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using 6,13-diphenylpentacene
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Organic electroluminescent devices with saturated red emission were developed using
6,13-diphenylpentacen@®PP doped into trig8-hydroxyquinolinatp aluminum Il (Algs). DPP
exhibits a narrow emission spectrum giving rise to a saturated red peak, centered around 625 nm,
with excellent chromaticity coordinat€s=0.63 andy=0.34) in accordance with the Commission
Internationale de I'Eclairage. An absolute photoluminescéRt¢ quantum yield ¢p,) of ~30%

was measured for a composite film of 0.55 mol % of DPP doped intg.Adq electroluminescence

(EL) quantum efficiency of 1.3% at 100 Afinclose to the estimated theoretical linfit5%), was
measured for an unoptimized device structure that consists of an active emissive layer sandwiched
between hole- and electron-transport layers. In addition, the EL quantum efficiency is constant or
stable over a wide range of current densitis1000 A/n?) or luminance value§l—1000 cd/rf).

[DOI: 10.1063/1.1362259

Displays based on organic light-emitting devicesdiphenylpentacen@PP), a fluorescent dye, which exhibits a
(OLED9) have become very promising competitors and po-narrow emission in the visible red region with excellent color
tential replacements of liquid-crystal displag<CDs) due to  chromaticity coordinatesx=0.63 andy =0.34). DPP shows
their wide viewing angle, bright self-emission, and ease ofa strong absorption in the 500—-620 nm region, which over-
color tunability and processability. Although efficient blue laps well with the emission spectrum of the host used in the
and green OLEDs have been demonstratéthere has been present study, tri§-hydroxyquinolinatp aluminum IlI
a lack of devices that exhibit both saturated red emission an¢Algs). This spectral overlap is necessary for efficient en-
high, stable electroluminescenc¢EL) quantum efficiency ergy transfer from the host to the guest molecules. Devices
over a wide range of current densities. Many laser dyes haveased on an emitting layer that consists of 0.55 mol% DPP
been utilized as emitting center4-X° However, most of doped into Alg, yielded an EL quantum efficiency of 1.3%,
these dyes exhibit broad, orange-red emission and many laskhich is stable and does not decrease over a wide current
photochemical stability. Using an additional dopant whichdensity range<1-1000 A/n?).
acts as an intermediary for more efficient energy transfer  Tris(8-hydroxyquinolinat® aluminum I, obtained from
from host to emitting guest molecules can lead to better colofCl America, was used as both the host and electron
chromaticity and improved device performaficeSharp red transporter.N,N’-diphenylN,N’-bis(3-methylpheny}1,1'-
emission was demonstrated using rare-earth complexebijphenyl-4,4-diamine (TPD), purchased from H.W. Sands
however, devices based on them yielded poor EL quanturfcorp., was used as the hole transporter. The guest molecule,
efficiency’~® Saturated red EL was achieved using phos-6,13-diphenylpentacene, was synthestZedid characterized
phorescent porphines such as tetraphenylporpfiR®, tet- by elemental analysis, ¥NMR, IR, absorption, and fluores-
raphenylchlorin(TPC), and derivatives of platinurfil) por-  cence spectroscopies. All materials were purified by vacuum
phines (PtOEP, PtOx, and PtDPEF2° The use of train sublimation prior to use.
phosphorescent emitters increases the theoretical limit of the Precleaned glass substrates patterned with indium—tin—
EL quantum efficiency by taking advantage of the higheroxide (ITO) stripes, provided by Planar Ameri¢g@40 nm
production ratio of triplet to singlet exciton@:1). PtOEP  thick with a sheet resistance10 ()/sg), were treated in an
and PtOx-based devices show improved quantum efficienexygen plasma prior to introduction to the vacuum deposi-
cies of 2.2% and 1.1%, respectively, at 100 A//?°These tion chamber. Organic layers were prepared by consecutive
enhanced EL quantum efficiencies decline quite rapidly withvapor deposition followed by a cocondensation of Mg and
increasing current densities due to triplet—triplet exciton anAg vapors, which formed the layer of MgAg alloy used as
nihilation. A similar problem was observed when a phosphothe cathode. The active emitting layers of the devices were
rescent sensitizer was used to excite a highly fluorescemtrepared by codeposition of the host and guest materials
dye?! This is a real disadvantage, especially for passive maevaporated from separate resistive heating furnaces. A
trix displays which would be required to operate at highshadow mask forming metal stripes perpendicular to the ITO
current densities in order to achieve the desired brightnessiripes was used during the metal deposition. The thickness
for certain applications. We have synthesized 6,13-0f each of the layers was measured using a quartz-crystal

microbalance.
SElectronic mail: crisaful@ccf.nrl.navy.mil The photoluminescendL) and EL spectra were mea-

YAuthor to whom correspondence should be addressed; electronic maif?u_red inside a glovebox purged with dry nitrogen. The exci-
kafafi@ccf.nrl.navy.mil tation laser beant325 nm line of a He:Cd lasgwas brought
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FIG. 2. J-V characteristics of devices where the emitting layers consist of
Alg; doped with increasing concentrations of DRR) 0 mol %, (B) 0.55

mol %, and(C) 1.2 mol %. The inset shows the energy-level diagram for the
08 neat organic films, ITO and MgAg, with the device structure used in this
study.

Intensity (a.u.)

always found to be larger in the PL than in the EL spectra,
— which has a strong effect on the color chromaticity coordi-
- s nates. The reduction in the contribution of the host dramati-
cally improves the purity of the emission color, with the
color coordinates shifting fromh(x=0.56,y=0.39; PL] to

500 600 700 800

Wavelength (nm) [(x=0.63,y=0.39); EL] [see the inset in Fig. (h)]. The
reduction in the host contribution in the EL spectrum also
the PL spectrum of an Algfilm (green. The structures of the materials are suggests that energy transfer from the host to the guest mol-
also shown(b) PL (dashegiand EL (solid) spectra based on a 0.55 mol% ecules cannot be the only operative EL mechanism. Another

FIG. 1. (Color) Absorbance spectrum of DPP in a toluene solutiea) and

DPP:Alg; film. The color gamut with CIE coordinates for red CRT phos- . . . . . .
phors and coordinates for the Rapen circlg and EL (filled circle) of 0.55 pOSSIble mechanism may be direct carrier recomblné‘ilon

devices, where the current densities decrease as a function of

into the glovebox through an optical fiber. The luminescencdncreasing DPP concentration, suggesting that DPP acts as a
was collected and brought out through another optical fibercarrier trap’” A comparison of the energy levels of DPP
The absolute PL quantum efficiencybg,) of composite relative to those of Alg (inset, Fig. 2 provides further in-
films of DPP doped into Algjwas measured using an inte- sight into the role that DPP plays as a carrier trap. Ultraviolet
grating spheré® Voltage—current—luminance measurementsPhotoemission spectroscopyPS measurements were per-
were performed with a Keithley 238 high-current-sourceformed on neat films of DPP and AlgAn ionization poten-
measure unit and a Minolta LS110 luminance méter. tial (1p) of 5.2 eV was determined for DPP. An electron
Figure Xa) shows the absorbance spectrum of DPP and@ffinity (E,) of 3.2 eV was estimated using the measured
the fluorescence of Alg Good spectral overlap is noted. optical band gagEy=2.0 eV), extrapolated from the absor-
The maximumep, of composite films of DPP and Algvas ~ bance spectrum of DPP. Comparing these energy levels to
found to be~30% (0.55 mol % DPP:Alg). Doping at DPP  those of Alg (1,=5.7 eV, E,~3.0 eV based orEy=2.7
concentrations>1 mol % leads to a lowering of thép,_due  €V),?® and assuming that Ajgand DPP have a common
to self-quenching caused by aggregation. Figul® depicts vacuum level and similar exciton binding energies, it is clear
the PL spectrum of a film that consists of 0.55 mol % DPPthat DPP can act as a hole and possibly a shallow electron
doped into Alg. The EL spectrum of a device based on thetrap when doped into Alg
same active emissive layer is shown for comparison. An  The maximum theoretical external EL quantum effi-
emission peak centered at 625 nm, corresponding to theiency (g ) of devices using the optimum dopant concen-
emission of DPP in solution, dominates both the PL and Eltration has been estimated using, = ay 7, ¢p.,>° wherea
spectra signaling good energy transfer from host to guest. As the light output coupling factor given hy=1/(2n?) (n is
small contribution from Alg is observed in both spectra. the refractive index of the emissive medium=1.7 for
The contribution of Alg decreases as the concentration ofAlg;>9), vy is the probability of carrier recombination;, is
DPP is increased from 0.26 to 1.2 mol % D@t shown.”®  the production efficiency of a singlet or triplet exciton, and
At a given DPP concentration, the contribution of the host is¢p, is the absolute PL quantum yield of the emitter. Using
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