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Bond-order potential based on the Lanczos basis
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A general recursion method for tight-binding molecular dynamics simulations is described in terms of a
bond-order potential based on the Lanczos basis. The simple recursive algorithm for calculating the band
energy and the forces is intrinsically linear in the scaling of the computational efforts for large systems and
very suitable for parallel computation. As a test of this method, constant energy molecular dynamics simula-
tions are performed for carbon materials. The conserved total energy indicates that the forces are of good
quality. [S0163-182899)06623-0

The tight-binding(TB) model is practically invaluable for another basis instead of the atomic basis. Among various
the simultaneous investigation of electronic structure andases, | focus particularly on the Lanczos basis derived from
molecular dynamics in a wide range of systems from covathe Lanczos algorithm for the following reasoit$) the off-
lent materials to transition metals. In order to apply the TBdiagonal elements of the Green’s function matrix are easily
model to real complex systems, for example, disordered maevaluated by the recurrence relation which follows from the
terials, liquids, and large molecules, we need to perforniri-diagonalized Hamiltonian and the identitf (—H)G(Z)
simulations on very large systems. However, it exceeds the |, and(2) the energy and forces on the central atom are
capacity of modern computers to treat large systems, includgcalculated simultaneously at one Lanczos transformation.
ing thousands of atoms, using widely known methods for In this paper | derive a BOP method based on the Lanczos
solving the electronic structure problem, such as thedasis within the two-center orthogonal TB modelnd show
conjugate-gradient method, because the computational efhat the representation simplifies the evaluation of the forces.
forts scale as the third power of system size. Therefore, sevthe method, which is an attempt to adopt another represen-
eral efficient schemes with linear scaling algorithms haveation for the bond-order expansion, is a general recursion
been proposed during the last decati€ Among them, the method to obtain the band energy and the forces. Moreover,
bond-order potentialBOP) method'~* can give insight into  as a test of the quality of this method, constant energy mo-
bonding and structure of molecules and solids. Also thdecular dynamics(CEMD) simulations are carried out for
method has an advantage in terms of parallel computation ifiarbon materials. The results of CEMD show that the BOP
the same way as oth@(N) methods such as the density forces have sufficient accuracy in the molecular dynamics
matrix method and the Fermi operator expansion metfidd. simulations.

The BOP method derives the local density of st&td30S) Within the TB modef) the total potential energl,; of a

and the bond orders, which are related to the band energgystem is a sum of band energy,,q and repulsive energy
and the forces, respectively, from the local atomic environEep, WhereE, is the sum of suitable repulsive pair poten-
ment. We can easily parallelize the BOP program code, sincéals. The band energy in the BOP is described in two differ-
the calculation of the band energy and the forces of eacknt terms of the LDOS and the bond order; these two quan-
atom is highly independent. tities are not only formally identical, but also exactly

However, the BOP method has a complicate algorithmdentical in this presented BOP, as explained later. We can
compared with conventional recursion methods, because it gvaluate the force as the Hellmann-Feynman force from the
a delicate problem to evaluate off-diagonal elements of théatter rather than trying to differentiate the forniér.
Green’s-function matrix which are related to the bond orders. Assuming that the electrons are at a finite temperatyre
To calculate the bond orders, the method adopts procedurdise band energ§,,,q derived from the LDOS is expressed
where the off-diagonal elements, obtained by means of auwes follows:
iliary Hilbert space, are corrected by sum rules following
from the identity g1—H)G(Z)=1.2"* Therefore it is obvi- E—u
ous that the complexity will place hurdles on the road to Epand= 22> Enia(E)f( T )dE, (1)
applications for large scale molecular dynamics simulations " B
n Spe of s ol s tol o e e g1 f 10 ren, (8 s he densy of st poeciedslaiomi
tation. A new BOP formalism should be derived in terms oberbltal lia) in atom i, and the function f(x)=1]1

S . - +expx)] is the Fermi function.
the simplicity and the accuracy in the evaluation of the off- On the other hand, the band energy and the Hellmann-
diagonal elements.

One of the key concepts in developing the BOP aIgorithmFeynman forces are written in terms of the bond orders

is a change of basis. A bond-order expansion represented by
a new basis can provide a turning point in the progress to the Epand= 2 2 HE (2a)
BOP, though the BOP formalism has not been derived from and i wIA 1B
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‘9HJaB " where 0" shows a positive infinitesimal. The integration of
Fe= —'2 67ip o, (2b)  the Green’s function with the Fermi function can be carried
il p out in the complex plane by summing up an infinite series

over the modified Matsubara pol&$1* This modified Mat-
subara summation converges rapidly with about 40 complex
poles under a high electron temperature1000 K) though
4t often diverges under a lower electron temperature. The
modified Matsubara summation is also employed for integra-

where Hfﬁyia=<j,6’|li||ia> is an element of the TB Hamil-
tonian matrixH, and the indexa indicates the representation
based on the atomic basis.

Consider a change of representation, from the atomic b
sis into the Lanczos basis, by the block Lanczos algorithm. ; ) . ) .
The algorithm which is an efficient way for block tridiago- tions of other Green’s functions WIFh the Eerml fupctlon.
nalizing a matrix is also the first step in calculating the diag- 1 he block element of the Green’s functi@y(Z) is cal-

onal elements of the Green’s-function matrix. The centraculated by the recursion block coefficierds andB, as a
equation is multiple inverse:

AlUD=UDA [Up DBI+|Upi))Brer. (3 GodD)=[Z1-Ac=Bi[ZI-A1-B3[---] 'Bz] 'Bal ™.

8
The A, andB,, are recursion block coefficients wifhX p in ©®
size, wherep is the number of atomic orbitals on the starting The Ggo(2) is equal to a block element represented by the
atomi. The state$U ) are constructed by the Lanczos basesatomic basisGg,(Z), since we have started the block Lanc-
which are orthonormal and block tridiagonalize the Hamil-zos algorithm with Eq(5). Thus imaginary parts of Eq8)

tonian, as|U,)=(|Ln1).|Ln2), - - - |Lnp)). The representa- give the LDOS on aton.
tion based on atomic bask is transformed into that of the  Moreover, by taking account of the block tridiagonalized
Lanczos basid- by a matrixU: Hamiltonian and the identityZl —H)G(Z) =1 in the Lanc-
zos basis representation, the off-diagonal block elements of
T-=U'TU, (4)  Green’s function matrixGg,(Z) are obtained from a recur-

whereU is defined byU;, ,,=(ia|L,), andT is the Hamil- rence relation:

tonian H, the derivative of the Hamiltonian with respect to

L _ L
atomic coordinategH/Jr; , the bond ordep, or the Green’s- Gon(2)=[Gon-1(2)(Z1 = Ay-1) ~ G- Z(Z)B“ 1

function G(Z) matrix. — 51l 1B, L, (9)
It is essential to choose a starting stHtk) in the block -
Lanczos algorithm as follows: where ¢ is the Kronecker’s delta, an@é_l andgg are0,

respectively. All the off-diagonal block elemert_ﬁjﬁn(Z) are
related to the diagonal block elemeBfy(Z). OnceGgy(Z)

has been obtained, the off-diagonal block elements are easily
evaluated from the recursive calculation. The facility for the
evaluation of the off-diagonal block elements is an important

62, is= E QOa ernu g (6) benefit produced _by the Lanczos basis representation. Thgre-
fore the computational effort for the evaluation of the force is

whereu™ the same as that for the band energy. The diagonal element

nwjp 1S @ (hw,jB) element in thed " matrix. From e .
Eq. (6) the bond orders based on the Lanczos basis are r%a)_nd the off-diagonal elements obtained from Eg).and Eq.

, . . 9) are exact Green'’s functions in the recursion chain cluster
lated to that by the atomic basis, which allows us to evaluat - : ; :
lock tridiagonalized with the Lanczos transformation, and
the bond order in the Lanczos representatlon Let us intro

L %he bond orders for the atoiare evaluated through these
duce the block eleme@mn—(um|T|Un), whereT is an ar- Green’s functions and E@6). This means that Eq¢1) and
bitrary operator, the size of the block elemenpis p, and Eq. (2a) are manifestly identical, since ERa) can be di-
the (a,8) element ofT, is described a3y, .5- Then the  vided into contributions for each atom. On the other hand,
block elements Which are needed for evaluating the bongq. (2b) is an approximate force for Eql) or Eq. (2a). As
orders based on the atomic basis in E). are written as the number of recursion levels increases, the Hellman-
06, Therefore, starting the recursion with H), we have  Feynman force Eq(2b) converges the exact force.

only to evaluate the zeroth block line of the bond-order ma- In a series of the block Lanczos transformation, the Lanc-
trix. If the conventional scalar Lanczos algorithtr3is  zos vectors hop from the central atom to the outside atoms,
applied for a change of representation, Eg).is not simpli-  reflecting the local atomic environment. Since the Lanczos
fied for other nonzero derivatives of the Hamiltonian with bases play the role of a perturbing medium for the central
respect to atomic coordinate. Though it is also possible tatom, for an infinite system, as the number of recursion lev-
start the recursion with a cluster containing a neighbor shelgls in Eq.(8) increases, a good convergence is given for both

v |ip)). 5

Then considering Ed4) and the orthonormality of the Lanc-
zos basis we have

of atoms, the choice is not suitable for computer time. band energy and the forces. However, we have to take only a
The bond-order matrix can be related to the Green’s funcfinite number of levels for the recursion in E8) because of

tion through the following equation: the computational effort, and then estimate the further levels.
There are two simple ways of terminatichOne is to take

)dE] @) many levels on a cluster of small size without any termina-

2 E—-
L — — —]
bon= wlm[fGO“(Eﬂo )f( tor, and the other is to use a square root termi-
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FIG. 1. The potential energy, kinetic energy, and total energy as
a function of time for a constant energy molecular dynamics simu- FIG. 2. The potential energy, kinetic energy, and total energy of
lation of a carbon trimer. a unit cell containing 64 atoms for constant energy molecular dy-

namics simulations of diamond at 300 K as a function of time. In
nator which is derived assuming that the further block recur<a) the results are for five recursion levels, andbi for ten recur-
sion coefficients are constant. | have adopted the former igion levels.
this study.

In order to keep the number of electrons and to cancel théhows the energy of the carbon trimer as a function of time.
Madelung energy, though local charge neutralitN) is ~ The conserved total energy within 19 eV/atom indicates
often imposed as the simplest form of self-consistency in théhat the forces are of good quality.
usual BOP, the LCN is not an appropriate assumption with a In a similar way, CEMD simulations have been carried
physical meaning particularly for systems with the chargeout for diamond at 300 K using five and ten recursion levels
transfer. The LCN breaks even in a carbon trimer with theon a small cluster without any terminator. The cutoff radius
bond length of 13 A , where the excess charge of a middle of the small cluster is 2.A , which is sufficient for including
carbon is about 0.1. In this study, | have employed totathe fifth neighbor atoms in a perfect lattice. In Fig. 2 the
charge neutrality(TCN) to perform molecular dynamics energy is shown for diamond in CEMD as a function of time.
simulations while keeping the number of electrons. If theThe fluctuation of the total energy decreases with increasing
total excess charge on a systen®isthen a good estimate of the number of recursion levels. For five recursion levels, the

the shift of the chemical potential is total energy shows an oscillation with amplitude of
10"2 eV/atom, while for ten recursion levels, the total en-
Q ergy is conserved within I¢ eV/atom. The BOP with ap-
A:)\y- (10) propriate recursion levels provides an accurate band energy

and forces in molecular dynamics simulations of a finite and
where\ is a parameter to accelerate the convergence, anifinite systems.
generally is 1.0. The total response functi¥nis given as However, as the number of recursion levels increases, the
follows: computational effort becomes larger. Computer time and ac-
curacy as a function of the number of recursion levels have
been examined for the above CEMD of diamond on an IBM
- (D RSE000/SP2, where a cutoff radius was fixed at&, in all
the number of recursion levels. Figure 3 shows the timing
Usually no more than three or four iterations are required taesults for one time step and the amplitude for the total en-
achieve the convergence that the absolute vald@/afom is  ergy. The computer time is approximately proportional to the
below 10 °. The TCN reduces the separability of individual number of recursion levels, while the error for the total en-
atoms in the calculation of the band energy and the forcesrgy decreases rapidly.
and complicates slightly the parallelizability of the program  Moreover, the method has been compared with direct di-
code as compared with the LCN. However, the evaluatioragonalization of the Hamiltonian with respect to computer
and the integration of the Green’s function, which are time-time. Figure 4 shows the time for one step of the CEMD of
consuming steps, are separately performed. Therefore tldiamond as a function of the number of atoms in the cell, for
TCN retains the advantage of the BOP. five levels, ten levels, arkispace ['). The computer time of
As a test of the consistency between the band energy arntie presented BOP method scales linearly with the number of
the forces, constant energy molecular dynamics simulationatoms, and results in a smaller computer time than that of the
have been performed for a carbon trimer and diamdnd. diagonalization when the number of atoms exceeds about
First, as an example of the finite system, a carbon trimer ha%00. Finally, | have performed parallel computation on a Sun
been examined in CEMD using a time step of 0.5 fs. HereStar Fire which is a parallel machine with 32 processors. It is
both Egs(8) and(9) are calculated with three recursion lev- observed that the scalability of the algorithm is almost ideal.
els, the electron temperatukgT is 0.2 eV, 40 poles are used  In the moment-based methods, it is well known that the
on the integration of the Green’s function, and each atom isacancy formation energies of covalent materials such as
given an initial velocity corresponding to 1300 K. Figure 1 carbon and silicon are not reproducéd’ However, the pre-

__ 2 a 0+y7es| EZH
X——;Im’% [G2, (E+i0 )]2f<kB—T)dE
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Number of Levels In conclusion, | have presented a general recursion
method, which is intrinsically linear in the scaling for large

FIG. 3. (a) One atom energy and force calculation tirft®. The 3 ;
magnitude of total energy oscillation in diamond for constant en-SyStéms and very suitable for parallel computation, for cal-

ergy molecular dynamics calculations as a function of the numbefulating the band energy and the forces in tight-binding mo-
of recursion levelgusing a unit cell of 64 atoms at 300)KThe  lecular dynamics simulations in terms of the bond orders

calculations were performed on an IBM RS6000/SP2 using ondased on the Lanczos basis. From practical applications with
CPU. carbon materials, it has been demonstrated that the forces are
of good quality.

sented BOP has reproduced the vacancy formation energy in
preliminary calculations, which suggests that the method has | thank Y. Iwasa, T. Mitani, and N. Suzuki for encourage-
an accuracy compared with the former moment-based methment and many enlightening discussions. | am grateful to M.

ods. | plan to discuss details in the future. Aoki for useful discussions and many comments.
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