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Abstract: Combating noise signals is still a very important and challenging research topic.
Previously, we presented a subtractive-beamformer-based noise reduction algorithm using paired
microphones, which was shown to be effective in reducing directional noise. However, its basic
assumption, namely a perfectly coherent noise field, is generally not satisfied in real-world
environments. In this paper, we develop a general expression for the original algorithm we suggested
earlier, on the basis of a generalized subtractive beamformer and by relaxing the strict assumption to
that of an arbitrary noise field. Following ideas similar to those of the original algorithm, the
generalized algorithm with a generalized sidelobe canceller (GSC)-like structure is derived. A
theoretical analysis is then presented to show the linkage between this generalized algorithm and the
original algorithm, and to show its noise reduction performance in theoretically defined noise fields.
Finally, the superiority of the proposed noise reduction algorithm to other comparable algorithms was
verified by experiments using multichannel recordings.
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1. INTRODUCTION

The problem of dealing with noise signals in hands-free

telephones and teleconferences has been studied for several

decades, and yet is still a challenge for researchers. In

comparison with single-channel algorithms, multichannel

algorithms have demonstrated a substantial superiority in

reducing noise owing to their spatial filtering capability to

suppress interfering signals arriving from directions other

than the specified look direction [1]. Therefore, multi-

channel algorithms, e.g., beamformer-based algorithms,

have attracted great research interest in recent years.

Various beamforming algorithms have been proposed

[1–8]. The conventional beamformer, referred to as the

delay-and-sum beamformer (DSBF), which enhances the

desired speech signal by summing the in-phase microphone

signals after the array is electronically steered in the look

direction, was extensively studied. However, many micro-

phones are needed to obtain an acceptable performance

in real-world environments [1]. The linearly constrained

adaptive beamformer, first presented by Frost, keeps the

signals arriving from the desired look direction distortion-

less while suppressing signals from other directions by

minimizing the power of the beamformer output [2]. A

generalized sidelobe canceller (GSC) beamformer, first

presented by Griffiths and Jim as an alternative implemen-

tation structure of the Frost beamformer, has also been

extensively researched [3]. Recently, Gannot et al. [4] have

extended the GSC beamformer to a transfer function

generalized sidelobe canceller (TF-GSC) beamformer by

considering transfer functions that relate the speech source

and microphones. In the Frost and GSC beamformers,

adaptive signal processing is generally used to prevent

the cancellation of the desired speech signal [2–4]. The

frequency-domain LMS algorithm and its two-dimensional

extension were introduced and applied to the GSC beam-

former to accelerate the convergence rate of adaptive

beamformers [5,6]. However, adaptive signal processing

systems still do not show a sufficiently high convergence

rate and a high stability in practical environments.

To overcome the above drawbacks, a subtractive-

beamformer-based noise reduction algorithm has recently

been proposed by Akagi et al. [7,8]. In this algorithm,

noises were analytically estimated based on the arrival time

difference between paired microphones, instead of exploit-

ing adaptive signal processing. Speech spectra are then

enhanced by subtracting the estimated noise spectra from

the observed noisy spectra. The superiority of this algo-

rithm to other algorithms lies in its high ability to suppress
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directional noise, especially sudden noise, using only a

small number of microphones. The main problem associ-

ated with this algorithm is the assumption that only

directional noise sources exist in an environment, corre-

sponding to a perfectly coherent noise field. A practical

noise condition is generally not a coherent noise field, e.g.,

in a car or a reverberant room that can be approximately

modelled as a diffuse noise field [9]. Therefore, the

performance degradation of the noise reduction algorithm

we previously presented is expected in these environments.

In this paper, we propose a noise reduction method

based on a generalized subtractive beamformer under the

assumption of an arbitrary noise field and on ideas similar

to those of the original algorithm. This proposed method,

which has a GSC-like structure, includes the algorithm we

previously suggested [7,8] as a special case in a coherent

noise field when only two microphones are available. The

proposed algorithm have some advantages over traditional

algorithms: exploiting no adaptive signal processing

techniques (e.g., LMS); performing well under all noise

conditions owing to the assumption of an arbitrary noise

field; and offering an improved noise reduction ability

since much spatial information is considered. The perform-

ance of the proposed method is then analyzed using

coherence functions in theoretically defined noise fields.

The superiority of the proposed method to other methods is

further confirmed by experiments using real-world multi-

channel recordings.

2. REVIEW OF THE ORIGINAL METHOD

Considering an array with paired microphones in a

noisy environment, the observed signals x1ðtÞ and x2ðtÞ on
paired microphones are composed of two components: the

desired speech signal sðtÞ and the additive directional noise

nðtÞ arriving from a determinable direction. Thus, the ob-

served signals on paired microphones can be represented as

x1ðtÞ ¼ sðtÞ þ nðtÞ; ð1Þ

x2ðtÞ ¼ sðtÞ þ nðt � �Þ; ð2Þ

where � is the relative time delay between the paired

microphones for a directional noise signal.

Using this signal model, the original noise reduction

algorithm is accomplished in three steps, summarized as

follows

(1) Noise spectrum estimation. To estimate the spectrum

of directional noise, a subtractive beamformer is

constructed using the signals x1ðtÞ and x2ðtÞ received
by paired microphones. Two observed signals are first

shifted �� in the time domain, where � is a certain

constant (� 6¼ 0). Then, the subtractive beamformer

output in the time domain u12ðtÞ is defined as [7]

u12ðtÞ ¼
1

4

�
½x1ðt þ �Þ � x1ðt � �Þ�

� ½x2ðt þ �Þ � x2ðt � �Þ�
�
: ð3Þ

Performing the short-time Fourier transform (STFT),

in the frequency domain, we obtain

U12ð!Þ ¼ Nð!Þej!
�
2 sin !

�

2

� �
sin !�ð Þ; ð4Þ

where U12ð!Þ and Nð!Þ are the STFTs of u12ðtÞ and
nðtÞ, respectively.
Note that the output of this beamformer does not

contain any desired speech components that have

been blocked successfully. Given the direction of

arrival (DOA) of the directional noise signal �, the

noise spectrum can be easily estimated from the

output of this beamformer, given by

Nð!Þ ¼
1

ej!
�
2 sin

�
!
�

2

�
sin !�ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
weight factor

U12ð!Þ: ð5Þ

(2) Noise direction estimation. As shown in Eq. (5), the

DOA information of the directional noise signal � is a

‘‘must’’ for estimating the noise spectrum. To do this,

a robust direction finder integrating two subtractive

beamformers with the traditional cross-correlation

DOA estimation method has been presented by

Mizumachi et al. [10].

(3) Noise reduction. After estimating the noise spectrum,

nonlinear spectral subtraction is employed to reduce

the noise estimate from the noisy signal received by

one microphone [7].

This proposed method has some advantages over other

traditional noise reduction algorithms: it can deal with

various types of directional noise by estimating the noise

spectrum frame by frame; other algorithms, however, are

poor at eliminating non-stationary noise, such as sudden

noise [8].

3. PROPOSED NOISE REDUCTION METHOD

In practical environments, the performance of the

original noise reduction algorithm will decrease since its

basic assumption is generally not satisfied in those

conditions. Performance improvement is expected if a

more reasonable noise model is assumed or estimated in

the noise reduction algorithm.

3.1. Problem Formulation

To simplify the following explanation without losing of

generality, let us assume that a microphone array with M

sensors has been pre-calibrated to achieve an in-phase

identical speech signal on each microphone. The observed
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noisy signal xkðtÞ on the k-th microphone is composed of

the desired speech signal sðtÞ and additive noise nkðtÞ,
described as

xkðtÞ ¼ sðtÞ þ nkðtÞ: k ¼ 1; 2; . . . ;M ð6Þ

In the frequency domain, we have what in vector form as

Xð!Þ ¼ Sð!Þ þNð!Þ; ð7Þ

where

Xð!Þ ¼ X1ð!Þ;X2ð!Þ; � � � ;XMð!Þ½ �T; ð8Þ

Nð!Þ ¼ N1ð!Þ;N2ð!Þ; � � � ;NMð!Þ½ �T: ð9Þ

and the superscript T represents the transpose operator, and

Sð!Þ, Xkð!Þ and Nkð!Þ are the STFTs of the respective

signals.

Note that, compared with the original algorithm, our

proposed algorithm has two generalizations: (1) the

additive noise signal on each microphone includes all

undesired signals, which might be composed of directional

and nondirectional components, not only directional noise

as assumed in the original algorithm; (2) the number of

microphones is M, not only two as in the original

algorithm.

3.2. Derivation of Proposed Noise Reduction Method

The proposed noise reduction method based on a

generalized subtractive beamformer, which has a GSC-like

structure, is shown in Fig. 1. This proposed method is

composed of three components: a fixed beamformer (FBF)

that constructs the speech reference signal in the upper

path, a blocking matrix (BM) that blocks the desired speech

signal and constructs the noise reference signal, and a noise

canceller (NC) that suppresses residual noise by minimiz-

ing the power of the system output. The three components

of the proposed noise reduction algorithm are implemented

as follows

(1) Fixed beamformer. To be consistent with the original

algorithm and make the implementation simple, the

FBF of the proposed algorithm is an all-pass filter

for the signal on the reference channel (e.g., the

first microphone) and blocks the signals from other

microphones. Thus, the output of FBF YFBFð!Þ, which
is the speech reference signal, is given by

YFBFð!Þ ¼ X1ð!Þ ¼ WyXð!Þ; ð10Þ

where y denotes conjugation transpose and Wy ¼
½1; 0; � � � ; 0�.
Note that, comparatively, in the original GSC beam-

former [3], the FBF was usually implemented by the

DSBF which introduced some additional ‘‘NULLs’’ in

the beam pattern of this beamformer, as shown in

detail in [7].

(2) Blocking matrix. Since the beamformer we previously

constructed successfully blocks desired speech com-

ponents, the BM part of the proposed algorithm is

implemented using the same mechanism, defined as

(� 6¼ 0)

u1kðtÞ ¼
1

4

�
½x1ðt þ �Þ � x1ðt � �Þ� �

�
xkðt þ �Þ

� xkðt � �Þ
��
: k ¼ 2; 3; . . . ;M ð11Þ

With the generalized signal model shown in Eq. (6),

the corresponding representation of this beamformer

in the frequency domain can be described as

U1kð!Þ ¼
1

2
j sin !�ð Þ N1ð!Þ � Nkð!Þð Þ

¼
1

2
j sin !�ð Þ X1ð!Þ � Xkð!Þð Þ: ð12Þ

That is, we have what in vector form as

Uð!Þ ¼ Byð!ÞXð!Þ; ð13Þ

where Uð!Þ and Byð!Þ are

Uð!Þ ¼ ½U12ð!Þ;U13ð!Þ; � � � ;U1Mð!Þ�T; ð14Þ

Byð!Þ ¼
1

2
j sinð!�Þ

1 �1 0 � � � 0

1 0 �1 � � � 0

..

. ..
. . .

. . .
. ..

.

1 0 0 � � � �1

2
6666664

3
7777775

,
1

2
j sinð!�ÞBy

1: ð15Þ

Note, that Eq. (12) cannot be converted to Eq. (4) as

in the original algorithm, since the noise signals n1ðtÞ
and nkðtÞ on the two microphones are not directly

related and no priori assumption between them is

made here. Moveover, in the original GSC beam-

formers [3], the BM part was implemented by the

difference between the observed signals on adjacent

sensors given by

C
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Fig. 1 Block diagram of proposed noise reduction method.
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By
2 ¼

1 �1 0 � � � 0 0

0 1 �1 � � � 0 0

..

. ..
. ..

. . .
. . .

. ..
.

0 0 0 � � � 1 �1

2
66664

3
77775; ð16Þ

which indicates that only limited spatial information

was used. Comparatively, the proposed algorithm

considers spatial information not only between ad-

jacent sensors but also between other sensor pairs, as

shown in Eqs. (12) and (15).

(3) Noise canceller. The noise canceller output YNCð!Þ,
which is an estimate of noise in the speech reference

signal YFBFð!Þ, is constructed by filtering the BM

outputs Uð!Þ with the filters Hð!Þ and is given by

YNCð!Þ ¼ Hyð!ÞUð!Þ; ð17Þ

where

Hð!Þ ¼ ½H2ð!Þ;H3ð!Þ; � � � ;HMð!Þ�T: ð18Þ

With the assumption of a zero correlation between

speech and noise, minimizing the mean square error

between the speech reference signal YFBFð!Þ and the

NC output YNCð!Þ and considering the Wiener theory,

the optimal filters ĤHoptð!Þ is given by [1,11]

ĤHoptð!Þ ¼ ��1
UUð!Þ�UY ð!Þ; ð19Þ

where �UUð!Þ is the cross-spectral density matrix of

the BM output signals Uð!Þ; �UY ð!Þ the cross-

spectral density between the BM output signals

Uð!Þ and the FBF output signal YFBFð!Þ. They are

defined as

�UUð!Þ ¼ E Uð!ÞUyð!Þ
� �

; ð20Þ

�UY ð!Þ ¼ E Uð!ÞY�
FBFð!Þ

� �
; ð21Þ

where E½:� is the expectation operator.

After determining the three components of the pro-

posed algorithm, the output of this algorithm Yoð!Þ is

calculated as the difference between the FBF output

YFBFð!Þ in the upper path and the NC output YNCð!Þ in

the lower path, that is

Yoð!Þ ¼ Wyð!ÞXð!Þ �Hyð!ÞByð!ÞXð!Þ: ð22Þ

Note that the performance of the proposed algorithm

should only be dependent on the characteristics of noise

field since the optimal filters ĤHoptð!Þ are only determined

by input noise signals under the assumption of a zero

correlation between the desired speech signal and the noise

signal.

3.3. Theoretical Analysis of Proposed Method

In this subsection, we first define a measure used to

show the theoretical noise reduction performance of the

proposed algorithm. Then its performance is examined on

the basis of the coherence functions in theoretically defined

noise fields.

3.3.1. Performance evaluation measure

To examine the performance of the proposed noise

reduction algorithm, we define and use a measure referred

to as noise reduction performance (NR). NR is defined as

the ratio of the power spectral density (PSD) of the system

input �ðnÞ
XXð!Þ and that of the system output �ðnÞ

YoYo
ð!Þ when

no desired speech signal is present, and is given by [12]

NRð!Þ ¼
�ðnÞ
XXð!Þ

�ðnÞ
YoYo

ð!Þ
; ð23Þ

where �ðnÞ
XXð!Þ ¼ E½Nð!ÞN�ð!Þ� and �ðnÞ

YoYo
ð!Þ ¼

E½Yoð!ÞY�
o ð!Þ�.

Under the assumptions that (1) the desired speech and

noise are uncorrelated, (2) the PSDs of noises on all

microphone are identical, we can respectively rewrite

ĤHoptð!Þ and NR as (see Appendix A for detail)

ĤHoptð!Þ ¼ Byð!Þ� ð!ÞBð!Þ
� 	�1

Byð!Þ� ð!ÞWð!Þ; ð24Þ

and

NRð!Þ ¼
h
Wyð!Þ� ð!ÞWð!Þ �Wyð!Þ� ð!ÞB1

By
1� ð!ÞB1

� 	�1
By

1� ð!ÞWð!Þ
i�1

;
ð25Þ

where � ð!Þ is the coherence function matrix of noise

signals on all microphones, given by

� ð!Þ ¼

1 �N1N2
ð!Þ � � � �N1NM

ð!Þ
�N2N1

ð!Þ 1 � � � �N2NM
ð!Þ

..

. . .
. . .

. ..
.

�NMN1
ð!Þ �NMN2

ð!Þ � � � 1

2
66664

3
77775 ð26Þ

and �NkNl
ð!Þ is the complex coherence function between

the noises Nkð!Þ and Nlð!Þ, defined as

�NkNl
ð!Þ ¼

�NkNl
ð!Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�NkNk
ð!Þ�NlNl

ð!Þ
p : ð27Þ

Note that, as Eqs. (24) and (25) show, the optimal NC

filters and noise reduction performance are only deter-

mined by the coherence function matrix � ð!Þ of noise

signals, corresponding to the characteristics of noise fields.

3.3.2. Theoretical performance analysis

In the following, we examine the performance of the

proposed algorithm in theoretically defined noise fields.

(1) Coherent noise field. In a coherent noise field, e.g., a

point sound source in the far field of a microphone

array, the coherence function �NkNl
ð!Þ is given by

[12,13]

�NkNl
ð!Þ ¼ e� j!�kl ; ð28Þ
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where �kl denotes the time delay between the k-th and

l-th microphones. To determine the relationship

between this proposed algorithm and the original

algorithm [7,8], let us assume that only two micro-

phones are available and the time delay between them

is �. The optimal solution for the NC filter can be

derived as (see Appendix B)

ĤH�
optð!Þ ¼

1

ej!
�
2 sin !�ð Þ sin

�
!
�

2

� ; ð29Þ

where the superscript � is the conjugation operator.

Comparing this optimal NC filter in Eq. (29) with the

‘‘weight factor’’ in Eq. (5), note that they are exactly

same, which indicates the following

a. The proposed noise reduction algorithm reduces

to the previously presented original algorithm in a

perfectly coherent noise field.

b. The original algorithm is also an optimal solution

in the minimum mean square error (MMSE)

sense for reducing coherent noise.

Putting Eq. (28) into (25), we can see that the noise

reduction performance of this proposed algorithm

reaches infinity at all frequencies in a coherent noise

field.

(2) Incoherent noise field. In an incoherent noise field,

e.g., the sensor self-noise, the coherence function is

zero for all frequencies, � nknlð!Þ ¼ 0; 8!. In this

noise field, the noise reduction performance amounts

to M, the number of microphones.

(3) Diffuse noise field. A diffuse noise field has been

shown to be a reasonable model of many practical

noise environments, such as reverberant rooms and

car environments [9,14]. A diffuse noise field is

characterized by the coherence function [12,13,15]

� ð!Þ ¼
sin !d=c

� 	
!d=c

; ð30Þ

where d and c represent the inter-element spacing and

the velocity of sound, respectively. Putting Eq. (30)

into (25), we can find that noise reduction perform-

ance depends on the inter-element spacing d and the

number of microphones M. Figures 2 and 3 plot the

noise reduction performance as a function of the

frequency for different inter-element spacings d and

different numbers of microphones M. Figures 2 and 3

show that the proposed algorithm achieves a high

noise reduction performance at moderate and high

frequencies, with a relatively low ability at very low

frequencies (especially, when the inter-element spac-

ing d is small).

Moreover, under the assumption of identical noise

PSD on each microphone, we can derive the same

noise reduction performance for our proposed algo-

rithm and the original GSC beamformer [3,14], as

shown in Figs. 2 and 3. However, in practical

environments, the noise PSDs on different micro-

phones are generally not equivalent, which makes it

difficult to represent noise reduction as a function of

noise coherence function; this is the failure of

Eq. (25). In this case, the performance of the two

algorithms is examined by experiments using real-

world recordings in the following section.

4. EXPERIMENTS AND RESULTS

The performance of the proposed noise reduction

algorithm based on a generalized subtractive beamformer
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Fig. 2 Noise reduction performance in a diffuse noise
field for different numbers of microphones (d ¼
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(PRO-GSBF) was evaluated using multichannel recordings

and its performance was further compared with that of

other traditional algorithms, delay-and-sum beamformer

(DSBF), the original subtractive-beamformer-based algo-

rithm (ORG-SBF) [8] and the original GSC beamformer

(ORG-GSC) [3,14,15], in terms of both objective and

subjective evaluation measures.

The proposed algorithm and other traditional algo-

rithms were performed using the overlap-and-add (OLA)

technique. The window length was 42.6ms (512 samples)

with an overlap of 21.3ms (256 samples). In our

implementations, for the PRO-GSBF and ORG-GSC [14],

the estimated noise component (the output of the NC filter)

was subtracted from the output of the upper path in a

spectral magnitude domain, not in a complex spectral

domain considered in the theoretical analysis. This is same

as the ORG-SBF [8] and different from the ORG-GSC

discussed in detail in [14]. We performed this implemen-

tation for the following reasons: (1) phase information for

speech quality is relatively unimportant in speech enhance-

ment applications [16]; (2) amplitude spectra are only

important for speech recognition systems [17].

To assess the performance of the studied noise reduction

algorithms, an equally spaced linear array consisting of

three microphones with an inter-element spacing of 10 cm

was mounted on the roof near the driver’s sun visor in a car.

The array was about 50 cm away from and directly in front

of the driver. Multichannel speech recordings were per-

formed across all channels when the car is stationary.

Speech signals, consisting of 100 Japanese city names, were

uttered by two speakers (one male and one female) at

the driver’s position. Multichannel noise recordings were

performed across all channels when the car was running

under two conditions: (1) at a speed of 50 km/h without

air-conditioner noise (the air conditioner is off), (2) at a

speed of 100 km/h with a high-level air-conditioner noise

(the air conditioner is on). Both speech and noise signals

were first resampled to 12 kHz at a 16 bit accuracy. We

generated multichannel noisy signals by artificially mixing

multichannel speech recordings and multichannel car noise

recordings at different global SNRs ½�5; 15� dB. (The

calculation of global SNR is detailed in [18].)

4.1. Objective Evaluation Measures

The objective evaluation measures used in our experi-

ments include Segmental SNR (SEGSNR) and Mel-Fre-

quency Cepstral Coefficient (MFCC) Distance.

Segmental SNR (SEGSNR) is a widely used objective

evaluation criterion for speech enhancement or noise

reduction algorithms since it highly correlates to subjective

results [18]. SEGSNR is defined as the ratio of the power of

an ‘‘ideal’’ clean speech to that of the noise signal

embedded in a noisy signal or an enhanced speech signal

processed by tested algorithms over all frames, given by

SEGSNR ¼

1

L

XL�1

l¼0

10 log10

XW�1

m¼0

sðlW þ mÞ½ �2

XW�1

m¼0

ŝsðlW þ mÞ � sðlW þ mÞ½ �2

0
BBBB@

1
CCCCA; ð31Þ

where sð:Þ and ŝsð:Þ are the reference speech signal and noisy
signal or enhanced signals processed by the tested

algorithms; L and W represent the number of frames in

the signal and the number of samples per frame (equal to

the length of STFT), respectively. Note, that a higher

SEGSNR means a higher speech quality of the enhanced

signal.

A second evaluation measure, MFCC distance, is

defined as the distance between MFCCs of a clean speech

signal and those of a noisy signal or an enhanced signal,

and is represented as

dmfcc ¼
1

j�j

X
l2�

X
i

ci � c0i
� 	2

; ð32Þ

where � represents the set of frames in which speech is

present and j�j its cardinality; ci and c0i are the 12-order

MFCCs of the clean speech signal and noisy signal or

enhanced speech signals, respectively. Note, that a shorter

MFCC distance indicates a lower speech distortion,

corresponding to a higher speech quality.

4.2. Objective Evaluation Results

Experimental results of SEGSNR, averaged across all

sentences under two noise conditions at various SNRs, are

plotted in Fig. 4. The results demonstrate that the DSBF

provides a very limited SEGSNR improvement since only

three microphones were used in our experiments, and that

the ORG-SBF does not show sufficient performance

improvement due to its unpractical assumption of a

coherent noise field. The ORG-GSC beamformer shows

higher SEGSNR improvements compared with the DSBF

and ORG-SBF. Furthermore, the PRO-GSBF offers the

highest SEGSNR improvements, corresponding to the

highest speech quality, among the studied algorithms under

all test conditions.

Experimental results of MFCC distance under two

noise conditions at various SNRs are plotted in Fig. 5.

Compared with the noisy inputs, the DSBF and ORG-SBF

algorithms decrease MFCC distances under all conditions,

particularly at low SNRs. The ORG-GSC beamformer

shows a further decrease under all noise conditions.

Moreover the PRO-GSBF method offers the shortest

MFCC distance, corresponding to the lowest speech

distortion, compared with other algorithms under all

conditions.
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4.3. Subjective Evaluation Results

Subjective evaluations of the studied algorithms were

performed using speech spectrograms. Typical examples of

speech spectrograms, corresponding to the Japanese sen-

tence ‘‘hatinohe kesennuma yukuhasi,’’ are plotted in

Fig. 6, in a car environment at a speed of 100 km/h. As

Fig. 6(c) shows, the output of the DSBF is characterized

by high-level noise since only a small number (3ch) of

microphones were used. The ORG-GSC does not have

sufficient suppression ability for low-frequency noise, as

shown in Fig. 6(d). As plotted in Fig. 6(e), the ORG-SBF

algorithm still shows very limited performance improve-

ment, especially in the low frequency region. Compara-

tively, Fig. 6(f) demonstrates that the PRO-GSBF algo-

rithm provides a much higher performance improvement,

particularly in low-frequency region, compared with the

other studied algorithms.

4.4. Discussions

From the experimental results presented in the last

subsection, the superiorities of the proposed generalized

method to the other algorithms are discussed below.

The proposed PRO-GSBF outperforms the DSBF. For

the DSBF, many microphones are needed to obtain an

acceptable performance, whereas for the proposed method,

few microphones are sufficient to achieve the same noise
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Fig. 4 Average segmental SNR (SEGSNR) at delay-and-sum beamformer (DSBF) output ( ), original GSC beamformer
(ORG-GSC) ( ), original subtractive-beamformer-based (ORG-SBF) algorithm output ( ) and proposed generalized
subtractive-beamformer-based (PRO-GSBF) algorithm output ( ), under various noise conditions: speeds of 50 km/h (a)
and 100 km/h (b).
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Fig. 5 Average MFCC distance (MCD) at first microphone (�), delay-and-sum beamformer (DSBF) output ( ), original
GSC beamformer (ORG-GSC) ( ), original subtractive-beamformer-based (ORG-SBF) algorithm output ( ) and
proposed generalized subtractive-beamformer-based (PRO-GSBF) algorithm output ( ), under various noise conditions:
speeds of 50 km/h (a) and 100 km/h (b).
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reduction performance.

The proposed PRO-GSBF outperforms the ORG-SBF

algorithm. The basic assumption of the ORG-SBF algo-

rithm, namely a perfectly coherent noise field, is seldom

satisfied in real-world environments. On the other hand, no

priori assumption on noise signals is made in the PRO-

GSBF method. That is, the PRO-GSBF algorithm is a

natural extension of the ORG-SBF in which the unpractical

assumption of an coherent noise field to that of an arbitrary

noise field is relaxed. Therefore, the improved noise

reduction performance can be achieved for the PRO-GSBF

algorithm. Moreover, the high performance in reducing

unstable noise (sudden noise) is expected for the PRO-GSC

beamformer because the PRO-GSC is derived based on the

same ideas as those of the ORG-SBF which has the ability

of reducing sudden noise.

The proposed PRO-GSBF outperforms the ORG-GSC

algorithm. In theory, with the assumption of identical noise

PSD on each microphone, both PRO-GSBF and ORG-GSC

show the same noise reduction performance. In practice,

noise PSDs on different microphones are generally differ-

ent. The PRO-GSBF provides improved noise reduction

performance, particularly in reducing low-frequency noise,

due to the fact that different inter-element spacings (more

spatial information) are used, as shown by Eq. (15). On the

other hand, the ORG-GSC beamformer achieves limited

performance owing to the use of limited spatial informa-

tion, shown by Eq. (16). However, if the desired speech

signals received by different microphones are greatly

different, both PRO-GSBF and ORG-GSC will introduce

some speech distortion, particularly for PRO-GSBF which

is also because of the use of sensor pairs with larger

spacings.

Thus, the proposed algorithm provided the highest

noise reduction performance among the studied algorithms

under all experimental conditions, as shown in Sections 4.2

and 4.3.

5. CONCLUSIONS

In this paper, we developed a noise reduction method

based on a generalized subtractive beamformer and in

which the strict assumption of a coherent noise field to that

of an arbitrary noise field is relaxed. This presented

algorithm is an extension of the original noise reduction

algorithm we previously presented. The theoretical results

showed that the proposed generalized algorithm includes

the original algorithm as a special case in a perfectly

coherent noise field. The performance limits of this

generalized algorithm were also examined in three theo-

retically defined noise fields (coherent, incoherent and

diffuse noise fields). Compared with other traditional

algorithms, given the noise coherent functions, the pro-
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Fig. 6 Speech spectrograms. (a) original clean speech signal at first microphone: ‘‘hatinohe kesennuma yukuhasi’’;
(b) noisy signal at first microphone (SNR ¼ 5 dB); (c) delay-and-sum beamformer (DSBF) output; (d) original GSC
beamformer (ORG-GSC) output; (e) original subtractive-beamformer-based (ORG-SBF) algorithm output; (f) proposed
generalized subtractive-beamformer-based (PRO-GSBF) algorithm output.
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posed algorithms can deal with all types of interfering

noise signal (e.g., sudden noise) with a small number

of microphones and with no adaptive signal processing

techniques. Experimental results using real-world record-

ings demonstrated that the proposed algorithm outperforms

other traditional algorithms.
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APPENDIX A: DERIVATION OF NOISE
REDUCTION PERFORMANCE (NR)

For simplification, we omit the frequency index ! in

the following derivation.

To avoid the cancellation of the desired speech signal,

we calculate the optimal NC filters ĤHopt when desired

speech is absent, that is, X ¼ N. Thus, Eqs. (10) and (13)

can be respectively rewritten as

YFBF ¼ WyN; ð33Þ

U ¼ ByN: ð34Þ

Using Eqs. (33) and (34), the PSDs �UU and �UY are

respectively calculated as

�UU ¼ By�NNB ð35Þ

and

�UY ¼ By�NNW ; ð36Þ

where �NN ¼ E½NNy�. Substituting Eqs. (35) and (36)

into Eq. (19), the optimal NC filters ĤHopt are

ĤHopt ¼ By�NNB
� 	�1

By�NNW: ð37Þ

With Eqs. (22) and (37), the PSD of the output signal

Yo is given by

�YoYo ¼ Wy�XXW �Wy�XXB By�NNB
� 	�1

By�NNW

�Wy�y
NNB By�y

NNB
� 	�1

By�XXW þWy�y
NNB

By�y
NNB

� 	�1
By�XXB By�NNB

� 	�1
By�NNW :

ð38Þ

To determine theoretical noise reduction performance,

we consider speech-absent periods. In this case, the output

PSD �YoYo reduces to

�ðnÞ
YoYo

¼ Wy�NNW �Wy�NNB By�NNB
� 	�1

By�NNW ;

ð39Þ

Under the assumption of identical noise PSDs on all

microphones, �NN should be �NN ¼ �NN� , where �

denotes the complex coherence function given by Eq. (26),

and the PSD of input �XX reduces to

�ðnÞ
XX ¼ �NN ð40Þ

Using Eqs. (19), (23), (39) and (40), we can respectively

rewrite the optimal NC filters ĤH and Noise Reduction

Performance (NR) as

ĤHopt ¼ By�B
� 	�1

By�W ; ð41Þ

and

NR ¼ Wy�W �Wy�B1 By
1�B1

� 	�1
By

1�W
� ��1

: ð42Þ
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APPENDIX B: DERIVATION OF OPTIMAL
NC FILTER FOR COHERENT NOISE FIELD

Assuming only two microphones are available, the BM

output is a one-channel signal, given by

Uð!Þ ¼
1

2
j sin !�ð Þ N1ð!Þ � N2ð!Þð Þ: ð43Þ

With the assumption of identical noise PSDs on all

microphones, the PSDs of �UUð!Þ and �UY ð!Þ is respec-
tively given by

�UUð!Þ ¼
1

2
�NNð!Þ sin2 !�ð Þ 1�<f�N1N2

ð!Þg
� 	

; ð44Þ

�UY ð!Þ ¼
1

2
j�NNð!Þ sin !�ð Þ 1� �N2N1

ð!Þ
� 	

: ð45Þ

Substituting Eqs. (44) and (45) into Eq. (19), the optimal

NC filter ĤHoptð!Þ is obtained as

ĤH�
optð!Þ ¼

�j 1� �N1N2
ð!Þ

� 	
sin !�ð Þ 1�<f�N1N2

ð!Þg
� 	 : ð46Þ

In a coherent noise field, substituting Eqs. (28) into

(46), the optimal NC filter ĤHoptð!Þ in this field is obtained as

ĤH�
optð!Þ ¼

1

ej!
�
2 sin !�ð Þ sin

�
!
�

2

� : ð47Þ

Obviously, this optimal filter is exactly identical to the

‘‘weight factor’’ in Eq. (5) in our original algorithm.
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