen,

Lecture Notes in Computer Science, 1334/1997,

1997, 282-290.The original publication is

available at www.springerlink.com,

http://www.springerlink.com/content/w536l58355350

v50

Description

Information and communications security : first

international conference, ICIS '97, Beijing,

China, November 11-14, 1997 : proceedings /

Yongfei Han, Tatsuaki Okamoto, Sihan Qing,

(eds.).

Efficient elliptic curve exponentiation

Atsuko Miyaji1, Takatoshi Ono2 and Henri Cohen3

1 Multimedia Development Center, Matsushita Electric Industrial Co., LTD.
2 Matsushita Information Systems Research Laboratory Nagoya Co., Ltd.

3 Université Bordeaux

Abstract. Elliptic curve cryptosystems, proposed by Koblitz([8]) and
Miller([11]), can be constructed over a smaller definition field than the
ElGamal cryptosystems([5]) or the RSA cryptosystems([16]). This is why
elliptic curve cryptosystems have begun to attract notice. There are
mainly two types in elliptic curve cryptosystems, elliptic curves E over
IF2r and E over IFp. Some current systems based on ElGamal or RSA
may often use modulo arithmetic over IFp. Therefore it is convenient to
construct fast elliptic curve cryptosystems over IFp. In this paper, we
investigate how to implement elliptic curve cryptosystems on E/IFp.

1 Introduction

Koblitz ([8]) and Miller ([11]) proposed a method by which public key cryp-
tosystems can be constructed on the group of points on an elliptic curve over
a finite field instead of a finite field. If elliptic curve cryptosystems avoid the
Menezes-Okamoto-Vanstone reduction ([13]), then the only known attacks are
the Pollard ρ−method ([15]) and the Pohlig-Hellman method ([14]). So up to the
present, we can construct elliptic curve cryptosystems over a smaller definition
field than the discrete-logarithm-problem(DLP)-based cryptosystems like ElGa-
mal cryptosystems([5]) or DSA([3]) and the RSA cryptosystems([16]). Elliptic
curve cryptosystems with 160-bit key have the same security as both ElGamal
cryptosystems and RSA with 1,024-bit key. This is why elliptic curve cryptosys-
tems have been discussed in ISO/IEC CD 14883-3, ISO/IEC DIS 11770-3, ANSI
ASC X.9, X.9.62, and IEEE P1363([7]). As standardization is advanced, fast
implementation of elliptic curve cryptosystems has been reported([6, 20, 22]).

There are mainly two types in elliptic curve cryptosystems, elliptic curves
over IF2r and elliptic curves over IFp. Up to the present, the study on imple-
mentation has been often aimed at elliptic curves over IF2r since arithmetic in
IF2r has an advantage of good performance in hardware. Practically speaking,
however, DLP-based cryptosystems or RSA cryptosystems, both of which use
modular arithmetic over IFp, have been widely used in many systems. There-
fore it would be convenient to construct elliptic curve cryptosystems over IFp

since we can offer both RSA and elliptic curve cryptosystems with one modular
arithmetic.

Elliptic curve cryptosystems mainly consist of elliptic curve exponentiations.
This paper studies efficient elliptic curve exponentiation, which aims at elliptic
curves over IFp but can be applied to any elliptic curve. Studies on elliptic curve

exponentiations are mainly classified into three factors: the coordinate, an ex-
ponentiation for a fixed point, and an exponentiation for a random point. This
paper investigates these three factors:
1. The coordinate: Elliptic curve exponentiation can be computed by repeat-
ing additions and doublings, where the repeated number of additions can be
reduced by a suitable algorithm, but that of doublings can not be reduced espe-
cially in the case of exponentiation for a random point. On the other hand, we
can define some coordinates on an elliptic curve, which give each different addi-
tion formula. So we investigate the efficiency of the addition formula in jacobian
coordinates([2]) which is less familiar than projective coordinates. Jacobian co-
ordinates offer a slower addition but a faster doubling, which should be suitable
for elliptic curve exponentiation.
2. Exponentiation for a fixed point: In this case, the precomputation ta-
ble method([1]) is useful, which computes an elliptic curve exponentiation by
repeating only additions and no doubling. In order to make use of a feature of
jacobian coordinates, we propose a new algorithm which requires more doublings
but fewer additions. Total computation amount for kG in our algorithm is less
than [1].
3. Exponentiation for a random point: In this case, the addition-subtraction
method is usually mixed with the window method([10, 12, 9, 20]). In this ap-
proach, an interval between two windows mainly determines the computation
amount: the longer the interval is, the less the computation amount is. Impor-
tantly, signed binary representation of k is not determined uniquely, while an
interval differs for each signed binary representation. An average interval by mix-
ing the signed binary representation in [12] and the window method is 4/3, that
in [9] is 3/2. Here we present a new method for signed binary representation,
which improves the average interval to 2 by mixing with the window method.

This paper is organized as follows. Section 2 discusses jacobian coordinates.
Section 3 investigates each suitable algorithm for exponentiation of a fixed point
and a random. Two implements of a 160-bit definition field and a 169-bit defi-
nition field are presented in appendices.

2 The coordinate

An elliptic curve can be represented by several sets of coordinates. The addition
formula, which is defined by setting a point at infinity O to zero, differs for each
coordinate: the computation amount of addition differs for each coordinate. Two
coordinates, affine coordinates and projective coordinates, are well known([19]).
Affine coordinate requires a division in every addition and every doubling but
requires fewer multiplications than projective coordinate. On the other hand,
projective coordinate does not require any division in either addition or dou-
bling and does require a division only once in the final stage of the computation
of elliptic curve exponentiation. In the case of IFp the computation of elliptic
curve exponentiation in projective coordinates is faster than that in affine coor-
dinates since the ratio of the computation amount of division in IFp to that of

multiplication in IFp is generally larger than 9.
Here we discuss another coordinate([2]), which is called jacobian coordinate

in this paper. The addition formula in jacobian coordinates is similar to pro-
jective coordinate: it does not require any division modulo p in either addition
or doubling and does require a division only once in the final stage of the com-
putation of elliptic curve exponentiation. However, jacobian coordinates offer a
doubling with less computation amount but an addition with more computation
amount than projective coordinates. This feature should be suitable for elliptic
curve exponentiation since the number of additions required in elliptic curve ex-
ponentiation can be reduced by a suitable algorithm, but that of doublings may
not be reduced.

Here we presents the addition formula in jacobian coordinate which is a
slightly revised version of ([2]). Let an elliptic curve over IFp(p > 3) be

E : y2 = x3 + ax+ b (a, b ∈ IFp, 4a3 + 27b2 �= 0).

For the elliptic curve, the jacobian coordinate sets x = X/Z2 and y = Y/Z3 i.e.

E : Y 2 = X3 + aXZ4 + bZ6.

The addition formulae in the jacobian coordinates are the following. Let P =
(X1, Y1, Z1), Q = (X2, Y2, Z2) and P +Q = R = (X3, Y3, Z3).
• Curve addition formula in jacobian coordinates (P �= ±Q)

X3 = −H3 − 2U1H
2 + r2, Y3 = −S1H

3 + r(U1H
2 −X3), Z3 = Z1Z2H,

where U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2−U1, r = S2−S1;

• Curve doubling formula in jacobian coordinates (R = 2P)

X3 = T, Y3 = −8Y1
4 +M(S − T), Z3 = 2Y1Z1,

where S = 4X1Y
2
1 ,M = 3X2

1 + aZ4
1 , T = −2S +M2.

Here we discuss the computation amount of addition formulae. We denote
the computation amount for 1 multiplication(resp. division) in IFp by M(resp.
D). For simplicity, we neglect addition, subtraction and multiplication by a small
constant in IFp because they are much faster than multiplication and division
in IFp. Table 1 presents the number of multiplications in addition formula of
jacobian coordinates and projective coordinates, where the addition formula in
projective coordinates is presented in Appendix A. Table 1 includes the following
special cases: in the computation of a fixed point, we may set Z1 to one or both
Z1 and Z2 to one in addition formula. Doubling formula depends on a coefficient
a of an elliptic curve: in the case of a = 0 or a = −3(setting w = 3X2

1 − 3Z4
1 =

3(X1 − Z2
1)(X1 + Z2

1)), the computation amount is reduced. Note that addition
formula does not depend on coefficients.

addition doubling

Z1, Z2 �= 1 Z1 = 1 Z1 = Z2 = 1 a �= 0,−3 a = 0 a = −3

Projective coordinate 14M 11M 7M 12M 10M 10M
Jacobian coordinate 16M 11M 6M 10M 7M 8M

Table 1. Number of multiplications in addition formula

3 Elliptic curve exponentiation

This section discusses elliptic curve exponentiations for a fixed point and a ran-
dom point. Both discussion depends neither on the size of definition field nor on
the characteristic of definition field.

3.1 Exponentiation for a fixed point

For simplicity, here we assume a 160-bit definition field IFp. As for a fixed point,
the precomputation table method is useful([1]): it prepares a table of 40 points
16iG for i = 1, · · · , 40, each of which Z-coordinate is set to 1, and computes
kG in about 44 additions/subtractions. Since this method does not require any
doubling, projective coordinate is suitable. The computation amount sums up
to 500M +D, considering carefully three cases of addition in Table 1. Note that
the computation amount does not depend on a coefficient a of an elliptic curve.

As we have seen in Section 2, the computation amount of doubling is less
than that of addition. Therefore we would reduce the number of additions rather
than that of doublings. Here we describe another method which requires more
doublings but fewer additions than [1]. The tables consist of 62 points,

A[s] =
∑4

j=0 as,j232jG and B[s] =
∑4

j=0 as,j216+32jG (1 ≤ s ≤ 31),

where as,0, · · · , as,4 is a representation of s in radix 2, that is s =
∑4

j=0 as,j2j .
The Z-coordinates of 62 points are also set to 1. Then the algorithm to compute
kG is as follows, where k is set to k =

∑159
j=0 k[j]2j:

Algorithm 1.

1. set uj =
∑4

i=0
k[32i + j]2i and vj =

∑4

i=0
k[32i + 16 + j]2i for 0 ≤ j ≤ 15

2. set A[0] = O, B[0] = O, and T = O
3. for i = 15 to 0 by −1

T = 2T and T = T + A[ui] + B[vi]

4. output T = kG.

The above algorithm computes kG by 30 additions and 15 doublings. Jacobian
coordinate is suitable for this method. By using jacobian coordinate, the com-
putation amount sums up to 479M +D. If we set a coefficient a = 0 of elliptic
curve, the computation amount is reduced to 434M +D.

To sum up, our method with jacobian coordinate can reduce the computation
amount of kG by 4% of [1]. Furthermore by selecting a suitable elliptic curve
like a coefficient a = 0 it is reduced by 13% of [1].

3.2 Exponentiation for a random point

As for the computation of kP for a random point P , the addition-subtraction
method is commonly mixed with the window method([10, 12, 9, 20]). In this
approach, an interval between two windows mainly determines the computation
amount for kP : the longer the interval is, the less the computation amount
is. Importantly, signed binary representation of k is not determined uniquely,

while an interval differs for each signed binary representation. Here we present
new signed binary representation, which can offer a longer interval by mixing
with the window method. A feature of our method is that the signed binary
representation depends on a width in the window method. On the other hand,
known representation([10, 12, 9]) is independent of the window method.

Let n = 	log2(k)
, k =
∑n

i=0 k[i]2i (k[i] = 0, 1) in binary representation,
and w be a width in the window method. The following algorithm transforms
k into k′ =

∑
i=0 k′[i]2i (k′[i] = 0,±1) in signed binary while setting windows

W [j](j = 0, 1, · · ·):
Algorithm 2.

1. set i = 0, j = 0 and k[n + 1] = 0

2. while i ≤ n do:

if i + w − 1 ≥ n − w, then set k′[i] = k[i], · · · , k′[n] = k[n],

set W [j] = (k[i + w − 1], · · · , k[i + 1], k[i]) and goto 3.

if k[i] = 0, then set k′[i] = k[i], i = i + 1, and goto 2.

if k[i] = 1, then set t[j] =
∑w−1

t=0
k[i + t]2t

if k[i + w] = 0, then set k′[i] = k[i], · · · , k′[i + w] = k[i + w],

set W [j] = (k[i + w − 1], · · · , k[i + 1], k[i]),

set j = j + 1, i = i + w + 1 and goto 2.

if k[i + w] = 1, then for first t satisfying k[t] = 0 (t = i + w + 1, · · ·)
set k′[i + w] = 0, · · · , k′[t − 1] = 0, and k[t] = 1,

set t[j] = 2w − t[j] =
∑w−1

t=0
k′[i + t]2t (in binary representation),

set k′[i] = −k′[i], · · · , k′[i + w − 1] = −k′[i + w − 1],

set W [j] = (k′[i + w − 1], · · · , k′[i + 1], k′[i]),
set i = t, j = j + 1 and goto 2.

3. output k′ =
∑

i=0
k′[i]2i (k′[i] = 0,±1) and W [i](i = 0, 1, · · ·).

Let the most significant window be W [s− 1] = (k′[i+w− 1], · · · , k′[i+1], k′[i]).
For convenience, set W [s] = (k′[n], · · · , k′[i+w]), where i+w ≥ n−w+ 1 from
Algorithm 2. Then k′ is written as

k′ = 2t0(2t1(· · · 2ts−1(2tsW [s] +W [s− 1]) · · ·) +W [0]) (0 ≤ ti).

In order to decrease the number ts of doublings, we revise W [s] to a window
with a length at most w from MSB and fit the most significant bit of W [s − 1]
to the new W [s], while leaving others as they are. Then we can compute kP
from MSB to LSB by using the transformation of k after preparing points
P, 3P, · · · , (2w − 1)P .
Example. Set w = 4. For a given k = 101101100110110111 in binary represen-
tation, the algorithm transforms k into:

k′ = 101 1011 0 0111 00 1001 = W [3]W [2] 0W [1] 00W [0],
revise k′ to:

k′ = 1011 011 0 0111 00 1001 = W [3]W [2] 0W [1] 00W [0],
where 1 denotes −1 and each block of underlined digits represents one window
like W [0]. Then kP can be computed by 26(25(23W [3]+W [2])+W [1])+W [0].

Let estimate the computation amount of exponentiation in this method. First
we show that an average interval between two windows is 2:

Theorem1. Algorithm 2 constructs windows at an average interval of 2 bits.

Proof. Let W [j] = (k[i+w−1], · · · , k[i+1], k[i]) be a window. Then we show the
next window W [j+1] will start at k[i+w+2] on the average. From Algorithm 2,
the next window never starts at k[i+w]. The next window starts at k[i+w+1]
if and only if (k[i+w + 1], k[i+w]) = (0, 1), (1, 0). Therefore the probability of
starting at k[i+w+1] is 1

2 . The next window starts at k[i+w+2] if and only if
(k[i+w+2], k[i+w+1], k[i+w]) = (1, 0, 0), (0, 1, 1). Therefore the probability
of starting at k[i+ w + 2] is (1

2)
2. Thus, an average interval between W [j] and

W [j +1] is computed in
∑

i=1 i ∗ (1
2)

i 2. Therefore the next window will start
at k[i+ w + 2] on the average. ��
From the above theorem, we obtain the following approximate multiplication
count Tw(n) for raising a point P to the n-th power by setting u =

∑s
i=0 ti and

L to be the average length of k′ and using jacobian coordinates

Tw(n) = (16− 5
2w−1)(L

w+2) + 10u+ 16 ∗ 2w−1 − 15.

Then it is easily shown that u = (n+ 2 − (1
2)

w − w) and L = n+ 3
2 . Therefore

we obtain

Tw(n) = (16− 5
2w−1)(

n+3/2
w+2) + 10(n+ 2− (1

2)
w − w) + 16 ∗ 2w−1 − 15.

Choosing w to make Tw(n) minimal in the range of 150 < n < 170, we get w = 4
is optimal since T3(n) > T4(n) < T5(n).

We discuss one case of n = 159, in which implementation is presented in
Appendix B. Our algorithm computes kP in 33.7 additions and 157.9 doublings.
The total computation amount of our algorithm with jacobian coordinates is
2098M + D. On the other hand, the method of [9] requires 2384M + D in
projective coordinates or 2141M +D in jacobian coordinates.

4 Conclusion

In this paper, we have been proposed efficient elliptic curve exponentiations for a
fixed and a random point. As for a fixed point, our method with more doublings
but fewer additions can compute kG with 160-bit k in 30 additions and 15 dou-
blings. As for a random point, our method of mixing new signed representation
with the window method can compute kP with 160-bit k in 33.7 additions and
157.9 doublings. The use of jacobian coordinate gives further improvement to
the running time: elliptic curve exponentiation for a fixed point can be computed
in 479M +D and that for a random point can be computed in 2098M +D.

References

1. E. F. Brickell, D. M. Gordon, K. S. McCurley and D. B. Wilson, “Fast expo-
nentiation with precomputation” Advances in Cryptology-Proceedings of EURO-
CRYPT’92, Lecture Notes in Computer Science, 658(1993), Springer-Verlag, 200-
207.

2. D. V. Chudnovsky and G. V. Chudnovsky “Sequences of numbers generated by
addition in formal group and new primality and factorization tests” Advances in
Applied Math., 7(1986), 385-434.

3. “Proposed federal information processing standard for digital signature standard
(DSS)”, Federal Register, v. 56, n. 169, 30 Aug 1991, 42980-42982.

4. W. Diffie and M. Hellman, “New directions in cryptography” IEEE Trans. Inform.
Theory, Vol. IT-22 (1976), 644-654.

5. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Trans. Inform. Theory, Vol. IT-31 (1985), 469-472.

6. G. Harper, A. Menezes and S. Vanstone, “Public-key cryptosystems with very
small key lengths”, Advances in Cryptology-Proceedings of Eurocrypt’92, Lecture
Notes in Computer Science, 658(1993), Springer-Verlag, 163-173.

7. IEEE P1363 Working Draft, February 6, 1997.
8. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation,

48(1987), 203-209.
9. K. Koyama and Y. Tsuruoka, “Speeding up elliptic cryptosystems by using a signed

binary window method”, Abstract of proceedings of CRYPTO’92, 1992.
10. D. E. Knuth, The art of computer programming, vol. 2, Seminumerical Algorithms,

2nd ed., Addison-Wesley, Reading, Mass. 1981.
11. V. S. Miller, “Use of elliptic curves in cryptography”, Advances in Cryptology-

Proceedings of Crypto’85, Lecture Notes in Computer Science, 218(1986), Springer-
Verlag, 417-426.

12. F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve us-
ing addition-subtraction chains”, Theoretical Informatics and Applications Vol.24,
No.6 (1990), 531-544.

13. A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms to
logarithms in a finite field”, Proceedings of the 22nd Annual ACM Symposium on
the Theory of Computing, 80-89, 1991.

14. S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing loga-
rithm over GF (p) and its cryptographic significance”, IEEE Trans. Inf. Theory,
IT-24(1978), 106-110.

15. J. Pollard, “Monte Carlo methods for index computation(mod p)”, Mathematics
of Computation, 32(1978), 918-924.

16. R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems”, Communications of the ACM, vol.21, No.2(1978),
120-126.

17. B. Schneier Applied cryptography, II, John Wiley & Sons, Inc. 1996.
18. C. P. Schnorr, “Efficient identification and signatures for smart cards”, Ad-

vances in cryptology-Proceedings of Crypto’89, Lecture Notes in Computer Science,
435(1989), Springer-Verlag, 239-252.

19. J. H. Silverman, The Arithmetic of Elliptic Curves, GTM106, Springer-Verlag, New
York, 1986.

20. R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck, “Fast key exchange with
elliptic curve systems”, Advances in Cryptology-Proceedings of Crypto’95, Lecture
Notes in Computer Science, 963(1995), Springer-Verlag, 43-56.

21. Torbjorn Granlund, The GNU MP LIBRARY, version 2.0.2, June 1996.
ftp://prep.ai.mit.edu/pub/gnu/gmp-2.0.2.tar.gz

22. E. D. Win, A. Bosselaers and S. Vandenberghe “A fast software implementation
for arithmetic operations in GF(2n)”, Advances in Cryptology-Proceedings of Asi-
acrypt’95, Lecture Notes in Computer Science, 1163(1996), Springer-Verlag, 65-76.

A The addition formula in projective coordinate

Let an elliptic curve over IFp(p > 3) be

E : y2 = x3 + ax+ b (a, b ∈ IFp, 4a3 + 27b2 �= 0).

For the elliptic curve, the projective coordinate sets x = X/Z and y = Y/Z i.e.

E : Y 2Z = X3 + aXZ2 + bZ3.

The addition formulae in projective coordinates are the following. Let P =
(X1, Y1, Z1), Q = (X2, Y2, Z2) and P +Q = R = (X3, Y3, Z3).
• Curve addition formula in projective coordinates (P �= ±Q)

X3 = vA, Y3 = u(v2X1Z2 −A)− v3Y1Z2, Z3 = v3Z1Z2, (1)

where u = Y2Z1 − Y1Z2, v = X2Z1 − X1Z2, A = u2Z1Z2 − v3 − 2v2X1Z2;
• Curve doubling formula in projective coordinates (R = 2P)

X3 = 2hs, Y3 = w(4B − h)− 8Y1
2s2, Z3 = 8s3, (2)

where w = aZ1
2 + 3X1

2, s = Y1Z1, B = X1Y1s, h = w2 − 8B.

B Implementation of elliptic curve exponentiations

B.1 Elliptic curves

Elliptic curves E/IFp with order divisible by 160-bit or more prime is secure if
it satisfies MOV-condition([7]). As we have seen in Section 2, the computation
amount of doubling is reduced in the case of a coefficient a = 0 or −3 of elliptic
curve. Here we implement two elliptic curves with a coefficient a = 0 in 160-bit
and 169-bit key size.
1. 160-bit key size

– a definition field IFp1 : p1 = 2160 − 2013
– an elliptic curve E1: y2 = x3+4, #E1(IFp1) = 3∗13∗ q1, where q1 is a prime

q1 = 37 47440 09572 02638 92829 95765 50867 08565 09759 22411
– a basepoint G1: (x1, y1) ∈ E1(IFp1) with order q1, where

x1 = 1312 01277 27149 38861 46561 78958 06449 61829 03474 73840
y1 = 1143 61120 94309 35596 62639 62368 56710 92306 44246 02993

2. 169-bit key size

– a definition field IFp2 : p2 = 2169 − 1825
– an elliptic curve E2: y2 = x3 + 49, #E2(IFp2) = 3 ∗ 67 ∗ q2, where q2 is a
prime
q2 = 3722 83004 13603 09920 99645 09743 01139 56489 04413 35543

– a basepoint G2: (x2, y2) ∈ E2(IFp2) with order q2, where
x2 = 1 55608 20629 69890 07722 36926 87616 67589 98487 34687 95184
y2 = 55502 35686 97076 18367 46840 54359 62467 42560 87632 81833

Here we discuss cryptographic differences between E1 and E2. From a secu-
rity and efficiency point of view, these two elliptic curves give almost the same
security, while the exponentiations in E1 can be computed faster than that in
E2. However, from an application point of view, ElGamal encryption on E2 can
encrypt a 168-bit Triple-DES key([17]) but E1 can not.

B.2 The running time

Here presents the running time of elliptic curve exponentiations over 160-bit and
169-bit definition fields in our methods. Our modulo arithmetic uses GNU MP
Library GMP([21]) in order to make easy comparison possible since GMP might
be most popular multiprecision library. The platform is SS-5(MicroSPARC 110
MHz/Solaris 2.4) with a 32 bit word size. Table 2 shows the running time.

ElGamal encryption on an elliptic curve mainly consists of one exponentiation
of a fixed point and one exponentiation of a random point. Therefore we can
estimate that Triple-DES key can be encrypted in about 42 msec.

E1/IFp1(p1 = 2160 − 2013) E2/IFp2(p2 = 2169 − 1825)

160 bit /169 bit addition 0.88 µsec 1.31 µsec

160 bit /169 bit multiply 9.66 µsec 12.04 µsec

160 bit /169 bit square 7.65 µsec 9.77 µsec

modular reduction 4.81 µsec 5.76 µsec

160 bit /169 bit division 0.91 msec 1.00 msec

addition(jacobian-coordinate) 0.23 msec 0.30 msec

doubling(jacobian-coordinate) 0.12 msec 0.13 msec

exponentiation of a fixed point 7.79 msec 9.31 msec

exponentiation of a random point 26.93 msec 32.54 msec

Table 2. Time of elliptic curve operations

This article was processed using the LATEX macro package with LLNCS style

