
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A statistical model of quantum dot arrays with

Coulomb coupling

Author(s)
Suzuki, Toshi-kazu; Nomoto, Kazumasa; Ugajin,

Ryuichi; Hase, Ichiro

Citation Journal of Applied Physics, 78(4): 2547-2549

Issue Date 1995-08-15

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4503

Rights

Copyright 1995 American Institute of Physics.

This article may be downloaded for personal use

only. Any other use requires prior permission of

the author and the American Institute of Physics.

The following article appeared in T.Suzuki,

K.Nomoto, R.Ugajin, and I.Hase, Journal of

Applied Physics, 78(4), 2547-2549 (1995) and may

be found at

http://link.aip.org/link/?JAPIAU/78/2547/1

Description



A statistical model of quantum dot arrays with Coulomb coupling 
Toshi-kazu Suzuki,a) Kazumasa Nomoto, Ryuichi Ugajin, and lchiro Hase 
Sony Corporation Research Centeer; I74 Fujitsuka-cho, Hodogaya-ku, Yokohama 240, Japan 

(Received 16 May 1994; accepted for publication 5 May 1995) 

We present a study of a statistical model of arrays of quantum dots, in which electrons are confined 
by semiconductor heterojunctions in all three dimensions, with Coulomb coupling. Our model 
describes repulsively interacting localized electrons whose number can vary with changes in 
chemical potential. By means of a Monte Carlo simulation, it is shown that, at low temperatures, 
some stable electron densities hardly changing in certain ranges of chemical potential appear, which 
are associated with suppressed fluctuation and characteristic spatial electron distributions. Spin 
fluctuation, which gives magnetic susceptibility, exhibits essentially different behavior depending on 
temperature and Coulomb energies. Q 1995 American Institute of Physics. 

I. INTRODUCTION 

Various phenomena taking place in artificial low- 
dimensional quantum structures such as quantum wires and 
quantum dots, which are realized by virtue of new technolo- 
gies, have been the subject of extensive studies and the pos- 
sibility of applying them to devices has been suggested.’ 
Since coupled quantum dot arrays created by a grid potential 
imposed on a two-dimensional electron gas, also called lat- 
eral surface superlattices, are in some aspects different from 
ordinary superlattices, they have been of interest and their 
novel properties have been demonst.rated.23 On the other 
hand, by means of a semiconductor heterojunction, we can 
construct quantum dots in which electrons are confined by 
heterojunctions in all three dimensions. Since the confine- 
ment of electrons in these dots is quite strong and the size of 
them can be reduced, it will be possible to fabricate quantum 
dot arrays in which the dots are very close together and Cou- 
lomb coupling between the dots plays an important role. In 
this article, we discuss some aspects of the quantum dot ar- 
rays with Coulomb coupling. In particular, considering that 
the number of electrons in the quantum dot array can be 
modulated via an applied voltage by means of a tunnel ca- 
pacitor structure,4-6 we investigate a statistical model of the 
quantum dot array in which the number of electrons can vary 
by changing the chemical potential. 

II. MODELING 

We assume a tunnel capacitor to consist of an electron 
supply layer, a tunnel barrier, a two-dimensional quantum 
dot array layer, a thick barrier layer, and an electrode (see 
Fig. 1). This structure allows us to change the number of 
electrons in the quantum dot array layer; an applied voltage 
between the electron supply layer and the electrode changes 
the energy difference between the confined energy levels of 
the quantum dots and the Fermi energy of the electron supply 
layer, i.e., it changes the chemical potential of the quantum 
dot array layer, and electrons can enter and exit the array 
layer through the tunnel barrier. For a single quantum dot, 
modulation of the electron number in the dot is observed by 
capacitance spectroscopy and energy levels in the dot have 
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been determined.@ In the quantum dot array, it is assumed 
that both the size of dots and the spacing between adjacent 
dots are 510 nm. When such a system is fabricated, devia- 
tion in the size of the dots is inevitable. Assuming 10 nm 
cubed GaAs dots embedded in AlGaAs, the confined ground- 
state energy levels measured from the edge of the conduction 
band for bulk GaAs are approximately lo2 meV. If the size 
of the dots has a deviation of several p/o (deviation of several 
A), these energies have a deviation of several meV. Since the 
transfer energy between two dots is about 1 O-’ meV assum- 
ing the spacing is 5 nm and about 10B5 meV assuming the 
spacing is 10 run, the transfer energies are much smaller than 
the deviation of the energy levels estimated above and the 
wave functions of electrons tend to be localized at each dot 
due to the effects of randomness. On the other hand, neglect- 
ing the screening effect, the intradot Coulomb energy and the 
interdot Coulomb energy for adjacent dots are approximately 
10 meV and several meV, respectively. Thus, we can expect 
that the Coulomb coupling will play an important role in the 
system. Moreover, modulating the screening effect by con- 
trolling the position of the positive charge layer, the Cou- 
lomb coupling may be tuned. 

In order to investigate the above situation, we employ a 
finite temperature Monte Carlo simulation of a model of re- 
pulsively interacting electrons represented by the following 
Hamiltonian: 

.%=C Eij?2~-knl~)+~ UiPt~nl~ 
i i 

+izj Vij(n’+nzXnlf+nJ~), 

where the dynamical variable n+(nJ is assumed to be 0 or 
1, which denotes the number of up (down) spin electrons in 
the ith dot. The parameters ei and Ui20 denote the quan- 
tized energy level and the intradot Coulomb energy of the ith 
dot, respectively. The interdot Coulomb energy between the 
ith dot and $h dot is represented by Vij= Vji~O. In. this 

model, electrons are assumed to be localized at each dot and 
we have taken into account only one bound state localized at 
each dot, which has twofold degeneracy with respect to the 
freedom of spin. This is justified when the dot size is suffi- 
ciently small, because of a large separation between the 
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FIG. 1. Conduction band profile of the tunnel capacitor structure. EF is the 
Fermi level in the electron supply layer. 

ground-state energy and an excited-state energy or the ab- 
sence of excited states. The total number of electrons 
N=Z2,i(n++nz~) cm vary with change in the chemical 
potential and the statistical properties of the model 
are determined by the grand partition function ZG 
=z,:=o,lexp[-P(~-~N)], where p and JL are the 
inverse temperature and the chemical potential, respectively. 

In this model, we are interested in the behavior of the 
statistical average of the electron density, i.e., the electron 
number per dot, p=(N)INd,,=(8 i(n” + nZr))lN,,,, where 
(e) denotes the statistical average and Ndot is the total number 
of dots. FJluctuation of the electron density is given by 

&NMs,t- @W%J2) = d$%%?J d%i, 
in which the factor l/Kt arises from the law of large 
numbers. We define the electron density fluctuation 
Sp= dm = &(N- (N)) 2)/Nd,,t, which is related to 
the capacitance of the system and from which the factor from 
the law of large number is divided. Since our model has no 
spin interaction, the statistical average of the magnetization 
of the system M=Zi(n+ - nf) always vanishes. However, 
the fluctuation of the magnetization, which gives the mag- 
netic susceptibility, exhibits a characteristic behavior. Thus 
we define the spin fluctuation Sm = ~((M-(M))2)/Ndob 

, from which the factor from the law of large numbers is also 
divided. 

Ill. SIMULATION 

Hereafter, we restrict our attention to the case that 
electron-electron interaction is short range; only the intradot 
Coulomb energy with the same value U and the interdot 
Coulomb energy for nearest neighbor dots with the same 
value V are taken into account. Similar situations were con- 
sidered in order to investigate some materials with a fixed 
number of electrons.7 However, we are interested in a system 
in which the number of electrons can be changed by the 
chemical potential; this situation can be realized in the quan- 
tum dot arrays. Figure 2 shows the behavior of the electron 
density and its fluctuation as the chemical potential changes 
for square-lattice arrays of quantum dots. The energy levels 
of the dots are assumed to randomly distribute obeying 
Gaussian distribution whose average is zero (without loss of 
generality) and standard deviation is denoted by SE We use 
ten random samples of 36X36 square lattices with the peri- 
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FIG. 3. Various characteristic spatial electron distributions. Open and closed 
circles denote quantum dots occupied by up- and down-spin electrons, re- 
spectively. A quantum dot occupied by two electrons (both up and down 
spin) is represented by an open circle with a closed circle inside. An unoc- 
cupied quantum dot is represented by a cross. (a) Every dot is unoccupied 
by electrons. Both the electron density and the spin fluctuation vanish. (b) A 
dot occupied by one electron and an unoccupied dot alternate. The electron 
density equals a half and the spin Huctuation equals l/fi. (c) Every dot is 
occupied by one electron. The electron density equals unity and the spin 
fluctuation takes the maximum value of unity. (d) A dot occupied by two 
electrons and an unoccupied dot alternate. The electron density equals unity 
and the spin fluctuation vanishes. (e) A dot occupied by one electron and a 
dot occupied by two electrons alternate. The electron density equals three 
halves and the spin fluctuation equals 116. (f) Every dot is occupied by two 
electrons. The electron density equals two and the spin fluctuation vanishes. 
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(p), (Sp) vs. p (B&20.0, 10.0, 5.0, Wu=O.l) 
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FIG. 2. The behavior of the ekctron density and its Huctuation as functions 
of the chemical potential. At low temperatures, there exist some plateaus in 
the electron density with suppressed fluctuation. For V/U==O.2 and V/U 
=0.3, a very similar behavior is seen. 

odic boundary condition and thermal averages is again aver- 
aged for the samples. The parameter is taken to be PlY 
=20.0, 10.0, 5.0, and VllJ=O.2, 0.3, and &IU=O.l. If the 
intradot Coulomb energy is assumed to be 10 meV, PU 
=20.0, 10.0, and 5.0 correspond to temperatures of about 6, 
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PIG. 4. The behavior of the spin fluctuation as a function of the chemical 
potent& For V/U=02 and V/U=O.3, a remarkably different behavior is 
seen at low temperatures. At high temperatures this difference vanishes. 

12, and 24 K, respectively, and &/U=O.l corresponds to a 
deviation of the quantized energies of 1 meV. In the regions 
of very low and very high chemical potential, the electron 
density vanishes corresponding to Fig. 3(a), and equals two 
corresponding to Fig. 3(f), respectively. In the intermediate 
region, electron density plateaus exist at low temperatures 
@U=20.0, lO.O), namely one half, unity, a@ three halves, 
which is especially clear in the case of lower temperatures 
@U=20.0). The behavior of the electron density in the case 
of V/U=O.2 and 0.3 is very similar. There is, however, a 
distinction between them, which is elucidated from the be- 
havior of the spin fluctuation, which is shown in Fig. 4. In 
the plateaus of the electron density of one half and three 
halves, the spin fluctuation is approximately l/&. In fact, in 
the one-half and three-halves plateau, the probability of the 
appearance of the distributions shown in Figs. 3(b) and 3(e) 
is very large, respectively. The spin fluctuation of both these 
distributions is l/a. In contrast, in the plateau of the elec- 
tron density of unity, the spin fluctuation is unity for the case 
of VlU=O.2, and suppressed for VlU=O.3. For the case of 
V/U-0.2, the intradot Coulomb interaction dominates. As a 
result, in the unity plateau, the probability of the appearance 
of the distribution shown in Fig. 3(c), in which the spin 
fluctuation takes the maximum value unity, is very large. On 
the other hand, for VlU=O.3, the interdot interaction is 
dominant. Thus, in the unity plateau, the probability of the 
appearance of the distribution shown in Fig. 3(d), in which 
the spin fluctuation vanishes, is very large. In the result of 
our simulation, although the spin fluctuation does not com- 
pletely vanish, suppression of the spin fluctuation at low 
temperatures is seen. Thiseffect can appear for bipartite lat- 
tices with the nearest neighbor Coulomb interaction. At very 
low temperatures, whether the intra- or interdot interaction is 
dominant is determined by the relation between v/U and the 
number of nearest neighbors z (z =4 for the square lattice); if 
V/U< l/z, intradot interaction dominates, and if VIlJ> l/z, 

J. Appl. Phys., Vol. 78, No. 4, 15 August 1995 Suzuki et a/. 2549 

. 

interdot interaction dominates. Our simulation demonstrates 
that, at high temperatures @ U  = 5.0), this difference disap- 
pears. Notice that the distributions shown in Figs. 3(c) and 
3(d) have very different entropies; the one shown in Fig. 3(c) 
has entropy kB log 2 per dot due to the freedom of spin, and 
the other shown in Fig. 3(d) has no entropy. Therefore, the 
latter is rather weak in thermal fluctuation and, at high tem- 
peratures, even if V/U> l/z, the probability of the appear- 
ance of the distribution shown in Fig. 3(c) can be rather large 
due to its entropy. 

IV. CONCLUSION 

As discussed above, we can expect, for a quantum dot 
array with Coulomb coupling at low temperatures, some 
stable electron densities associated with suppressed fluctua- 
tion and a large probability of the appearance of characteris- 
tic spatial electron distributions, even in the presence of ran- 
domness. This can be viewed as many-valued stability taking 
place in the system. In order to suppress the fluctuation, con- 
ventional electron devices make use of the law of large num- 
bers. However, the suppressed fluctuation in the system is 
due to a kind of charging effect. lf we make use of this 
many-valued stability, we can suppress the fluctuation with- 
out the law of large numbers, i.e., even if Ndot is not so large. 
This many-valued stability will be useful for new electron 
devices. Similar effects of suppressed fluctuation due to a 
charging effect were experimentally investigated in the early 
days4 and also more recently.s*6V8 However, there is a distinc- 
tion between them and our case. In our cases not only the 
intradot Coulomb interaction but also the interdot one, which 
induces characteristics spatial distributions, is important. 

The effect of spin fluctuation discussed above is similar 
to the Kubo effect,’ which takes place in independent fine 
metallic particles due to the charging effect. Arranging Cou- 
lomb coupled semiconductor quantum dots using heterojunc- 
tions, the new effects related to chemical potential, Coulomb 
energies, and temperature should be observed. 
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