JAIST Repository

https://dspace.jaist.ac.jp/

Title	Surface modification of Bi-Sr-Ca-Cu-O films deposited in situ by radio frequency plasma flash evaporation with a scanning tunneling microscope		
Author(s)	Terashima, Kazuo; Kondoh, Minoru; Takamura, Yuzuru; Komaki, Hisashi; Yoshida, Toyonobu		
Citation	Applied Physics Letters, 59(6): 644-646		
Issue Date	1991-08-05		
Туре	Journal Article		
Text version	publisher		
URL	http://hdl.handle.net/10119/4534		
Rights	Copyright 1991 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in K. Terashima, M. Kondoh, Y. Takamura, H. Komaki, T. Yoshida, Applied Physics Letters, 59(6), 644-646 (1991) and may be found at http://link.aip.org/link/?APPLAB/59/644/1		
Description			

Surface modification of Bi-Sr-Ca-Cu-O films deposited in situ by radio frequency plasma flash evaporation with a scanning tunneling microscope

Kazuo Terashima, Minoru Kondoh, Yuzuru Takamura, Hisashi Komaki,^{a)} and Toyonobu Yoshida Department of Metallurgy, Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

(Received 16 January 1991; accepted for publication 14 May 1991)

The surface modifications of as-grown superconducting Bi-Sr-Ca-Cu-O (BSCCO) films prepared by radio frequency plasma flash evaporation were carried out with a scanning tunneling microscope (STM). The as-grown films were identified as highly *c*-axis-oriented, low T_c (80 K) phase Bi₂Sr₂Ca₁Cu₂O_x with some residue such as (Sr,Ca)₃Cu₅O_x from x-ray diffraction patterns. The as-grown film deposited at about 750 °C exhibited a superconducting critical temperature T_c of 76 K and a critical current density J_c of 8.8×10^4 A/cm² under zero magnetic field at 27 K. The nanometer-size surface modifications between 2 and 50 nm, especially layered etching, of the prepared BSCCO films were successfully performed by using a STM in air.

Recently, nanometer-size fabrications with a scanning tunneling microscope (STM) as a powerful tool of nanotechnology¹ have been carried out intensively. While STM has been applied to nanometer-scale fabrications of various materials,² only surface modifications of Ho₁Ba₂Cu₃O_x films were performed among many high superconducting transition temperature T_c oxides.³ An application of this technique to Bi-Sr-Ca-Cu-O (BSCCO) films is considered to be of great interest not only for engineering but also for pure science.

In this letter, we report the results of nanometer-size surface modifications of the BSCCO films deposited in situ by radio frequency (rf) plasma flash evaporation with a STM in air. An rf plasma flash evaporation has been developed and applied to the deposition of Y1Ba2Cu3Ox (YBCO) films by our group for the first time.⁴⁻⁷ In this process, mixed fine powders of the constituents are continuously injected into a rf plasma to be coevaporated completely and codeposited onto substrates under atmospheric pressure⁴ or a soft-vacuum environment above about 100 Torr.^{5,6} As-grown YBCO films with high T_c (>90 K) and critical current density J_c (> 10⁵ A/cm² under zero magnetic field at 77 K) were successfully synthesized by this method.⁶ Coprecipitated $Bi_2Sr_2Ca_2Cu_3O_x$ powders of about 3 μ m in size were fed into an Ar-O₂ plasma, coevaporated completely, and the composition controlled hightemperature vapors were codeposited onto (100)MgO substrates placed in a plasma tail flame. The present study is the first application to BSCCO films. The typical experimental conditions are listed in Table I. Substrates were set on a rotatable sample holder in which a chromel-almel thermocouple was attached. The duration of deposition was within 20 min and the film thicknesses were about 1 μ m. After the deposition, the samples were removed from the chamber within 10 min. No extra post-annealings were carried out. The prepared films were characterized by x-ray diffraction (XRD) patterns with the Cu K α line,

inductively coupled plasma (ICP) chemical analysis, and scanning electron micrograph (SEM). The electrical resistivity and J_c of the films were measured by a four-probe method. Nanometer-scale modification of the as-grown film after peeling off the near-surface region with Scotch tape was performed with a commercial STM (Nanoscope II, Digital Instruments Inc.) in air. The STM was used as an electron source for nanometer-size fabrication as well as a microscope for imaging by changing bias voltage (V_b) and/or duration of tunneling current (I_t) as described previously.⁸ During fabrication, V_b was raised from low voltage (<1 V), used for imaging, to several volts without a feedback loop. The probe tips employed here were mechanically shaped Pt-Ir wires.

The typical XRD pattern of the film deposited at 750 °C is shown in Fig. 1, which reveals that the film mainly consisted of highly c-axis-oriented, low T_c (80 K) phase Bi₂Sr₂Ca₁Cu₂O_x with some residue such as $(Sr,Ca)_3Cu_5O_x$. The average chemical compositions from ICP were Bi:Sr:Ca:Cu = 1.1:1.1:1.3:2.0. Figures 2(a) and 2(b) show the examples of SEM of the surface and cleaved cross section of as-grown film prepared at 750 °C, respectively. A dense microstructure with precipitates is observed. Figure 3 represents the temperature dependence of the dc resistivity. It is found that the superconducting critical temperature T_0 (onset) and T_c (zero resistance) are 110 and 76 K, respectively. While standard thermal plasma techniques such as spraying have been applied to prepare BSCCO films, the qualities of the as-grown films have been

TABL	EI.	Typical	experimental	conditions
------	-----	---------	--------------	------------

rf power	50 kW (4 MHz)	
Pressure	200 Torr	
Powder	$Bi_2Sr_2Ca_2Cu_3O_x$ 3 μm	
Powder feeding rate	10 mg/min	
Plasma gas flow rate (O ₂)	40 <i>l</i> /min	
Carrier gas flow rate (Ar)	5 <i>l</i> /min	
Substrate	(100)MgO 2 mm \times 2 mm \times 10 mm	
Substrate temperature	720 –770 °C	

1991 0003-6951/91/310644-03\$02.00 Copyright ©2001. All Rights Reserved.

^{a)}JEOL Ltd., 1418 Nakagami, Akishima-shi, Tokyo 196, Japan.

FIG. 1. XRD pattern of an as-grown Bi-Sr-Ca-Cu-O film deposited on a (100)MgO substrate.

not so good. As-grown films with T_c more than 20 K could not been prepared. ⁹ The drop of resistivity at 110 K suggests that high T_c (110 K) phases, Bi₂Sr₂Ca₂Cu₃O_y, were also partially grown in this film, while most of the film demonstrated low T_c (80 K) phases, and no clear XRD peaks of high T_c phase can be observed, as shown in XRD pattern of Fig. 1. The J_c were also deduced from the voltage-current curves by using the 10 μ V/cm criterion. The value of critical current density is $J_c = 8.8 \times 10^4$ A/cm² at 27 K without magnetic field. While, at this very early stage, our results of J_c are inferior to those achieved by other methods such as sputtering ($J_c > 10^6$ A/cm² at 77 K),¹⁰ this process has some advantages such as a simple procedure without any high-vacuum apparatus, high dep-

FIG. 2. Scanning electron micrographs of an as-grown Bi-Sr-Ca-Cu-O film deposited on a (100)MgO substrate: (a) surface and (b) cross section.

FIG. 3. Resistivity vs temperature for an as-grown Bi-Sr-Ca-Cu-O film deposited on a (100)MgO substrate.

osition rates, and adaptabilities to depositions of multicomponents systems, large-scale depositions and continuous long-time operations for practical applications, as described previously.⁴⁻⁷ Further research is now in progress to improve the superconducting properties.

As mentioned above, nanometer-scale fabrications of these BSCCO films with a STM in air may be of great impact for science and technology. Nanometer structures between 2 and 50 nm can be fabricated on the surfaces with a STM in air. The examples are shown in Figs. 4(a), 4(b), 4(c), and 4(d). Figure 4(a) represents a STM image (V_{k} = 0.5 V and $I_t = 1$ nA) of a flat terrace before fabrication. Figure 4(b) shows a STM image ($V_b = 0.5$ V and $I_t = 1$ nA) of nanometer structure of about 10 nm in diameter created on the same region as shown in Fig. 4(a) by raising from $V_b = 0.5$ V with $I_t = 1$ nA for imaging to $V_b = 4.5$ V with $I_t = 1$ nA for 1 s. Interestingly, a hole with a flat bottom with depth of about 3 nm, which corresponds to c-axis lattice parameter of low T_c phase, could also be fabricated on a terrace of the film as shown in Figs. 4(c) $(V_b = 0.5 \text{ V and } I_t = 1 \text{ nA})$ and 4(d), which suggests the success of atomic-scaled layered etching. This layered lithography was performed in the case of layered materials.¹¹ While the mechanism of the etching is not clear, it is considered to be electron-induced chemical etching, as in the case of graphite.¹² The details will be published elsewhere.

In summary, as-grown superconducting BSCCO films were successfully prepared on (100)MgO substrates by an rf plasma flash evaporation for the first time. The XRD results indicate that the structure of the as-grown film was highly *c*-axis-oriented, low $T_{c}(80)$ K) phase $Bi_2Sr_2Ca_1Cu_2O_x$ with some residue such as $(Sr,Ca)_3Cu_5O_x$. The as-grown film deposited at 750 °C exhibited a T_c of 76 K and a J_c of 8.8×10⁴ A/cm² at 27 K. We succeeded in nanometer-size surface fabrications, especially, layer etchings, of the BSCCO films with a STM in air.

FIG. 4. Scanning tunneling micrographs taken in air: (a) surface of *c*-axis-oriented Bi-Sr-Ca-Cu-O films before surface modification, (b) nanometer structure created with a STM in air on the same region as shown in (a), (c) gray scale image of Bi-Sr-Ca-Cu-O surface layeretched in air, and (d) the line trace of the cross section through the hole indicated in Fig. 4(c).

This work was supported in part by Grants-in-Aid for Priority Area Research on New Functional Materials (02205025) and Chemistry of New Superconductors (02227205) from the Ministry of Education, Science, and Culture.

- ¹A. Franks, J. Phys. E 20, 1442 (1987).
- ²E. E. Ehrichs and A. L. de Lozanne, J. Vac. Sci. Technol. A 8, 57 (1990).
- ³H. Heinzelmann, D. Anselmetti, R. Wiesendanger, H. J. Guntherodt,
- E. Kaldis, and A. Wisard, Appl. Phys. Lett. 53, 2447 (1988).
- ⁴K. Terashima, K. Eguchi, T. Yoshida, and K. Akashi, Appl. Phys. Lett. **52**, 1274 (1988).

- ⁵K. Terashima, H. Komaki, and T. Yoshida, IEEE Trans. Plasma Sci. **18**, 980 (1990).
- ⁶Y. Takamura, H. Komaki, K. Terashima, and T. Yoshida, Proc. 3rd. Jpn. Symp. Plasma Chem. Tokyo (1991), p. 145.
- ⁷T. Yoshida, Mater. Trans. JIM 31, 1 (1990).
- ⁸K. Terashima, M. Kondoh, and T. Yoshida, J. Vac. Sci. Technol. A 8, 581 (1990).
- ⁹A. Asthana, P. D. Han, L. M. Falter, D. A. Payne, G. C. Hilton, and D. J. Van Harlingen, Appl. Phys. Lett. 53, 799 (1988).
- ¹⁰ H. Itozaki, K. Higaki, K. Harada, S. Tanaka, N. Fujimori, and S. Yazu, in Advances in Superconductivity, Nagoya, 1988, edited by K. Kitazawa and T. Ishiguro (Springer, Tokyo, 1989), p. 599.
- ¹¹B. A. Paekinson, J. Am. Chem. Soc. 112, 7498 (1990).
- ¹²T. R. Albrecht, M. M. Dovek, M. D. Kirk, C. A. Lang, and C. F. Quate, Appl. Phys. Lett. 55, 1729 (1989).