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The theory of a bond-order potential, which is based on the block Lanczos algorithm, is presented within an
orthogonal tight-binding representation. The block scheme handles automatically the very different character of
o and 7 bonds by introducing block elements, which produces rapid convergence of the energies and forces
within insulators, semiconductors, metals, and molecules. The method gives the first convergent results for
vacancies in semiconductors using a moments-based method with a low number of moments. Our use of the
Lanczos basis simplifies the calculations of the band energy and forces, which allows the application of the
method to the molecular dynamics simulations of large systems. As an illustration of this convertgnt O(
method we apply the block bond-order potential to the large-scale simulation of the deformation of a carbon
nanotube.

. INTRODUCTION These ON) methods can be roughly divided into two cat-
egories: variational methods and moments-based methods.

To understand mesoscale and macroscale phenomerfae former are the density matrioM) method&®?and the
from the atomistic level is an important subject in computer-jocalized orbital (LO) methods:®~*8 which lead to linear
aided materials modeling. This challenging study is not onlyscaling algorithms from the localization of the density matrix
intended as a realistic search for useful materials, but also fand the Wannier functions, respectively. The latter include
finding novel cooperative phenomena involving many atomshe bond-order potentialBOP) method~'2 and the Fermi
within large systems. Computer simulations of materialsoperator expansioiFOE) method!*** which are intrinsi-
have inevitably promoted the development of efficient algo-cally linear in the scaling of the computational effort because
rithms for dealing with long-time-scale phenomena. Thesdhe enegy and forces are expanded in a finite moment expan-
methods have developed via two different approaches. Theion. Several applications of these variational methods have
first, based on continuum mechanics, is a hybrid approachlready been performed for large systems, which have shown
that combines continuum mechanics with atomisticthe power of these ) methods!~2® However, several
simulations'? The second more directly applies the molecu-problems remain in these ®J methods.
lar dynamics(MD) simulation to large systems by reducing  First, it is well known that the variational ®f methods
computational effort. The progress in these two approachegroduce large errors in the energy of metallic systems with
will enable us to bridge microscale and macroscale phenonthese long-range correlations in the density méttiba these
ena. In this paper we address the latter approach. cases there is no justification for cutting the matrix elements

Atomistic simulations should be founded on a quantum-off at short distances in the density matrix. Unfortunately, if
mechanical model in order to simulate a wide range of mathe cutoff distance is increased to decrease the error in the
terials within a single framework, since the electronic struc-energy, then the calculation effort increases significantly.
ture determines the energy and the forces on atoms. The Second, it is well documented that within moments-based
local-density approximationLDA) to density functional methods, the vacancy in diamond or silicon cannot be de-
theory > and semiempirical methods such as the tight-scribed within a low number of momentabout 20.242° A
binding (TB) approximatiofi’ reduce the complicated quan- very large number of momentabout 200 is needed to re-
tum many-body interaction in condensed matter to a singleproduce the correct vacancy formation eneftjin the BOP
electron problem. The resultant theory has been applied to method the forces become exact as the bond orders converge
variety of problems in materials science. However, it exceed$o the exact values. This implies that the forces are not con-
the capacity of modern computers to treat large systems thaistent with the total energy if the recursion is terminated at
include thousands of atoms, using widely known methods foa finite number of levels. In the other moments-based meth-
solving the single-electron problem such as the conjugatesds, such as the FOE metHdd* and the global density of
gradient method, since the computational effort scales as thatates methotf?’ the exact forces can be calculated. How-
third power of the system size. ever, these methods are also unable to reproduce the vacancy

Therefore, several efficient methods with linear scalingformation energy within a low number of mome#ts.
algorithms have been proposed during the last detade. Any robust O) method should satisfy the following cri-
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teria. First, the method should give accurate energies for adjacent to the two atoms forming the bond. In the block
wide range of material§nsulators, semiconductors, metals, BOP representation the two different expressions E2k.
and moleculeswith minimum computational effort. Second, and(3) for the bond energy are exactly identical at any level
the Hellmann-Feynman forces should be consistent with thef approximation. The proof will be given in a later subsec-
total energy at any useful level of approximation. Third, thetion. The promotion energy is defined by

algorithm should be suitable for parallel computation.

Our goal is to establish the BOP method as arNID(
method that satisfies these three criteria. In Secs. Il and lll,
we present the theory of the block B&mvithin the orthogo- 0 o
nal TB representation. We stress that the introduction ofVhereNi, andN;, are the number of electrons finee) in the
block elements into the BOP formalism improves remark-condensed and free atomic systems, respectively. The pro-
ably the accuracy of the energy and forces. In Sec. IV wdnotion energy is repulswe due to the excitation of electrons
analyze the vacancy formation energy of diamond carbon ifrom their free atomic ground sj[ate as the atoms are brpught
terms of the bond order and discuss the reason why the blodRgether. Therefore, the cohesive energy of a system is de-
BOP gives accurate energies in covalent materials with a lof€'mined by the balance between the attractive bond energy
number of moments. In the remainder of this paper the de@nd the repulsive pairwise/embedding and promotion ener-
formation of a single-wall carbon nanotube is used to demdi€S. The bond and promotion energies can be repartitioned
onstrate the applicability of the method to large-scale atomiNt0 the band and atomic energies:
istic simulations.

Epromzz (€iaNio— E?aNiOa)a (4)

0 N0
Ebond® Epom= 2 i jpHigiat 2 (€1aNig— €N
Il. THEORY ta#]B la

A. Tight binding

We develop the block BOP within the two-center or-
thogonal TB representatidr® It will be assumed that the B
basis set is an orthonormal set of atomiclike orbifats), = Eband~ Eatoms ®)

wherei is a site index andv an orbital index. The}\ Hamil- Eband is equa| to the energy that is defined by integrating
tonian can be represented by the mattix, ;;=(ia[H|jB).  =;,En;,(E) up to the Fermi level.

The on-site elements of the matrix are written&s. The In the TB model the single-particle eigenfunctions are ex-
cohesive energy, assuming that the electrons are at a finianded in a basis set that is an orthonormal set of real atomi-
temperatureT, is the sum of bond, promotion, and repulsive clike orbitals:|i @),

energies:

_ 0 £ 0
—,z ®ia,jBHjB,ia_E €oNig
ia,jB ia

= (@)
Ecoh™ Ebonat Eprom+ Erep! D | ®) % Cia || a), (6)

where the repulsive energy is given by the sum of pair poighere the expansion coefficients are defined @ﬁ{f)

tentials or embedded potentials that are usually determined ial c@ is alw real b f real atomic orbital
so that the TB model reproduces equilibrium structures and (ia ¢>'. o IS @WAYys reaj because of real atomic oroitals
elastic constants. The bond energy is the attractive contrib pnd Hamiltonian. Then the bqnd orders may.be defined in
tion that leads to cohesion. There are two different butc > of the expansion coefficients as follows:
equivalent expressions that describe the bond energy. The €D —

first gives the bond energy in terms of the-sitedensity of ®ia’j5=22 Cj(g)ci(f)f(W» (7)
states as follows: é B

E_ where the factor 2 accounts for spin degenerat$). is the
Epon=2>, | (E— Gm)nia(E)f(—M)dE, (2)  eigenvalue corresponding to an eigenstatp
T kgT The force on atonk is obtained by differentiating Edq1)

wheren;,(E) is the density of states projected onto orbital with respect to atomic positions:

lia), and the functionf(x)=1[1+exp()] is the Fermi

JE
function. The second gives the bond energy explicitly inF,=— armh
terms of the individualntersitebond energies as follows: k
1 —=>> MH Y T M _% (8)
Ebond=§i2 (20i4,igHjgia) ©) iafp \dr Pl TlelB gy I

a#|pB
_ o The first term of Eq.(8) is identically zero in insulators at
where ©;, ;5 is the bond order between orbitdlisx) and zero electronic temperature so that

|j B), and the expression in parentheses represents the corre-
sponding bond energy associated with orbitedg and|j 3). MHjgia IErep
This allows us to interpret the bonding and structure of mol- Fr= __2 Oiajp ar — = are
ecules and solids from a chemical point of viéWt should llp K K
be noted that the bond order is not pairwise but is determinedihere the first term of Eq(9) is the Hellmann-Feynman

by the particular arrangement and connectivity of the atoms$orce. If the bond orders are approximate values, then the

, ©)
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sum of the derivatives of the bond orders with respect to E—un

atomic positions will not be zero, so that E®) gives the |mJ Gia,jg(E+i0+)f<W)dE

exact force that is consistent with the total energy in insula- B

tors at zero temperature. In insulators and metals at nonzero E—u
temperature, on the other hand, the sum is not alway zero. ——m> C}Z?Ca(f)f 5(E—6(¢))f( T )dE
However, in the block BOP representation the forces are ¢ .

given by Eg.(9), since it is very difficult to evaluate the e —pu
derivatives of the bond orders. Hence, the forces calculated = —772 C}g)cff)f(v)
by block BOP become exact as the bond orders converge to ¢ B

the exact values. In Sec. Il the compatibility between the T

force and the energy will be discussed from numerical tests == E®ia,jﬂ-

using constant energy molecular dynamics simulations.
Although the forces are not consistent with the total en-Therefore
ergy in the usual BOP methods, it is possible to evaluate the ) £
exact forces at any level of approximating by the other mo- 9 - ° f o - M
mentsbased method, the global density of states méthod. Oiajp= = 7IM | Giajp(EFIOD kg T dE. (13

However, the use of the global moments, which are intro—_l_h luati f the bond E 403 .
duced to decrease the computational effort, leads to a re- e evaluations of the bond energy E¢8. and (3) require

duced rate of convergence of the energy as a function of th(éalcglat'ng the local (_jensny of states and bond orders. We
number of moments. In the Appendix of this paper Weobtam the local density of states and bond orders from the

present a novel method to evaluate the exact forces. Green’s function throu’gh Eq$_11) and_(13). The diagonal .
elements of the Green’s function matrix can be calculated in
a numerically stable way by the recursion metfod Block
BOP is a general recursion method for evaluating efficiently
The local density of states and bond orders can be relatdapth the diagonal and off-diagonal elements of the Green’'s
to the one-particle Green’s functions. The one-particlefunction matrix by the recursion method. The first step of the

B. Block bond-order potential

Green’s function operator is defined by recursion method is to tridiagonalize the Hamiltonian using
the Lanczos algorithrif In the block BOP we introduce the
é(z):(z_ﬂ)*l block Lanczos algorithm with the starting state as a single
site containing all the valence orbitals rather than the usual
[p){ P scalar Lanczos algorithm with a single starting orbital.
= O (10) However, the application of the conventional block

algorithnt334to finite systems such as molecules introduces
Then the imaginary part of the diagonal elements of thea numerical instability, since the terminal number of recur-
Green’s function matrix give the local density of states:  sion levels of themr bond are different from that of the
bond in the recursive algorithm. Therefore, we modify the
—0"(ia|p){¢plia) conventional block Lanczos algorithm. A series of proce-
dures for the modified block Lanczos algorithm can be car-
ried out as follows:

IM G4 E+i0 )=§ E— Pt (0 )

:_772 (Ci(f))25(E—e(d’)) [Ug)=(]i1),]i2), ... ]iM})), (14
2
= — i (E). An=(U,|H|U,), (15
Therefore |rn):H|Un)_|Unfl)tEn_|Un)énv (16)
1 2_
nia(E):_;lm Gia,ia(E+i0+)! (11) (EnJrl) (rnlrn)r (17)
. (An)?*="Vq(Bn11)%Va, (18
where Gi, i4(Z) =(i@|G(Z)|ia), 0" represents a positive
infinitesimal, ands(x) is the delta function. The imaginary En+1=§nt¥n, (19
part of the off-diagonal elements of the Green’s function
matrix has the following relation to the expansion coeffi- (gm)*l:y@;l, (20)
cients of the single-particle eigenfunctions:
|Un+1): |rn)(En+1)7l- (21
IM G, jg(E+i0%)=— 7> CIOCIS(E—€l?). A, andB, are recursion block coefficientd; X M; in size,
¢ where M; is the number of atomic orbitals on the starting

(12 atom i, and the underline indicates that the element is a

Multiplying the both sides of Eq(12) by the Fermi function ~ block.
and integrating with respect to the energy, we obtain the The statesUn)=(|Ln1),[Ln2), ... [Lau,)) represent the
following useful expression for the bond order: Lanczos basis, and are orthonormal and block-tridiagonalize
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the Hamiltonian. The modified algorithm gives different ex- a) b) c)
pressions for the block elemenB, . ; and these inverses | L
compared with the conventional algorithm. The block ele- Py
ments in the conventional block Lanczos algorithm are de- N N B
fined by W, TOTOT A o
\[/
| 1

En+1:¥n5nt¥n ) (22
FIG. 1. The Lanczos vectors on tsesalent square latticga),
(Bn+1)‘1:Vn)\n‘1tVn_ (23 (b), and (c) are an initial statdL), |L,), and|L,), respectively.
- - The diameter of the circles is proportional to the magnitude of the
The failure in the conventional algorithm can be illustratedexpansion coefficient in the Lanczos vector.
by a carbon trimer with a linear chain structure along xhe
axis. If the block Lanczos algorithm is applied with the cen-whereD{?=(L,,| ). Then the representation based on the
tral atom in the trimer as the starting state, thenghandp,  atomic basis can be transformed into that of the Lanczos
orbitals span two independent subspaces. Thus, the recursibasis set by the matri¥ such that
algorithm finishes after only one iteration for the Lanczos L
vectors concerned with thg, andp, orbitals. This gives two T-="UuTuy, (27

zero eigenvalues in the four eigenvalues of the block eleme%hereu is defined by(ia|L,,), and T can be the Hamil-
2 . . nv/»

(B2)”. Then one car_m_ot evaluat_e the invers&giusing Eq tonian H, the derivative of Hamiltonian with respect to

(23). Therefore, definings, and_|ts inverse by th? modified atomic positiongH/dr;, the bond orde®, or the Green’s

equations(19) and(20), respectively, and assuming that the function G(Z) matrix. The index indicates the representa-

diagonal elements o)jl’1 corresponding to the zero eigen- o pased on the Lanczos basis. Equatiea?) is a

values are zero, we have pseudounitary transformation, and the mattix becomes
unitary when the number of the recursion levels is infinity in
1 infinite systems. If the block Lanczos algorithm is started
through Eq.(14) with the atomic orbitals on atormas the
(24)  starting state, then considering E7) and the orthonormal-
ity of the Lanczos basis, we can relate the bond orders in the
0 Lanczos basis representation to the bond orders based on the
atomic basis by the following simple relation:

B,(By) 1=

1

0;;=2 05,'Uy;, (28

(UylUy)= (25 n
where®;; and®g, are the block elements of the bond orders
for the atoms andj and the statefJ,) and|U,), respec-

. . ) tively. For example®;. signifies
|U,) is reduced to the state with two vectors, while the start- y pled;; sig

0

ing stateon_) is constructed by the four vectors, which per- 0,1 O Oi1jm.
mits us to iterate once more with the recursive algorithm. ! ! !
The conventional block Lanczos algorithm does not satisfy Oizj1 Oigj - @)iz,ij
both Egs.(24) and(25), since the block element, and the 9= . (29

inverse are obtained from the unitary transformations pf

and the inverse, respectively. Therefore, the conventional al- Oim i1 Oimyjz -+ Oivym,

gorithm terminates at this recursion level even though the i ) ,
Lanczos vectors for the orbital can still hop. This reduction WhereM; andM; are the numbers of at?mlc orbitals includ-
of the state avoids the numerically instabilities for the case of1d atoms andj, respectively. In Eq28) "Uy,;, which is the
small eigenvalues of,,. ;)2, even when the eigenvalues are (M:]) block element of the matrixU, is defined by

not zero. . . .
Application of the block Lanczos algorithm defines an (Lualil)  (Lndj2) - <|-n1|JMj>
orthonormal basis set called the Lanczos vector or basis. The (Lnalily  (Ln2li2)y -+ (LnaliMy)

Lanczos vectors reflect the neighboring atomic arrangement tgnj=

of the starting site. In Fig. 1 we show the Lanczos vectors on ' '
ans-valent square lattice. The Lanczos vectors spread gradu- (Lam i) (Lamli2) - (LamliM))

ally from the central atom as the number of recursion levels (30
increases. Thus, we now expand a one-electron eigenst

using the Lanczos vectors a'}‘%e simple relation Eq28) allows us to evaluate the bond

order in terms of the Lanczos basis representation. We have

only to calculate the zeroth block line, which is the bond

| ¢>:2 ngs)“_nv% (26) orders b_etween the starting atom and the L_anczos vectors
nv surrounding the atom, of the bond-order matrix. In the block
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BOP the bond orders are evaluated in the Lanczos basis rept case the bond orders are evaluated by E2f). and (34),
resentation, and then we get the bond orders based on thee can prove that the two different expressions Egsand
atomic basis from Eq(298). (3) for the bond energy are identical at any level of approxi-
It is essential to start the block Lanczos algorithm with amation. Consider the trace &(Z)(ZI—H). Transforming
single site as in Eq.14). Although it is possible to derive an the trace of the atomic basis representation into that of the
analogous transformation to E(R8) using the usual scalar Lanczos basis using ER7), and making use of the identity
Lanczos algorithm, the bond energy of the system dependS(Z)(Zl—H)=I in the Lanczos basis representation, we
on the rotation of the systeM.Thus, the use of the scalar see that the trace is a constant:
algorithm is not appropriate, since the bond energy should be

invariant to the rotation of the system. We could also start tr{G(Z)(Z1—H)}
the recursion with a cluster containing a neighbor shell of
atoms instead of a single sitt However, this choice is un-
' =2, t{ZG;i(2)} - 2, t{{G;;(2)H;;
2 1{2Gu(2)}= 2 (G (D)H;)

suitable because it is highly computationally intensive.
In the Lanczos representation the Hamiltonian is block-

tridiagonalized: :Z tr{Zg'ag)(Z)}—% tr{géﬂ’(Z)ﬂhS’
An if m=n,
t if m=n—-1 = ®
By ! > (1), (35
N o . i -
(Un/H|Uy) =1 Bny1 if m=n+1, (31 _
0 otherwise. wherel; is a unit matrix withM; X M; in size. The index. ()

indicates the representation based on the Lanczos basis with

. . the starting state on atomConsidering the imaginary parts
The block elemenGg(Z) =(Uo|G|Ug) can be written ex-  of the trace, we have

plicitly by the form of the multiple inverse, since the Green’s

function matrixG(Z) is the inverse of the matrixZ| —H).

Appling repeatedly the partitioning methdd®® which is a MY, ZGipia(Z)=1M >, Ginjs(Z)Hpia. (36
method for calculating the inverse of matrices, to the matrix te tj B

(Z1=H), we get We see that the two expression for the bond energy give the

L _ t t b 1-1p 1-1 same energy, since the Green’s functions can be related to
Cool2)=[21 = Ao~ Bal 21 = A1 = Bal - - -] "B2] "B 3y the local dggsity of states and bond orders through Bds.
(32 and (13), respectively. The block BOP, thus, provides the

Ggo(2) is equal to the block elemerts;;(Z) based on the equivalence of the two expressions for the bond energy in a
atomic basis, since we have started the block Lanczos alg#atural way, whereas in the usual BOP the Green’s functions
rithm with Eq.(14). Therefore, the local density of states canneed a carefully chosen truncator in order to satisfy the sum
be evaluated from the diagonal elements by 8d). Also rule?
the trace ofg('gO(Z) gives the local density of states on atom
i. . . ' C. Moment description

Moreover, by taking account of the block-tridiagonalized The moments of the local density of states allow us to link

Hamiltonian and the identity1 —H)G(Z) =1 in the Lanc- tge behavior of the electronic structure to the local topology
zos basis representation, the off-diagonal elements of thabout the given sits-22%We now discuss the relation be-

’ . . L .
l(é\r;i(re]n Srgggﬁgageﬂzt&%%ﬁ may be obtained from the fol- tween the block recursion matrices and the moments of the
9 : density of states. From Eq10) for |Z|—~, the diagonal
GL(Z)=[GL _(Z)(ZI-A, 1) elementGj,(Z) can be rewritten as follows:
= 0n —L¥0n-1 17 MAn-1 —!

—Ggn_2(2)'Bp_1— 810l 1(By) %, (33 (Uolp){(¢|Uo)

Goo(2)=2 0
where é is the Kronecker’s delta, an@,_,(Z) and tgo are ¢ L€
0. All the off-diagonal block elementGg,,(Z) are related to © ()P © (p)
F R L Ay L (¢) (E ) Moo
the diagonal block elemer@g(Z). OnceGgy(Z) has been =>, di — =2 =5 @7
obtained, the off-diagonal block elements are easily evalu- ¢ — \p=0 ZP p=0 ZP
ated from the above recursive relation. The simplicity of
evaluating the off-diagonal block elements is an importantVnere
advantage of the Lanczos basis representation. The block (i) () (i)
elements of the Green’s function matrix have the same rela- Di1"Dir” Diz’Dit” .-+ Dip’Dig
tion to the bond orders based on the Lanczos basis as that of (&)p () @p® ... (¢)p ()
: . . Dll D|2 D|2 D|2 Dlp D|2
the atomic basis representation: did) = ,
2 E—u D@D DD ... p@AP@A
L__ = L it — i1 Yip i2 Yip ip Yip
Oon - Imj Ggn(E+i0 )f( KaT )dE. (34) 38
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En:(un|H|Un—1)

=2 diP(eD)p, (39
¢ =Po(A)(UolAlUg) P, 1(F)

and ) is the block element of theth moment for the atom 2n

i, the diagonal elements of which give th¢h moments of =2 bl . (45)

the projected density of states,(E). Thus, Eq.(37) is the m

moment expansion of the Green’s funct@ho(Z). Also the  In the derivations of Eqg44) and(45) we have assumed the

pth block moment can be evaluated explicitly as the expecsybstitution. |Uy)H—H|Uy) and H(Uo|—(Ug/H. The

tation value of thepth power of the Hamiltonian in terms of pjock coefficientsa,,, a’,, b,, andb/, are given by the

the block elements\,, By: recursion block elements. For examplg and B, can be
written as follows: N N

Ar=("B1)~ Huby) — Aonls — i Ao+ AopSH Ack( glr( L )
46

w8)=(UglAP|U)

= 2 (UgAlUn)
o lA i B,=("By) Huld — Aot} (47
X(Um1|H|Umz)' ’ '(Ump71|H|U0)' (40| case the recursion in the block Lanczos algorithm is ter-
minated at thegth level, the diagonal block element of the

The first few block moments are Green'’s function matrix can be expanded with the ¢21)th
moments, because it is constructed by the multiple inverse
ME)%)Z , with the recursion block element#&\,(n=0-q), B,(n

=1-q) given by theqth recursion. As shown in Eq$44)
and(45), the recursion block elements are expanded in terms

1
g&o)=ﬁo, of the moments. Thuggo contains the zeroth to 2+ 1)th
moments. This implies that up to theq2 1)th moment is
w@)=(Ag)?+'B,B;. (41)  included in the sum of the moment expansion EY), and
o - S Eq. (42) satisfies for<2q+1.
From Eq.(40) we see that theth moment is the sum over all To obtain the moments for the off-diagonal elements of

self-returning paths of lengtip. The first moment corre- the Green’s function matrix, multiplying both sides in Eq.
sponds to a hop on a single site, the second to nearest neigt33d by (E+07)" and integrating with respect to the energy
bors and back, and so on. Thus, the atomic connectivity cak, We have
be related directly to the electronic structure through the de-
scription of the Green'’s function by the moments. J“ reL +

Multiplying both sides of Eq(37) by (E+07)", and in- m 7ooE Gon(E+07)dE
tegrating with respect to the energywe get the following

relation: ! ( f
=> [Im
m=0

—% |mf E'G5((E+07)dE=p{y. (42) (48)

- where the block coefficients, can be written in terms of the
¥ecursion block elements. As mentioned above the right side
of Eq. (48) is equal to the moment of the Hamiltonian for
r+m=2qg+1, so that the left side gives the exact moment
u§) for r<2q+1—n. This means that the off-diagonal ele-
ments of the Green’s function matrix can be expanded with
up to the (21+1—n)th moment, which results in the expan-

XPn(X)=Pn(X)AntPn_1(X)'Bat Pny1(¥)Bni1, (43 gjon of the bond orde®5 by up to the (2j+1—n)th mo-

] _ment. Moreover, we can relate the bond orders in the atomic
whereP_,(x) andP(x) are the zero matri® and the unit  pasjs representation to the moments through the transforma-
matrix | with M; X M; in size. By using the block polynomi-~ tjon gq. (28). In the right side of Eq(28) the bond ordeB,
als the recursion block elememg andB,, can be expanded  for h— ¢ determines the maximum order of the moments for

E"" "G E+07)dE |cp,

This relation means that the imaginary part of the moment o
the block-diagonal element in the Green'’s function matrix is
equal to the moment of the Hamiltonian.

Let us define the orthogonal block polynomi#dg(x):

with the moments: the bond orders based on the atomic basis. So we see that the
bond orders in the atomic basis representation can be ex-
A,=(UyH|U,) panded with the moments far<q+1. Thus, in the block
a R . . BOP the off-diagonal elements of the Green’s function ma-
='Pn(H)(Ug|H|Ug)Py(H) trix can be constructed with the moments feeq+ 1, while
2n+1 the diagonal elements have the information of the moments
=> émﬁg%])i/mv (44) forr=2q+1. '_I'his could imply the difference in the conver-
m gence properties of the bond energy and the forces. After a
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simple consideration it is estimated that the rate of the conneutrality® (TCN). Within LCN the on-site energies are var-
vergence of the force is about half as fast as that of the bonigd (keeping the splitting between on-siteand p energy
energy in terms of recursion levels. However, it should beevels fixed in order to conserve the number of electrons on
noted that the contribution @Bn to O;; decreases as the each atom. If the excess charge on sitels Q;=Z;
recursion leveh increases, since the Lanczos vectors, which—=,N;,, whereZ; is the effective core charge, then the
hop repeatedly in the atomic connectivity, have their weighton-site energies can be shifted using the response function
away from the starting atom as the recursion lemein- X=X, for atomi as follows:

creases. Thus, the bond orders in the atomic basis represen-

tation do not have all the moments of the higher order more . Qi

than the +1)th, but can include the higher moments €ia= €ia" Ny (51)

la X| !
through theGg,, for n<g. In this case, whereas the inexact .
— where\ is a parameter to accelerate the convergence, and

moments forr <2q+1—n are included in the bond order in v is 1.0 Th funci ected
the atomic basis representation, the error can be negligibleg,enera y 15 L.0. The response function projected on an

since the bond order®},, become small as the recursion atomic orbitali e is given by

level n increases. So it is stressed that the higher moments 2 E—pu

can be included in the bond order based on the atomic basis Xig=— ImJ [Gia ia(E+iO*)]2f(—>dE. (52
through the Green’s functio@%n for small recursion levels & ’ KT

n. Therefore, it is expected that the forces should be compagsually no more than three or four iterations are required to
rable to the bond energy in terms of the convergence rate. Igchieve the convergence so that the absolute value of

Sec. 1l we will discuss this point again numerically. Q/atom is below 10°, sinceX;,=dN;,/de;, . The assump-
tion of LCN has the advantage that the Madelung energy
D. Details on implementation contribution is zero, so that the TB model need not take this

into account in its expression for the energy. Also LCN is

given in this subsection. For an infinite system, there coul uitable for parallel computation, since the calculations of
be an infinite number of levels in the multiple inverse of the.he bond energy and the forces of each atom are perfectly

diagonal Green'’s function. It is often the case, however, thapdependent within the assumption. However, LCN brings an

the exact values can be replaced by estimated values aﬁeljr}ffﬂmency in terms of C(_)mputanon_al effort, since LC.:N re-
certain number of levels, without reducing the accuracy siggulres the Lanczos_ _algorlthm to be implemented again, after
nificantly. The simplest ’approximation is to take=A the charge neutralities of all the atoms has been achieved,

B,=B., for n>n,, wheren, is the number of exact levels, since the recursion block elements are varied by the shift of

andA. andB. are constant block elements. This approxi-the on-site energies. Thus, the block Lanczos algorithm and

mation is reasonable from the observation that the scalar e}he shift of the on-site energies must be repeated until self-

ements in bothA, and B,, converge to constant values or . . ) e X
; - — 3y typically 20 iterations. This discourages us from applying
oscillate around constant valuesrasends to infinity>" We . . : ;
LCN in the molecular dynamics simulations. On the other

have only to replace the level for=n;+1 in the multiple .

. . . i hand, we can conserve the total number of electrons in the
inverse with the terminator, since the constant terms can bge hift of the chemical Al f
summed exactly. The terminator can be written by a close ystem by a shift of the chemical potential in terms of TCN.

form including itself as follows: f the excess charge of the_systean Ei_Qi ,_then a good
approximation of the chemical potential is given by

The technical details to implement the block BOP are

consistency is accomplished. This self-consistency requires

T(2)=[21-A.~'B.T(2)B.] . (49)

"=+ 9 (53
However, this is still a difficult set of equations to solve, so RN
to simplify matters we assume that the off-diagonal elements

of T(Z) are zero and all the diagonal elements are the samd/nere X=2;X;. The convergence is achieved after only
- three or four iterations. The TCN assumption, corresponding

since the differences between the diagonal element&,of ) . R ] )
andB, become small as the number of the recursion leveldC the microcanonical distribution, has a physically appropri-
increases, respectively. Then the identical diagonal eleme/€ Meaning, which is consistent with the usual electronic
t(2) of T(Z) is written as the square-root terminator: structure calculations by diagonalization. Moreover, within
- TCN we need not repeat the Lanczos algorithm, since the

1[7-a 7 a2 recursion block elements are not varied by the shift of the

t(2)=[Z2—-a-b*(2)] t==

chemical potential. Thus, TCN has a considerable advantage
bl 2b 2b

in terms of computational effort. The TCN condition reduces
(500  the separability of individual atoms in the calculations of the
) , ) band energy and forces, and complicates slightly the ability
wherea andb* are given by the means of the diagonal ele-(q sirycture the program code in parallel form. However, the
ments ofA, and B, respectively. Thus, we see that the gyauation and integration of the Green’s function, which are
effect of the terminator is to smear out the sharp states wittime-consuming steps, are performed separately. Therefore,
energya into semielliptical bands. The degree of smearing iswe use the TCN constraint to conserve the total number of
given byb. electrons.
There are two ways to conserve charge neutrality in the It is required to integrate the Green’s functions with the
system: local charge neutralftyLCN) or the total charge Fermi function in order to evaluate the bond energy, bond
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orders, and response functions. The integration can be caof the block Lanczos algorithm is comparable to that in
ried out in the complex plane by summing up an infinite evaluating and integrating the Green’s functions.

series over the modified Matsubara pote&*'The general In the remainder of this section the procedure for imple-
form can be given as follows: menting the block BOP is enumerated.

(I) The partition of the systenThe hopping range of each
atom is determined by terminating the system. There are two
ways to terminate the system. One of them is the physical
truncation that the terminated cluster contains atoms within a

(54  sphere with a certain cutoff radius. The physical truncation
_ can bring inaccurate properties into the convergence of the
with energies, since atoms that have no bonding to other atoms
can be included in the neighborhood of the cluster surface.
2P Moreover, in MD simulations the energies can jump discon-
Ep=n+ F(ZP_ D, ZP:eX’{ 2p tinuously when an atom moves in or out of the surface of the
sphere. The more stable way is logical truncation. The clus-
whereA(x) is an arbitrary function defined in the complex ter of sizen is here defined by all neighbors that can be
plane, ands=1/kgT. Also E,, are the poles of the approxi- reached byn hops. Provided the cutoff distance for the hop-
mated Fermi function in the complex plane. This modifiedping integral is identical to that defining the connectivity of
Matsubara summation converges rapidly with about 40 comthe bonding, the energies are continuous as a function of
plex poles P=40) with a high electron temperatur&g  time in MD simulations. Therefore, it is desirable to truncate
>0.1 eV), although many poles are needed to achieve théhe system logically in terms of accuracy.
convergence with a lower electron temperature. In the case (Il) The block Lanczos algorithnThe Hamiltonians for
of systems with a gap between the valence and conductiofite individual terminated clusters are constructed. For these
bands, we need to pay attention to the evaluation of thémall cluster Hamiltonians the block Lanczos algorithm Eqgs.
chemical potential, since the response functions in the gapl4—(21) is applied.
become zero akgT tends to 0, so that it is difficult to esti-  (Ill) The evaluations and integrations of the Green'’s func-
mate the chemical potential under a low electron temperaturons In the Lanczos basis representation the diagonal and
using Eq.(53). This can be solved by smearing the density ofthe off-diagonal elements of the Green’s functions are evalu-
states under a high electron temperature. Thus, it is requiredfed using Eqs(32) and (33), respectively, and then their
to evaluate the response functions at high electronic tempertegrations are performed via the modified Matsubara sum-
tures in order to obtain stable MD simulations. mation with Eq.(54).

We now estimate the time dependence within the block (IV) The transformation into the atomic basis representa-
BOP. The total system is divided into finite clusters centeredion. The bond orders based on the Lanczos basis are trans-
on individual atoms in order to evaluate the energy and forcéormed into those in the atomic basis representation using
of each atom. The size of the finite cluster is not determinedrd. (28).
by the size of the total system, but by the system and the (V) The bond energy and forceBrom Egs.(3) and (9)
condition of the MD simulation. Therefore, the computa-the bond energy and forces are evaluated, respectively.
tional effort is proportional to the number of atomg,,, SO
that the number of computational operations can be written Ill. CONVERGENCE PROPERTIES
ascN,m, Wherec is a proportionality constant. The scaling
of the constant can be estimated as a function of the num-  O(N) methods with linear scaling algorithms are approxi-

bers of recursion leved, atoms within a finite clusten.,  mate approaches compared to the exact diagonalization for
and orbitals on an atorWl. For simplicity it is assumed that dealing with large-scale systems, so that the realization of
the system consists of only one type of element witror-  the O(N) algorithms is accompanied by decreases in compu-
bitals. In the block Lanczos algorithm the time-consumingtational accuracy in exchange for computational efficiency.
Step is the prOdUCt of the Hamiltonian matrix and the VeCtOI’,Therefore, ON) methods should On|y be app"ed to atomis-
so that the count of operations in the block Lanczos algotic simulations once their accuracy and efficiency has been
rithm is nearly proportional taqngM. At the next step, the tested.

inverses and recursive calculations are required to evaluate In the block BOP three approximations are introduced to
the diagonal and off-diagonal elements of the Green’s funcreduce the computational effort: the number of moments, or
tion matrix, respectively, and their integrations are per-recursion levels, the size of the cluster of atoms over which
formed as the sum of the residues for the poles in the comthe hops are made, and a finite number of poles in the modi-
plex plane, so that the count of operations for the evaluationfied Matsubara summation, which gives accurately integra-
is almost proportional t@PM?. Thus, the proportionality tion of Green’s functions with the Fermi function within a
constant can be estimated a&qn%M +cgqPM?3, wherec, small number of poles. The finite approximations for the
andcg are prefactors of the count of operations for the blocknumber of levels and the size of the cluster can lead to the
Lanczos algorithm and the the evaluation of the bond orderserrors in the energies and forces. Thus, we now investigate
respectively. The prefactors depend on the computer, ththe block BOP through several test calculations in terms of
system, and the criterion of charge neutrality. For exampleits accuracy and efficiency. In order to ascertain applicable
for the case of a three-hop cluster, 10 recursion levels, anddounds for a wide range of materials, the energy and force
40 complex poles for diamond carbon, the calculation timeconvergence are examined for an insulgarbori® in the

2 i
|mf AE+i0")f(x)dE=— — Re lim X, z,A(E,)
B Poop=0

im(2p+1) 5




7980

T. OZAKI, M. AOKI, AND D. G. PETTIFOR

PRB 61

-5.5 4
o 3 Shells 100 22
Carbon +—+ 5 Shells '
-6.5 1
A:A P7(—SSh e!ie o—o 3 Shells
p 5.0 +— 5 Shells 1
. X ’ . . il & 7 Shells
-7.5 %‘ p — K—Space
St 00 1 1 1 1 1 1
L Silicon § sili
s S 60| ilicon ]
2 w
> c
<) S
2 5
& €40} -
2 £
n >
2 2 f
8 § 2.0 L L ' L L L
> 1.2 2 Titanium g
L
-57.0 | Benzene b 1.0 ¥ *
4 \V4
-59.0 E el —— D— B 3
08 1 L 1 L L L
-61.0 L L L L . 2 4 6 8 10 12 14

2 4 6 8 10 12 14
Number of Recursion Levels

Number of Recursion Levels

FIG. 3. The vacancy formation energy for carbon in the dia-
FIG. 2. The cohesive energy for carbon in the diamond strucyond structure, silicon in the diamond structure, and hcp titanium
ture, silicon in the diamond structure, hcp titanium, and benzene agy three-, five-, and seven-shell clusters as a function of number of
a function of number of recursion levels for three-, five-, and sevenrecyrsion levels, calculated using a square-root terminator, a total
shell clusters, calculated using a square-root terminator,kgfid  charge neutrality, anklgT=0.1 eV.
=0.1 eV.

sive energy for silicon converges more slowly compared

diamond structupe a semiconductofsilicon®®), a metal(ti- with that of carbon in the rate of convergence for the size of
tanium, described by a canoniaiband model and a mol-  cluster. This suggests that a semiconductor such as silicon
ecule (benzen®) as functions of the number of recursion requires a higher moment than an insulator such as carbon
levels and the size of cluster. In all the test calculations, wdor good convergence of the cohesive energy. The cohesive
have chosen the same val(40 poles as the number of energy for the metallic hcp titanium converges very quickly
poles in the modified Matsubara summation. The 40 poles i terms of the number of recursion levels. For the five and
enough to achieve convergence in carbon, silicon, titaniumseven shell clusters the cohesive energy converges fully to
and benzene materials in case&kgf=0.1 eV used in all the thek-space result, while the convergence value for the three-
numerical test$? Moreover, in terms of the computational shell cluster is in error by 2% from thlespace result. For
efficiency the block BOP is compared wikhaspace calcula- benzene the convergence is achieved with a very small clus-
tions in computational time. Also as a test of the quality ofter (two shellg. The error at four recursion levels is only
the forces, we perform a constant energy molecular dynanmB.1%. We see that the block BOP can evaluate accurately the
ics (CEMD) simulation of carbon. cohesive energy for a molecule with a sparse structure like

Figure 2 shows the cohesive energy per atom for carbobenzene, which has both localizedbonds and delocalized
in the diamond structure, silicon in the diamond structure, bonds.
hcp titanium, and benzene. The cohesive energies were cal- The calculation of the vacancy formation energy is a se-
culated using 2—-15 recursion leveks numerical instability  vere test to distinguish the accuracy of differeniNp(meth-
often appears for>20 recursion leve)sfor three, five, and ods, since it is a criterion that tests the precision with which
seven shell clusters by the logical truncation method, wheréhe dangling bonds caused by the vacancy are handled by
the three-, five-, and seven-shell clusters for the diamon®(N) method. In practice, the usual moment-basedN)D(
structure include 41, 147, and 363 atoms, respectively, anthethods fail to reproduce the vacancy formation energy of
these clusters for the hcp structure contain 153, 587, andarbon in the diamond structure even when dozens of mo-
1483 atoms, respectively. The cohesive energies for carbaments are includetf?® The computational error at 30 mo-
and silicon converge rapidly to the resultske$pace calcu- ments is still about 20% compared to tkespace result. In
lations. The errors for carbon and silicon are only 1% at sixFig. 3 we show the vacancy formation energy for carbon in
recursion levels. Thus, we see that up to the 13th momerthe diamond structure, silicon in the diamond structure, and
corresponding to six recursion levels determine the cohesiviacp titanium. These are calculated as the difference between
energies. The contribution of the higher-order moments ishe energy for a bulk unit cellof 64, 64, or 32 atoms, re-
unimportant, since the convergence properties are almospectively with a single atom removed, and the perfect bulk
identical for three-, five-, and seven-shell clusters. The coheeell energy scaled to 63, 63, or 31 atoms. The results are for
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FIG. 5. The potential, kinetic, and total energies as a function of
time for molecular dynamics simulations of carbon using a three-

FIG. 4. Th fthe T h b hop logically truncated cluster, a square-root terminator, total
- 4. Thez component of the force on an atom on the carbon e, ge neutrality, anélgT=0.1 eV. In panelga) and (b) the re-

(001 surface, silicon001) surface, titanium(001) surface, and on sults are for five and ten recursion levels at 1000 K, respectively,

a hydrogen at(_)m in benzene for three_—, five-, and seven-shell_clu%hereas in panelc) and (d) they are for five and ten recursion
ters as a function of number of recursion levels, calculated using fhvels at 5000 K respectively. The time step is 0.5 fs
square-root terminator, total charge neutrality, &g@=0.1 eV. ' ' R

2 4 5] 8 10 12 14
Number of Recursion Levels

(001) surface of carbon, silicon, and hcp titanium and the
an unrelaxed vacancy. The convergence properties for caferce on a hydrogen atom on benzene. For carbon the force
bon and silicon are almost identical. The vacancy formatiorof the three-shell cluster overestimates by about 130% in
energy in the five- and seven-shell clusters convergesomparison with thé-space result, although the error in the
smoothly toward thé-space results, while in the three-shell Hellmann-Feynman term is only 1%. The forces of the five-
cluster the converged values for carbon and silicon are 15%and seven-shell clusters converge smoothly toward the
and 13% underestimated, respectively. In the seven-sheltspace result. The rate of convergence in silicon is much
cluster at 15 recursion levels the errors for carbon and silicobetter than that of carbon. Even the three-shell cluster shows
are only 1%. Thus, we see that the block BOP gives ara converged value that differs by only 5% from tkepace
accurate vacancy formation energy for strongly covalent maresult. The three-, five-, and seven-shell clusters of Ti show
terials such as carbon and silicon with the use of about 38imilar convergence properties of the forces, the converged
block moments. This remarkable result suggests that thealue being underestimated by about 8% compared with the
block BOP accurately describes dangling bonds in comparik-space result. For benzene the force converges rapidly with
son with the usual moment-based methods. In Sec. IV wsmall cluster size. As discussed in Sec. Il the bond orders can
will discuss the advantages inherent in the block BOP bybe expanded using the lower-order moments compared with
analyzing the vacancy formation energy in terms of differenthe density of states in the block BOP. It can be estimated
bond-order contributions. For titanium the vacancy forma-that the forces should converge more slowly at kkepace
tion energy converges to tlikespace result equally within the results than the bond energies, since the forces on the atoms
three-, five-, and seven-shell clusters. The error for the threeare evaluated using the bond orders. However, these numeri-
shell cluster at five recursion levels is about 6%. The va<al results for the forces show that the convergence rate of
cancy formation energy oscillates with respect to the numbethe force is comparable to that of the bond energy. This
of recursion levels due to the long-range value of the densityneans that the sum of E@28) converges rapidly as the
matrix (see Fig. 2 of Ref. 28 The oscillations are damped number of the recursion levels increases because of the dif-
by imposing LCN instead of TCN to conserve the number offusion of the Lanczos vectors.
electrons. As a test of the consistency between the total energy and

The accuracy of the forces is investigated from two dif-the forces, CEMD simulations have been performed for car-
ferent perspectives. The first is the accuracy when compardabn. If the forces are equal to the derivative of the total
to the exack-space result; the second is the degree of corenergy with respect to atomic positions, the total energy of
respondence between the numerical and analytic Hellmanrthe system is conserved. Thus, the CEMD simulation is a
Feynman forces. In order to perform reliable MD simulationscriterion to investigate the consistency of forces. In Fig. 5 we
the two criteria should be satisfied. In Fig. 4 we show zhe show the energy for carbon at 1000 and 5000 K as a function
component of the force on an atom in the bulk-terminatedf time using five and ten recursion levels. The initial struc-
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FIG. 6. The time to perform the energy and the force evaluation g :
for carbon in the diamond structure as a function of number of
atoms in the cell for the block BOP, calculated using a three-hop 01 |
logically truncated cluster, anklspace. The calculations were per-
formed on an IBM RS/6000 workstation. 0.0
ture is the diamond lattice, and the unit cell is fixed in vol- 0.1 1 10 100
ume and shape. When the initial temperature of the system is Time per MD step per Atom (s)

1000 K, the atoms oscillate around the equilibrium positions.

At five and ten recursion levels we see that the total energy is FIG. 7. The error in thga) carbon and(b) titanium vacancy
almost conserved. When the temperature is raised to 5000 Hormation energies against the time taken per MD step per atom for
the carbon in the diamond structure transforms into |iquidthree-, five-, and seven-shell clusters. The calculations were carried
carbon with mainly a threefold-coordinate structure. Fromout with a square-root terminator, total charge neutrality, legit

Fig. 5 we see that the forces are of good quality at ten recur=0-1 €V on a HP9000/735 workstation.

sion levels, while the total energy at five recursion levels . . .
increases by about 10 eV during 1 ps, which corresponds thMe With a moments-based method, while the computational
a temperature increase of 1800 K. These results indicate thHfe to achieve this convergence is still ten times slower than
the block BOP can give forces consistent with the total enthat of the DM method. This work, therefore, still supports
ergy, provided the proper number of recursion levels is usedn€ conclusions of the study in Ref. 23 that the DMM is best
even for liquid materials such as carbon at a high temperd©r Systems with energy gaps, but that moments-based meth-
ture. On the other hand, in the variational DM method, al-0ds such as BOP are best for metallic systems.

though only the Hellmann-Feynman term survives formally

as the derivatives of the band energy with respect to atomic IV. ANALYSIS OF VACANCY FORMATION ENERGY
coordinates, total energy of liquid silicon in the CEMD
simulation exhibits a steady upward dftt.

To study the computational efficiency of the block BO
we carry out two benchmark tests: the comparison betwee
the block BOP and thk-space calculation in computer time,
and the relation between the computational error and the
computer time. Figure 6 shows the time to evaluate the en-
ergy and forces for a cell containing carbon in the diamonﬂ
structure as function of the number of atoms in the cell for64 atoms with a single atom removed. The calculations were per-

the block BOP ant-space using a singlepoint. The Cross- 5 meq with a logical truncation of a seven-shell cluster, 15 recur-
over point at which the block BOP becomes favorable isgigp |evels, a square-root terminator, local charge neutrality, and

The block BOP can provide chemical insight into the na-
p ture of the bonding in molecules and solids in terms of the
Rond order. The bond order is a useful quantity indicating the
strength of bonding between two atoms. In practice, it is well

TABLE I. Comparison of the original and the reduced TB
ethod with respect to the predicted cohesive energies of carbon in
e perfect diamond structure and the diamond unit cell including

about 100 atoms. kgT=0.1 eV.

Figures Ta) and 7b) show the relation between the error
and the the time per atom to evaluate the energy and forces Perfect Vacancy Vacancy formation
in the calculations of the vacancy formation energy of dia- (eV/atom (eV/atom energy(eV)

mond carbon and hcp titanium, respectively. Here the in
crease in time corresponds to the increase of the number &¥tiginal

recursion levels. We see that the block BOP can calculate thespace —7.251 —7.091 10.110
vacancy formation energy to high accuracy within almost theBOP —7.249 —7.090 10.004
same computational time as the other moment-based resu&s
reported by Bowleet al,?* where the calculations were per- ©
formed using the same computational facilities. We note thalf
the block BOP has given a good convergent result of th&©
vacancy formation energy in diamond carbon for the first

duced
space —7.254 —7.098 9.860
—7.256 —7.100 9.783
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known that the bond length is nearly proportional to the bond
order for thesr bonded hydrocarborfs.

In this section we analyze the vacancy formation energy
of carbon in the diamond structure in terms of the bond ,y/

order, and discuss the reason why the usual moment-based
/
™

methods cannot reproduce the vacancy formation energy
even with several dozens of momefit€® The reduced TB
FIG. 8. Diamond lattice with a vacancy. FN and SN label the
first- and second-neighboring atoms to the vacancy, respectively.

SN FN

TN Vacancy

modef3~*8is introduced in order to clarify the analysis of the
vacancy formation energy in terms of the two scalar bond
orders®, and® .., respectively. In the reduced TB model
the three independent bond integrals,,, hy,,, andhg,,
are reduced to the two independent varialfigsand p,, by
assuming thatg,, is the geometric mean ofhg,,| and
hppe - This allows thes bond energy between atornsand]

to be written as the single quantitihg(Rij)'; rather than

the sum of three termshg,, O, , 2hg,, @5y, and  Two kinds of third-neighboring atoms are distinguished by TN and
Nppe®ppo respectively. That is, we can write TN'.

Efon=ES)+EY) troduced by the reduced TB simplifications are only 0.1%
oD@ i) anD @ i) and 3%, respectively. Therefore, it is an excellent approxi-
=—2h; 0, '—4hz70", (56) mation to analyze the vacancy formation energy using the

where reduced TB method with LCN.
Figure 8 shows the diamond lattice with a vacancy. There
h,=(1+p,)|hse] (57) are four first-neighboring (FN) and twelve second-

neighboring(SN) atoms about the vacancy. The 24 third-

Ot 2P, O+ Pu® s neighboring atoms in total are grouped into two kinds of
0,= ek \/§+ ;pa P C ' atoms (TN, TN’), each of them including 12 atoms. The

number of valence andp electrons and the corresponding

with py=hyp,/|Nss,|. All the hopping integrals and bond Promotion energy of the FN, SN, TN, and Thatoms are
orders are defined as positive quantities. In addition, the cu@iven in Table Il. The number of valenceelectrons on the

off distance in the hopping integrals and repulsive potentiaPN atom increases by about 6% compared with that of a
is reduced from 2.6 A in the original TB#tto 2.5 A. This ~ carbon atom in the perfect structure, which corresponds to an
modification simplifies the analysis, because atoms on thiicrease of 0.27 electrons in total over the four FN atoms.
diamond lattice do not interact with second neighbors whol his increase in the number sfelectrons on the FN sites
lie at a distance of 2.517 A. The cutoff of 2.5 A is applied "eflects that thes component of the dangling bond is at-
only to the energy calculations in this analysis of the vacancyracted firmly at the core of the carbon. The numbersof
formation energy. Also we apply LCN to the analysis ratherelectrons on the SN, TN, and Thitoms, on the other hand,
than TCN, since chemical concepts like the promotion eniS almost the same as that of the perfect structure. We see,
ergy require the total number of electrons on a given atom téherefore, from Table Il that 97% of the total change in pro-
be invariant as the atoms we brought together to form thénotion energy resides in the FN shell of atoms about the
bond. In Table | we give the cohesive energy and vacancyacancy, so that the redistribution sfand p valence elec-
formation energy of carbon in the diamond structure calcuirons occurs mainly within the first shell. The change in the
lated using the original TB and the reduced TB methods. Th@romotion energy stabilizes the vacancy by 1.858 eV.
changes in the cohesive and vacancy formation energies in- 1able Il shows the bond orders and bond energiessfor

TABLE Il. The number of valence andp electrons and the promotion energies of the fifBN), second-
(SN), and third-(TN, TN’) neighboring carbon atoms about a vacancy in the diamond strudt&g,, is
defined as the difference between the structure with a vacancy and the perfect structure in the promotion

AEpom(Total)

energy.

Total Perfect FN SN TN TN Others
Ng 1.203 1.271 1.203 1.202 1.205
Np 2.797 2.729 2.797 2.798 2.795
Epronm(€V/atom) 5.334 4.886 5342 5.344 5.328
AEpon{€V/atom) —0.448 0.008 0.010 —0.006
Number of atoms 63 4 12 12 12 23
AEpon(€V) —1.858 —1.793 0.097 0.115 -0.076 —0.201

AEprom 100 965 —-52 —6.2 4.1 10.8

X 100(%)




7984 T. OZAKI, M. AOKI, AND D. G. PETTIFOR PRB 61

TABLE Ill. The bond orders and the bond energiesdoand = bonds between the pairs of atoms FN-SN,
SN-TN, and SN-TN, respectively, in the presense of a vacancy. In the calculations of the bond eitgygies
and E ., the hopping integrals arB,=9.903 eV andh,=1.533 eV.AE, and AE . are defined as the
difference with the bond energy between the structure with a vacancy and the perfect stivEpre.

representAE, + AE ..
Total Ideal FN-SN SN-TN SN-TN Others
0, 0.9116 0.9161 0.9058 0.9107
0, 0.1036 0.1412 0.1034 0.1020
E,(eV/bond —18.055 —18.143 —17.941 —18.036
E..(eV/bond —-0.635 -0.866 —0.634 —0.625
Number of bonds 124 124 12 12 24 76
E, (eV) —2237.918 —2238.717 —217.718 —215.288 —432.866 —1372.046
E_.(eV) —81.291 —78.740 —10.386 —7.605 —15.000 —48.300
E,..(eV) —2319.209 —2317.457 —228.105 —222.893 —447.866 —1420.362
AE, 0.799 —1.068 1.362 0.434 0.071
AE, —2.551 —2.766 0.015 0.240 —0.040
AE, . . —1.752 —3.835 1.377 0.674 —0.032
AE

o 0 —45.6 61.0 -77.7 —2438 —4.1

AE, (tota)) < 100(%)
AE

™ 0 145.6 157.9 -0.9 -13.7 2.3

AE, . (total) < 100(%)
AEsi 4 100 218.9 ~78.6 —385 1.8

- - 0, . . . .
AE,., (total) < 100(%)

and# bonds between the pairs of atoms FN-SN, SN-TN, andzation of the promotion energy-(1.858 eV), and the stabi-
SN-TN', respectively, in the presence of a vacancy. Bhe |ization of the bond energy<1.752 eV).

bond order for FN-SN increases by 0.4%, whereas for Figure 9 shows the errors in the bond ordersdoand 7
SN-TN and SN-TN bonds it decreases by 0.6% and 0.1%,honds between the FN and SN atoms. We see that the rate of
respectively, compared with that of the perfect structureconvergence with respect to the number of recursion levels
This oscillatory behavior in the variation of the bond orderspf the 7+ bond order is twice as large as that of iebond
reflects the screening of the vacancy. However, the veryrder.

small variation in theos bond order reflects the localized  Thus, we have found that the block BOP can separate the
nature of thes bonding in carbon, which is a strongly cova- different behavior ofo and 7 orbitals correctly. In particu-

lent material. For ther bonding the bond order between FN |ar, it can reproduce the different magnitude of reconstruc-
and SN atoms increases by 36% compared with that of thgon for the vacancy and the convergence rate with respect to
perfect structure. This increase means thatgfeectron of  the number of the recursion levels. In the scalar moment-
the dangling bond participates in thebonding between FN  based methods such as the scalar BOP method by Aoki and
and SN atoms rather than being attracted solely to the core @fe global density of state&DOS method, thes and

the carbon vacancy. If we had assumed that the bond ordeggbitals are not separated, since an averaged moment is used
are invariant to the formation of a vacancy, then the vacancyor the two kinds of orbitalg. This means that the different
formation energy would have been overestimated by
1.752 eV. This additional stabilization energy to the forma-
tion of the vacancy is distributed between theind 7= bond
energies, as—0.799- and 2.551-eV contributions, respec- oo

0.08

tively. Thus, the absolute ratio of theto 7 contributions is é 0.04 —m 7
about 1 to 3, which is considerably larger than the ratio of g
the o and = bonding energy (18.054:0.635) in the perfect 5 000 — oo
. . . . m .
diamond lattice. In ther bond energy the contribution of the c
SN-TN and SN-TN bonding to this stabilization energy is 5
comparable to that of the FN-SN bonding. On the other m 004 1

hand, the stabilization energy for tiebonding comes from

mainly the FN-SN bonding as thgelectron in the dangling -0.08
bond only participates in the bonding between the FN and

SN atoms. Finally, the total vacancy formation energy

(9.783 eV) can be separated as the difference of the repul- FIG. 9. The errors in the bond order forand s bonds between
sive energy 23.983 eV), the bond energy of the absentthe FN and SN atoms, where the 15 recursion level bond orders
bonds reproduced by the vacancy (37.380 eV), the stabili® , =0.9161 and® ,=0.1412 were taken as the exact values.

2 4 6 8 10 12 14
Number of Recursion Levels
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40.0 T T T r T T T
. q
o
& 300 1
5 Parallel code
] O Para . . .
= — Ideal: 1/N FIG. 11. Ripple-buckling single-wal{10,10 nanotube under
E’. 200 compression along the shaft. The snapshot is at 80% of the initial
E length (140 A). The calculation was performed with a five-hop
S 400 b logically truncated cluster, ten recursion levels, a square-root termi-
2 nator, total charge neutrality, akgT=0.1 eV. Within the calcu-
© lation conditions the error is about 1% in the bond energy for the

0.0 L . ! : ! ! ! initial structure compared with thiespace result.
1 3 5 7 9 11 13 15

Number of Processors . . L .
performed by the following geometric optimization with a

FIG. 10. The calculation time to evaluate the energy and theconstraint. First, the coordinate of all the atoms in the nano-
forces of a 512 atom carbon cell as a function of the number otube oriented along theaxis are scaled as the length of shaft
processors by the parallel code. The benchmarks were performed @fecreases 0.1% of its initial length. Second, the scaled struc-
a Sun Ultra 10000 StarFire which is a parallel computer based on gre s optimized geometrically with a constraint that the
shared-memory architecture, using_a three-shell cluster, five recugggrdinate of the atoms within 7 A of both ends are kept
sion levels, and a square-root terminator. fixed. By applying repeatedly the optimization to the nano-

tube, the shaft of the nanotube can be compressed statically.
properties of thes andp electrons in the dangling bond are In the early stage of the compression the nanotube shrinks,
averaged with respect to the vacancy formation energy anghaintaining the shape. However, the nanotube buckles peri-
the convergence rate. As a result a great many moments agelically when the length of shaft reaches about 80% of the
required in order to reproduce the vacancy formation energjnitial structure. Figure 11 shows a snapshot of the ripple-
in the usual scalar moment-based method. buckling nanotube. The mean wavelength of the ripple buck-
ling is 4.8 A. The appearance of the ripple buckling is very
similar to the behavior observed by transmission electron
microscope (TEM) and atomic force microscopéAFM)
The block BOP is applicable to the atomistic simulationsmeasurement¥:*8 A detail of discussion of the deformation

of large systems including thousands of atoms. In this sec@nd elastic properties of carbon nanotubes will be presented
tion we discuss the parallel computation required to perfornlsewhere.
such large-scale atomistic simulations and illustrate the
method with an application to the deformation of a single-
wall carbon nanotube under compression. It is very easy to
give the program code with parallel structure because of the We have presented the theory of the block BOP based on
highly independent nature of the algorithm that evaluates théhe Lanczos basis representation and the block Lanczos al-
energy and force for each atom. We have only to structurgorithm with a single site as the starting state within the
essentially the three main loops in the program code in parerthogonal tight-binding representation. The efficientNQ(
allel: the block Lanczos transformation, the determination ofalgorithm provides a general recursion method for evaluating
the number of electrons on each atom, and the evaluation a¢he bond energy and forces. In the Lanczos basis representa-
forces. In these loops independent calculations can be petion the off-diagonal block elements of Green’s function ma-
formed for each atom, since no information needs to berix can be related to the diagonal block elements through a
passed between the individual atoms. The majority of thesimple recurrence relation. As a result the bond orders can be
computational effort is occupied by the calculations in theseeasily evaluated. From the convergence properties for the
three loops. Thus, if computation of the three loops are madbond energies and forces it is found that the method is ap-
parallel, we have almost the ideal parallel code. Figure 1(licable to a wide rage of material;sulators, semiconduc-
shows the time to evaluate the energies and forces of a digers, metals, and moleculewith a considerable reduction in
mond unit cell including 512 atoms as a function of thethe computational effort compared kespace methods. The
number of processors. It is found that the scaleability is alalgorithm becomes more efficient than tkepace calcula-
most ideal. The parallel computation was done using an auion when the number of atoms exceeds about 100. Constant-
tomatic parallel compiler, which is able to perform an auto-energy molecular dynamics simulations for carbon show that
matically restructuring of sequential code. The compiledthe forces are consistent with the total energy, even if the
code runs in parallel using the shared-memory multiprocesmethod is applied to liquids. Moreover, the use of the block
sor machines. The ideal scaleability brought by the use of theanczos algorithm guarantees that block BOP represents the
automatic parallel compiler indicates the simplicity of the different properties of ther and 7 bonds correctly, so that
algorithms within block BOP. the vacancy formation energy of diamond is reproduced cor-
We have performed a large-scale atomistic simulation forectly with a small number of moments by a moments-based
the deformation of a single-walled.0,10 nanotube under method. Finally, block BOP is very easy to set in parallel
compression along the shaft as an application of the blockode; the parallel computation of the three main loops gives
BOP. The nanotube, which has a length of 140 A, includesalimost the ideal scaleability. The deformation of carbon
2280 carbon atoms. The compression along the shaft wasanotubes under compression was demonstrated as an appli-

V. LARGE-SCALE SIMULATION

VI. CONCLUSIONS
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cation of the method to large-scale atomistic simulationsSubstituting Eqs(A2) and(A4) for the trace in Eq(Al) we
Thus, we conclude that the block BOP is an efficienND( can derive exactly the contribution from the band energy to
method to perform large-scale atomistic simulations of ahe force at any level of approximation as the following very

wide variety of materials. compact form:
L0
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APPENDIX expression for forces has a very similar form to the
hHeIImann-Feynman forcksee Eq(9)]. However,7 is a new
dimensionless quantity indicating the strength of bonding be-
tween two Lanczos vectors.

A simple example is shown. Consider the force on atom 1
eing at the end of a linearvalent trimer along the axis. It
| Is assumed that the trimer has two electrons and the hopping
integral between the pairs of atoms 1-2, 2-3, and 1-3 are
—h;, —h,, and zero, respectively, where the andh, are
positive andh,<h;, and also on-site energies for all the
atoms are zero. If the recursion is approximated at the first

We derive a method for evaluating the exact force, whic
is consistent with the total energy, at any level of approxi-
mation. In this method the derivatives of the diagonal
Green'’s functions can be evaluated indirectly by making us
of the Lanczos basis representation, while the method E’
similar to the GDOS methdd as regards the diagona
Green'’s functions are differentiated. The contribution from
the band energy to the force is written using E@s.and(5)
as follows:

JE 2 IG(E+i0" levels, then the Green’s functions are given as follows:
F<kba”@=—i”“=—|mf | ZSEF0T) Ef(x)dE,
(A1) > >
@
The trace of the right side in E¢A1) can be divided into the Ggo (2)= ot 7 (A7)
diagonal block elements for individual atoms: ! !
JG(E+i0h) 4G (E+i0%) 1
tr —ﬁr :2 try————— ar GL(l) 7 2 2 AS
I =
k . k Ol( ) Z_hl+z+hl! ( )
IG5 (E+i0")
:2 ty————(, (A2 1 1
i (7rk _ _
. L) 2 2
where the index.() represents the representation based on Gego (2)= =+ =,
e \ et Z—\h2+h3  Z++h?+h3
the Lanczos basis with atoinas the starting site. In the (A9)
Laczos basis representation the off-diagonal block elements
of the Green’s function matrix are evaluated through the re- 1 1
currence relation Eq33), which is derived from the identity z _Z
(Z1-H)G(Z)=1. Thus, the following useful relation can be 6t (z)— 2 N 2
derived for the derivative of the Green’s function: o1 Z—\h2+h? z+hZ2+h’
: : (A10)
oG )(Z) —GL“)(Z)&HL( ) GL(‘)(Z) e
ﬁrk B O”rk ' l l
Taking account of th€0,0) block element of both sides in Ggés)(Z)= 2 + 2 , (A11)
Eq. (A3) we have Z-hy, Z+hy
@ L® 1 1
9Ggo (2) L(0) L Hmn - _ =
tr[&—rk =2, 1| Gro (DCn (@57 O P (A12)
o1 Z—hy, Z+hy'

(Ad)
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The band energy of the trimer can be evaluated from thé&rom the residues of the poles that are occupied we see that

residues of the poles, which are occupied, in the d|agona}L(1) L) L@ 1@

elements of the Green’s functions, namely,

Epand= —h1—V h§+ hg'

In the force evaluation by onAS) we have only to calculate

the TL( )(or 1-01 ) andrOl (or 7-10 ) since the derivatives of
Ham|Iton|an with respect to the position of atom 1 corre-
sponding to other’s are zero. The integrands for thegs
are

(A13)

1 1 1h
G5 (2)GE(2)= T . '
Z_hl Z+h1 (Z—hl)z
1
am (A14)
+—1
(Z+hy)?
1 1
4 4
L(Z) L(@)
2)G5, (2)= +
0 (2)Ga, (2) Z—+\h2+h3  Z++h?+h3
1 1
Z\/hl+h2 Z\/hl+h2
+ + .
(Z—hZ+h3)?  (Z+h?+h3)?
(A15)

(=75, ) andry, (=75, ) are—1/2 and—1/2, respec-
t|vely Transforming the derivative of the Hamiltonian by
Eq. (27) into the the Laczos basis representation we have

1 1
oHE aHL( ) ohy

Xy Xy Oxg

: (A16)

L@
dHg,

X,

(2)
ﬁH" h, oh;

281 \/hf—l— h3 Xy~

(A17)

Thus, we can evaluate the contribution from the band energy
to the force on atom 1 using EGA5), namely,

oHES gHEY
F(band)_ _ o L9 L(z)
Xl 01 axl Ol axl
B 2( )ahl 2( 1) h, dh
2 &Xl 2 A hi+ hg &Xl
ahy h, dhg
= = —. (A18)
%1 \Jhi+h3 X

The result is identical to the contribution from the derivative
of Eq. (A13) with respect to the coordinate of atom 1. We
see that the force by E@A5) is certainly exact.
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