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Abstract. The ElGamal signature([3]) is based on the difficulty of the
discrete logarithm problem(DLP). For the ElGamal signature scheme,
many variants like the NIST Digital Signature Algorithm(DSA)([10])
and a new signature with a message recovery feature([12]) are proposed.
The message recovery feature has the advantage of small signed message
length, which is effective especially in applications like identity-based
public key system([4]) and the key exchange protocol([2]). However, its
security is not widely accepted because it has been only a few years since
the scheme was proposed. Even the relative security between the new
message recovery scheme and already-existing schemes is scarcely known.
In this paper, we make a strict definition of the conception of equivalent
classes([14]) between signature schemes. According to this definition, we
discuss the security relation between signature schemes. The reason why
the Bleichenbacher-attack([1]) works for ElGamal but not for DSA can
be also explained well by the conception. We show that an elliptic curve
gives the message recovery signature equivalent to DSA. Furthermore
we investigate the new attack over elliptic curves and present its new
trapdoor generating algorithm. We also show that the trapdoor does not
exist in the particular kind of elliptic curves.

1 Introduction

The ElGamal signature([3]) is based on the difficulty of the discrete logarithm
problem(DLP). For the ElGamal signature schemes, many variants like the NIST
Digital Signature Algorithm(DSA)([10]) are proposed, any of which does not
have a message recovery feature. Recently new variants with the message recov-
ery feature are proposed([12]), which have an advantage of smaller signed mes-
sage length. Therefore they are effective especially in applications like identity-
based public key system([4]) and the key exchange protocol([2]). However, the
new signatures have stood only for a few years, so its security is not widely
accepted. Therefore we would construct an ElGamal-type message recovery sig-
nature whose security is proved to be equivalent to a widely known signature like
ElGamal or DSA with some criterion. A conception is proposed to investigate
the security relation between signature schemes([14]). The conception is useful,
but it need to be discussed more strictly.

In this paper, we make a strict definition of the conception of equivalent
classes between signature schemes. According to this definition, we discuss the



security relation between signature schemes. The reason why a new attack([1]),
called Bleichenbacher-attack, works for ElGamal but not for DSA can be also
explained well by the conception. We found that the relation between modulo-p
arithmetic and modulo q-arithmetic is important for the equivalences between
ElGamal-type signatures, where IFp = GF (p) is an underlying field and q is
the order of a basepoint. We know the ElGamal-type signatures can be also
constructed on an elliptic curve([6, 7]), which have a good feature that they
can be implemented in smaller size than finite fields([5]). We also know they
have another remarkable feature that elliptic curve signatures can choose vari-
ous modulo-q arithmetics on an underlying field IFp. By using the feature, we
show that the message recovery signature on a special elliptic curve is strongly
equivalent to DSA on it. Furthermore we investigate how Bleichenbacher-attack
is applied on elliptic curve signatures. As for Bleichenbacher-attack, a trapdoor
generating algorithm is an important factor: whoever knows a trapdoor for a
signature can generate a user’s valid signature on any message. However, a trap-
door generating algorithm over elliptic curves has not been known. We present
a new trapdoor generating algorithm over elliptic curves. We also show that
the elliptic curve, which constructs the message recovery signature equivalent to
DSA, does not have the trapdoor.

This paper is organized as follows. Section 2 summarizes ElGamal, DSA
and message recovery signature. Section 3 discusses the conception of security
equivalence and some equivalent classes based on it. Section 4 investigates the
security equivalent classes of signatures defined on elliptic curve, and also shows
an elliptic curve gives the message recovery signature equivalent to DSA. Section
5 presents a new trapdoor generating algorithm over elliptic curves.

2 ElGamal, DSA and message recovery signature

This section summarizes ElGamal, DSA, and the message recovery signature
called MR in this paper. We assume that in any signature schemes, the trusted
authority uses system parameters, that are a large prime p, a large prime factor
q of p − 1 and a basepoint g ∈ IFp = GF (p) = {0, . . . , p − 1} whose order is q.
These system parameters are known to all users. The signer Alice has a secret
key xA and publishes its corresponding public key yA = gxA (mod p). The
original ElGamal signature([3]) uses a generator of IF∗

p = {1, . . . , p − 1} as a
basepoint. However for practical purposes([17, 14]), we use the above basepoint
in IFp. Here we summarize how each signature scheme is defined for m ∈ IF∗

p,
where m is typically the hashed value of a message but in the case of using the
message recovery feature m is a message with redundancy.
ElGamal
Alice chooses a random number k ∈ IF∗

q , and computes r1 = gk (mod p) and
r′1 = r1 (mod q). Then she computes s ∈ IF∗

q from

sk = m + r′1xA (mod q). (1)



Here if s = 0, then she chooses the random number k again. Of course such a
probability is negligibly small. Then the triplet (m; (r1, s)) constitutes the signed
message. The signature verification is done by checking that (r1, s) ∈ IF∗

p × IF∗
q

and the next equation,
rs
1 = gmy

r′
1

A (mod p). (2)

We make the sign + of r′1 in Equation (1) coincide with that of DSA since the
following discussion holds regardless of signs.

DSA
Alice chooses a random number k ∈ IF∗

q , and computes r1 = gk (mod p) and
r′1 = r1 (mod q). Then she computes s ∈ IF∗

q from Equation (1). Here if r′1 =
0 or s = 0, then she chooses the random number k again. Then the triplet
(m; (r′1, s)) constitutes the signed message. The signature verification is done by
checking (r′1, s) ∈ IF∗

q × IF∗
q and the next equation,

r′1 = (gm/sy
r′
1/s

A (mod p)) (mod q). (3)

Here we summarize Bleichenbacher-attack([1]) over ElGamal.

Bleichenbacher-attack:
Assume that a forger knows β ∈ IF∗

p such as β = 0 (mod q) and βt = g
(mod p) for a known t ∈ IF∗

q . For ∀m ∈ IF∗
p, he sets r1 = β and s = tm (mod q).

Then (r1, s) is a valid signature on m since gmyr1
A r−s

1 = gmg−tm/t = 1.
For a given IFp and g, it would be difficult to find the above β. However,

an authority can generate IFp and g with a trapdoor β by repeating a natural
trial([1]): first set IFp, a large prime q|p−1, and p−1 = qn, next find β = lq (l ∈
{1, · · · , n − 1}) such that the order of β is q, then set a basepoint g = βt for
1 < t < q − 1. Generally, n is sufficiently large, so this algorithm may work well.
Apparently the existence of the trapdoor β cannot be recognized easily. In the
case of DSA-signature, such r1 = β is already removed. Therefore DSA is strong
against the attack.

MR
MR can be derived from ElGamal by adding the message-mask equation (4) and
replacing m (resp. r′1) by 1 (resp. r

′
2) in Equation (1). To sign a message m ∈ IF∗

p,
Alice chooses a random number k ∈ IF∗

q , and computes r1 = gk (mod p), and

r2 = m−1r1 (mod p). (4)

Then she sets r′2 = r2 (mod q), and computes sm ∈ IF∗
q from

smk ≡ 1 + r′2xA (mod q). (5)

Here if r2 = 0 or sm = 0, then she chooses the random number k again. Then
the signature is given by (r2, sm). The message can be recovered by checking
(r2, sm) ∈ IF∗

p × IF∗
q and computing a recovery equation

m = g1/smy
r′
2/sm

A r−1
2 (mod p). (6)



Another message-mask equation r2 = mr−1
1 (mod p) and other signature equa-

tions are also proposed in [14]. The following discussion also holds for the
message-mask equation and the signature equations in almost the same way.

3 Security equivalent classes

A conception of equivalent classes between signature schemes was proposed([14]),
which is based on an idea of transformability. However, the relation between
transformability of signature schemes and the security equivalence is not known.
In this section, we will discuss the relation and will make a strict definition of
this conception based on transformability.

Let S1 and S2 be two signature schemes, and I be a common public infor-
mation necessary for verifying these signatures. Then in order to forge a valid
Alice’s S1- or S2-signature for a given m without the knowledge of her secret key,
we have to solve the next two problems, Pr S1(I , m) or Pr S2(I , m) respectively,
where

Pr S1(I , m) is the problem that on input I and m, outputs a valid S1-signature
S1(m) of Alice,
Pr S2(I , m) is the problem that on input I and m, outputs a valid S2-signature
S2(m) of Alice.

Then the next proposition shows that the equivalence between Pr S1(I , m) and
Pr S2(I , m) is related with transformability between two signatures S1 and S2.

Proposition 1. (1) If any S1-signature can be transformed into an S2-signature
by a function f in (expected) time polynomial in the size of public information
for verifying S1-signature without knowledge of the secret key, then Pr S2(I, m)
is (expected) polynomial-time reducible to Pr S1(I, m).
(2) If any S1-signature can be transformed into an S2-signature by a function f
in (expected) time polynomial in the size of public information for verifying S1-
signature, and vice versa, without knowledge of the secret key, then Pr S1(I, m)
and Pr S2(I, m) are equivalent with respect to the (expected) polynomial-time
Turing reducibility.

Proof. (1) For input I and m, output Pr S2(I , m) := f(Pr S1(I , m)). Since
f runs in a (expected) polynomial-time, Pr S2(I , m) is (expected) polynomial-
time reducible to Pr S1(I , m).
(2) It follows immediately from the discussion of (1).

From Proposition 1, we define “strong equivalence” between signature schemes
as follows.

Definition 2. Two signature schemes S1 and S2 are called strongly equivalent
if any S1-signature can be transformed into an S2-signature in (expected) time
polynomial in the size of public information for verifying S1-signature, and vice
versa, without knowledge of the secret key.



Note that the transitive law holds in strong equivalences: for three signature
schemes S1, S2 and S3, if S1 and S2, and, S2 and S3 are strongly equivalent
respectively, then S1 and S3 are strongly equivalent. In order to show that two
signature schemes are strongly equivalent, we must show that any signature for
a scheme can be transformed into another and vice versa. In [14], DSA and
ElGamal were erroneously said to be strongly equivalent since they did not
investigate ElGamal signatures that are not transformed into DSA signatures.
The following theorem will show the correct relation between ElGamal and DSA
and explain well why Bleichenbacher-attack works for ElGamal but not for DSA.

Theorem 3. Any DSA signature can be transformed in time polynomial in |p|
to an ElGamal signature without knowledge of the secret key, but some ElGa-
mal signatures cannot be transformed. (i.e. DSA and ElGamal are not strongly
equivalent.) If we add the condition of r1 
= 0 (mod q) both to the signature
generation and verification of ElGamal, then ElGamal is strongly equivalent to
DSA.

Proof. Let (r′1, s) ∈ IF∗
q × IF∗

q be a DSA signature on m ∈ IF∗
p. First set

r1 = gm/sy
r′
1/s

A (mod p).

Then (r1, s) is an ElGamal signature on m since (r1, s) ∈ IF∗
p × IF∗

q .
On the other hand, let (r1, s) ∈ IF∗

p × IF∗
q with q|r1 be an ElGamal signa-

ture on m ∈ IF∗
p. Then the signature cannot be transformed explicitly to DSA

signature since r′1 = r1 (mod q) = 0. Therefore ElGamal is not strongly equiv-
alent to DSA. Apparently if the condition of r1 
= 0 (mod q) is added to both
the signature generation and verification of ElGamal, then the ElGamal signa-
ture which cannot be transformed to DSA is removed. Therefore it is strongly
equivalent to DSA.

For practical purposes, it might be insignificant to remove the case of r1 = 0
(mod q) from ElGamal-signatures. Importantly, the conception of strong equiv-
alence is effective in discussing how attacks exist. Theorem 3 says that ElGamal
removed the case of r1 = 0 (mod q) is strongly equivalent to DSA and strong
against Bleichenbacher-attack also.

The relation between MR and DSA is correctly pointed out not to be strongly
equivalent([14]). Here we summarize why MR is not strongly equivalent to DSA.
We can make r2 of MR-signature transform into r′1 of DSA-signature. But sm

of MR cannot be transformed into s of DSA by the following reason. The signa-
ture equation is computed on the modulo-q arithmetic, while the message-mask
equation (4) in MR is computed on the modulo-p arithmetic. Therefore the next
relation between the modulo-p arithmetic and the modulo-q arithmetic, that is

(m−1r1 (mod p)) (mod q) 
= m−1r1 (mod q), (7)

reduces non-equivalences. By the same reason, MR and ElGamal are not strongly
equivalent.



To sum up, the relative security of MR to DSA or ElGamal is not known at
this moment. Especially it has been only a few years since MR was proposed, so
its security is not widely accepted. If a message recovery signature is shown to
be strongly equivalent to a widely known signature scheme like DSA, it would
be safe to say that its security is guaranteed by DSA.

4 Aspect of elliptic curves in signature schemes

The ElGamal-type signatures can be constructed in other groups, as long as
DLP is hard. So ElGamal, DSA, and MR can be also constructed on an elliptic
curve, which are called ECElG, ECDSA, and ECMR respectively in this paper.

Elliptic curves, chosen suitably, can be implemented in smaller size than finite
fields since the most serious attacks defined on finite fields cannot be applied to
elliptic curves([11]). Furthermore there is a remarkable difference in conditions
of the order q of a basepoint between elliptic curves and finite fields. In the
case of finite fields, q is limited to a divisor of p − 1. On the other hand, in the
case of elliptic curves E/IFp, q is chosen randomly in the range determined by
Hasse’s theorem([18]): p + 1 − 2

√
p ≤ #E(IFp) ≤ p + 1 + 2

√
p . For example,

we can choose a basepoint G ∈ E(IFp) with the order q ≥ p, which is impossible
in the case of finite fields. In the previous section, we saw that the relation
between the modulo-p arithmetic and the modulo-q arithmetic is important for
the equivalence between signature schemes. Therefore such characteristics might
be suitably used on signature schemes.

We assume that the trusted authority chooses an elliptic curve E/IFp(p is a
large prime) and a basepoint G ∈ E(IFp) with a large prime order q. The signer
Alice has a secret key xA and publishes the corresponding public key YA = xAG.
Here we summarize how each signature scheme is defined for a message m ∈ IF∗

p.
The following discussion also holds in the case of E/IF2r .

ECElG
Alice chooses a random number k ∈ IF∗

q , and computes

R1 = kG, (8)

in E. Then she sets r′1 = x(R1) (mod q) and computes s ∈ IF∗
q from Equation

(1), where x(R1) denotes the x-coordinate of R1. Here if either x(R1) = 0 or
s = 0, then she chooses the random number k again. Then the triplet (m; (R1, s))
constitutes the signed message. The signature verification is done by checking
x(R1) ∈ IF∗

p, s ∈ IF∗
q , and the next equation in E,

sR1 = mG + r′1YA, (9)

where r′1 = x(R1) (mod q).
ECDSA
Alice chooses a random number k ∈ IF∗

q , computes Equation (8), and sets

r′1 = x(R1) (mod q). (10)



Then she computes s ∈ IF∗
q from Equation (1). Here if either r′1 = 0 or s = 0, then

she chooses the random number k again. Then the triplet (m; (r′1, s)) constitutes
the signed message. The signature verification is done by checking r′1, s ∈ IF∗

q

and the next equation,

r′1 = x(
m

s
G+

r′1
s

YA) (mod q). (11)

ECMR
Alice chooses a random number k ∈ IF∗

q , and computes Equation (8). Then she
sets

r2 = m−1x(R1) (mod p), (12)

r′2 = r2 (mod q) and computes sm ∈ IF∗
q from Equation (5). Here if either

r2 = 0 or sm = 0, then she chooses the random number k again. Then the
signature is given by (r2, sm). The message can be recovered, after checking
r2 ∈ IF∗

p and sm ∈ IF∗
q , by computing the recovery equation:

m = x(
1

sm
G +

r′2
sm

YA)r−1
2 (mod p). (13)

4.1 Equivalences among ECElG, ECDSA and ECMR

We discuss the strong equivalent classes between elliptic curve signature schemes.
The equivalent classes are different according to the choice of elliptic curves. In
this section, we deal with elliptic curves except for a special elliptic curve E/IFp

with p-elements([8, 9]). For elliptic curves dealt in this section, the order q of G
is always different from p from Hasse’s theorem. As for the special elliptic curve,
we will discuss in the next section.

Theorem 4. (i) Any ECDSA signature can be transformed in time polynomial
in |p| to an ECElG signature without knowledge of the secret key.
(ii) If q > p, then ECElG is strongly equivalent to ECDSA.
If q < p, then there exists ECElG that is not strongly equivalent to ECDSA.
(iii) If p 
= q, ECMR is not strongly equivalent to either ECDSA or ECElG.

Proof. (i) Let (r′1, s) be an ECDSA signature on m ∈ IF∗
p. First compute

R1 =
m

s
G +

r′1
s

YA,

in E. Then (R1, s) is an ECElG signature on m. In fact, (R1, s) satisfies x(R1) ∈
IF∗

p and s ∈ IF∗
q since r′1 = x(R1) (mod q) satisfies r′1 
= 0.

(ii) Let (R1, s) be an ECElG signature on m ∈ IF∗
p. First set r′1 = x(R1)

(mod q). In the case of q > p, x(R1) satisfies 1 ≤ x(R1) ≤ p − 1 < q. So
r′1 = x(R1). Therefore (r′1s) is an ECDSA signature on m. Thus ECElG is
strongly equivalent to ECDSA.

On the other hand, in the case of q < p, there exists an elliptic curve E/IFp

with E(IFp) � R1 such as x(R1) 
= 0 and q|x(R1). In the same way as Theorem 3,



a signature with R1 cannot be transformed into an ECDSA signature. Therefore
for E/IFp with E(IFp) � R1 such as x(R1) 
= 0 and q|x(R1), ECElG is not
strongly equivalent to ECDSA.
(iii) From the assumption of E, the order q is different from p. Therefore in the
same way as the case of finite fields, the next relation between the modulo-p
arithmetic and the modulo-q arithmetic, that is

(m−1x(R1) (mod p)) (mod q) 
= m−1x(R1) (mod q), (14)

reduces non-equivalences.

We can construct E/IFp and G with q > p, on which ECElG is strongly
equivalent to ECDSA, since constraint of the order q is loose for elliptic curves.
Furthermore we will show that ECElG, ECDSA, and ECMR on a special elliptic
curve E/IFp are all strongly equivalent each other in the next section.

4.2 Message recovery signature equivalent to ECDSA

We deal with an elliptic curve E/IFp which has p-elements over IFp, denoted Ep

in this paper. Such an elliptic curve can be constructed as easily as the other
elliptic curve([8, 9]). Then the system parameters are: an elliptic curve Ep/IFp,
a basepoint G ∈ Ep(IFp) whose order is p. For the equivalences among ECElG,
ECDSA, and ECMR on Ep/IFp, we have the next result.

Theorem5. Let Ep/IFp be an elliptic curve with #Ep(IFp) = p. For signature
schemes on Ep, ECElG, ECDSA, and ECMR are strongly equivalent each other.

Proof. We show the next two facts,
(i) ECElG is strongly equivalent to ECDSA,
(ii) ECMR is strongly equivalent to ECDSA.
Then from the transitive law, ECElG, ECDSA, and ECMR are strongly equiv-
alent each other.
(i) Any ECDSA signature can be transformed into an ECElG from Theorem 4.
On the other hand, let (R1, s) be an ECElG signature on a message m ∈ IF∗

p.
We set r′1 = x(R1). Then (r′1, s) is a DSA signature since r′1 
= 0. Thus ECElG
is strongly equivalent to ECDSA.
(ii) Let (r′1, s) be an ECDSA signature on m ∈ IF∗

p. We set

R1 =
m

s
G+

r′1
s

YA, r2 = m−1r′1 (mod p), and sm = s/m (mod p).

Then x(R1) = r′1 and (r2, sm) ∈ IF∗
p × IF∗

p since (r′1, s) ∈ IF∗
p × IF∗

p, and m is
recovered as follows,

m = x(
1

sm
G+

r2

sm
YA)r−1

2 (mod p).



So (r2, sm) is an ECMR signature. Conversely, let (r2, sm) be an ECMR signature
on m ∈ IF∗

p. We compute

R1 =
1

sm
G+

r2

sm
YA,

and recover m = x(R1)r−1
2 (mod p). Then we set s = msm (mod p) and

r′1 = x(R1). Then (r′1, s) ∈ IF∗
p × IF∗

p since r2 = m−1x(R1) (mod p) 
= 0. So
(r′1, s) is an ECDSA signature. Thus ECMR is strongly equivalent to ECDSA.

ElGamal-type signature requires two modulo arithmetics. One is modulo-p
arithmetic in underlying field IFp. The other is modulo-q arithmetic for the order
q of a basepoint. In ElGamal-type signature, the two modulo arithmetics are not
independent. In fact a result of modulo-p arithmetic is the input for the next
modulo-q arithmetic. In the case of a finite field, the relation between these two
modulo arithmetics, as we see in Equation (7), makes the equivalences among
signature schemes impossible. On the other hand, in the case of elliptic curves
the order q is chosen randomly in the range determined by Hasse’s theorem.
Therefore there exists the above Ep/IFp with p elements. For such an elliptic
curve, two modulo arithmetics are the same. This is why ECElG, ECDSA, and
ECMR are strongly equivalent each other. This is an advantage of elliptic curves
over finite fields.

4.3 Summary of known facts on elliptic curves

As a concluding remark of Section 4, we present the next known facts on elliptic
curves E/IFp, including this paper’s result.
(A) If E/IFp is supersingular, then the elliptic curve discrete logarithm prob-
lem(EDLP) is vulnerable to MOV-reduction([11]): EDLP is reduced to in prob-
abilistic polynomial time to DLP.
(B) If E/IFp is a prime-order elliptic curve, then some equivalences of cryptosys-
tems based on EDLP are proved: the problems of breaking the Diffie-Hellman’s
key exchange scheme denoted by DHE , the ElGamal’s public-key cryptosystems
denoted by EGE , and the Shamir’s 3-pass key-transmission scheme([19]) denoted
by 3PASSE are all equivalent([16]).
(C) If E/IFp and G with the order q satisfies q ≥ p, ECElG is strongly equivalent
to ECDSA. Especially in the case of E/IFp and G with the order q satisfies q = p,
ECElG, ECDSA, and ECMR are strongly equivalent each other(Theorem 4
and 5).
As for (A), an elliptic curve E/IFp is supersingular if and only if #E(IFp) =
p + 1(p ≥ 5), where #E(IFp) = p + 1 is a composite number. As for (C), from
Hasse’s theorem an elliptic curve with q ≥ p is limited to a prime-order elliptic
curve, that is #E(IFp) = q ≥ p. To sum up, in the case of a prime-order elliptic
curve with #E(IFp) ≥ p, it has been known that such an elliptic curve is not
supersingular, that some problems of cryptosystems based on EDLP are equiva-
lent, and that ECDSA and ECELG are strongly equivalent. Furthermore, in the
case of en elliptic curve with #E(IFp) = p, it has been also known that ECDSA,



ECElG and ECMR are strongly equivalent each other. Figure 1 presents the
relations among (A), (B), and (C).

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAA
AAAAA (B) #E(Fp) is a prime

AAAAAAA
AAAAAAA#E(Fp) is a composite number

 (A) supersingular
(C)#E(Fp)≧p

 E/Fp

3PASSE≡EGE≡DHE

ECDSA≡ECElG
vulnerable to MOV-reduction

≡indicates equivalence

ECDSA≡ECElG≡ECMR

#E(Fp)=p

Fig. 1. Known facts on Elliptic curves over IFp(p ≥ 5)

In the case of E/IF2r , the order #E(IF2r ) of a supersingular elliptic curve
is not necessarily a composite number though the facts (A), (B), and (C) hold.
Therefore in the case of a prime-order elliptic curve with #E(IF2r ) ≥ 2r, it has
been known that some problems of cryptosystems based on EDLP are equivalent,
and that ECDSA and ECElG are strongly equivalent. We often construct elliptic
curves by using Weil-conjecture: lifting E over a lower field, for example E/IF2

or E/IF22 , to E/IF2r . However, in such a way we cannot construct a prime-order
elliptic curve E/IF2r since #E(IF2r) is always divisible by the lifted #E(IF2) or
#E(IF22) respectively.

5 Bleichenbacher-attack over elliptic curves

We saw in Section 3 that Bleichenbacher-attack indicates the security relation
between ElGamal and DSA:(i) ElGamal is not strongly equivalent to DSA and
vulnerable to Bleichenbacher-attack, (ii) ElGamal removed the case of r1 = 0
(mod q) from the signatures is strongly equivalent to DSA and strong against
Bleichenbacher-attack. As for elliptic curves, from Theorem 4 and 5, we saw
that if q ≥ p, then ECElG is always strongly equivalent to ECDSA, and if
q < p, then there exists ECElG that is not strongly equivalent to ECDSA.
Does Bleichenbacher-attack also indicate the security relation well? We also
saw in Section 2 that a trapdoor algorithm is one of the important factors for
Bleichenbacher-attack. The conception of a trapdoor might be used for a con-
structive purpose such as Key-Escrow system. Therefore we take interest in a
technique of constructing a trapdoor algorithm over elliptic curves.



This section will investigate how Bleichenbacher-attack is applied to ECElG
and also present a new trapdoor algorithm by using another feature of elliptic
curves.

Bleichenbacher-attack against ECElG is as follows. Assume that a forger
knows B ∈ E(IFp) such as x(B) ∈ IF∗

p, x(B) = 0 (mod q), and tB = G for a
known t ∈ IF∗

q . For m ∈ IF∗
p, he sets R1 = B and s = tm (mod q). Then (R1, s)

is a valid signature on m since

mG+ x(R1)YA − sR1 = mG − tm/tG = O.

In the case of ECDSA, such R1 = B is removed from the signatures. Therefore
ECDSA is strong against the attack. In the case of ECElG, Theorem 4 and 5
say that the above B exists if and only if ECElG is not strongly equivalent
to DSA. Therefore Bleichenbacher-attack also indicates the security relation be-
tween ECElG and ECDSA: ECElG is vulnerable to Bleichenbacher-attack if and
only if ECElG is not strongly equivalent to ECDSA.

In the case of elliptic curves, a natural-trial trapdoor algorithm to generate
E/IFp and G with a trapdoor B would be as follows: first set E/IFp and a large
prime q|#E(IFp), next find B ∈ E(IFp) such that the order of B is q, x(B) ∈ IF∗

p

and x(B) = 0 (mod q), then set a basepoint G = tB for 1 < t < q − 1.
The above natural-trial trapdoor algorithm over elliptic curves seems to be

more difficult than that over finite fields in Section 2 by the following reason.
Usually in elliptic curves, we take p and q whose sizes are almost the same
and smaller than finite fields([5]). Therefore for a fixed elliptic curve there are
few points with the x-coordinate divisible by q. This is why the natural-trial
algorithm seems not to be practical. Here we show a new algorithm generating
the trapdoor over elliptic curves by using another feature that there exist many
isomorphic elliptic curves for any elliptic curve.

Algorithm generating a trapdoor over elliptic curves
1. Choose an elliptic curve E/IFp and R ∈ E(IFp) with a prime order q < p such
that q is a quadratic residue modulo p, and that x(R) = 1, that is

E : y2 = x3 + ax+ b (a, b ∈ IFp), R = (1, ry).

Here we set u ∈ IFp such that u2 = q (mod p).
2. Choose 1 < t < q and computes

tR = G = (gx, gy).

Then the order of G is q since t is relatively prime to q.
3. Define an isomorphism ϕ from E to Eq as follows

ϕ : E(IFp) � (x, y) → (qx, uqy) ∈ Eq(IFp),

where Eq/IFp : y2 = x3+aq2x+bq3. Then the elliptic curve Eq, and a basepoint
ϕ(G) have a trapdoor ϕ(R).

We show the above elliptic curve has a trapdoor. Since ϕ is isomorphism and



ϕ(O) = O, ϕ is homomorphism([18]). So Eq, ϕ(G) = (qgx, uqgy), and ϕ(R) =
(q, uqry) satisfy that:
1. both the order of ϕ(R) and ϕ(G) are q;
2. tϕ(R) = ϕ(G);
3. the x-coordinate of ϕ(R) is q, that is x(ϕ(R)) = 0 (mod q).
This means that ϕ(R) is a trapdoor of the elliptic curve Eq and the basepoint
ϕ(G).

Note that the existence of the trapdoor cannot be recognized easily by Eq

and ϕ(G). The coefficients of Eq are not necessarily divisible by q since the
coefficients aq2 and bq3 are represented by modulo p. Furthermore if we choose
a suitable t such as qgx, uqgy > p, then both x- and y-coordinate of ϕ(G) are
not necessarily divisible by q since they are represented by modulo p.

We discuss the running time of the above trapdoor generating algorithm. The
above Algorithm requires only the next three conditions (adding to an original
algorithm generating elliptic curves for ECElG, ECDSA, ECMR, etc): q is a
quadratic residue modulo p, x(R) = 1, and q < p. The first and the third
conditions are easy to be satisfied. The second condition also seems not to be so
difficult since an algorithm generating elliptic curves with a basepoint of a small
coordinate, implemented easily, is reported([9]). Therefore the above trapdoor
generating algorithm is expected to be more practical than the natural-trial
algorithm.

6 Conclusion

In this paper, we have investigated the next two facts:
(1) we have strictly analyzed strong equivalences between signature schemes.
We have explained why Bleichenbacher-attack works for ElGamal but not for
DSA, and shown that ElGamal removed the case of r1 = 0 (mod q) from the
signatures is strongly equivalent to DSA and strong against Bleichenbacher-
attack. We have discussed that the relation between modulo-p arithmetic and
modulo q-arithmetic is important for the equivalences between ElGamal-type
signatures. We have focussed our attention on elliptic curves which have a good
feature, in addition to smaller size, that elliptic curve signatures can choose
various modulo-q arithmetics on an underlying field IFp. By using this feature,
we have shown that ECElG is strongly equivalent to ECDSA on a prime-order
elliptic curve E/IFp with #E(IFp) = q ≥ p. Furthermore we have shown that
ECElG, ECDSA, and ECMR on an elliptic curve Ep/IFp with #Ep(IFp) = p are
all strongly equivalent each other. Therefore such an elliptic curve Ep/IFp can
construct a message recovery signature whose security is guaranteed by a widely
known signature, ECDSA and ECElG.
(2) we have investigated how Bleichenbacher-attack is applied to ECElG. We
have shown that Bleichenbacher-attack reflects the relation between ECElG and
ECDSA: Bleichenbacher-attack works only for such ECElG that is not strongly
equivalent to ECDSA. We have also presented a new trapdoor generating algo-
rithm against the attack by using another feature of elliptic curves.
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