
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Generating Organic Textures with Controlled

Anisotropy and Directionality

Author(s) Itoh, Takayuki; Miyata, Kazunori; Shimada, Kenji

Citation
IEEE Computer Graphics & Applications, 23(3): 38-

45

Issue Date 2003

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4631

Rights

Copyright (c)2003 IEEE. Reprinted from IEEE

Computer Graphics & Applications, 23(3), 2003,

38-45. This material is posted here with

permission of the IEEE. Such permission of the

IEEE does not in any way imply IEEE endorsement

of any of JAIST's products or services. Internal

or personal use of this material is permitted.

However, permission to reprint/republish this

material for advertising or promotional purposes

or for creating new collective works for resale

or redistribution must be obtained from the IEEE

by writing to pubs-permissions@ieee.org. By

choosing to view this document, you agree to all

provisions of the copyright laws protecting it.

Description

As one of the main attributes of an object’s
surface, a quality texture is often the key

to realistic computer graphics. Textures represent var-
ious aspects of an object’s surface properties, including
optical properties, such as colors and glossiness, and
geometric properties, such as bumps and dents. Adding
texture to an image produces richer and more realistic
surfaces. However, it’s tedious and impractical for
graphic designers to draw organic textures manually.

One way to avoid manual draw-
ing is to scan a photograph of a real
organic texture and map it onto sur-
face geometry. However, when the
surface of an organic texture has
small geometric features, such as
bumps and dents, its shades and
shadows do not match the lighting
conditions used for rendering the
rest of the scene. And when the
aspect ratio of the real photograph
differs from that of the target sur-
face, the texture becomes distorted.
Our method solves these problems
by tessellating an object into a set of
polygons, generating a cell geome-
try for each polygon with fractal
noise, and rendering the image onto
the object’s surface.

Because we use a particle system
and physically based simulation to
tessellate a region into a set of pseu-

do-Voronoi polygons, our method might seem similar
to some of the previous work in texture generation—
especially the cellular texture method.1 However, this
particle method, originally proposed for mesh genera-
tion, is well suited to organic texture generation because
it lets you specify an anisotropic force field to generate
texture cells. You can also specify rectangular arrange-
ments with controlled directionality. In our method,
after we tessellate a region into a set of pseudo-Voronoi
polygons, we define an initial polyhedral shape for each

of the polygons by sweeping each polygon with tapering
and skewing effects. We then refine the polyhedral
geometry and round it while using fractal noise to add
fine geometric features.

With our method, you can automatically create an
organic texture consisting not only of hexagonally
arranged cells, but also of orthogonally arranged cells.
Because our method first tessellates a region into a set
of polygonal cells, it generates a texture for an arbitrar-
ily shaped surface by simply specifying the geometry,
cell directionality, and a few rendering parameters.

Characteristics of organic textures
By observing real organic textures, such as the ones

shown in Figure 1, we observed the following charac-
teristics: An organic texture consists mostly of cells in
hexagonal or rectangular arrangements. And each cell
typically takes the shape of a hexagon or a rectangle. In
orthogonal cell arrangements, organic textures often
show distinct directionality by forming streamlines.

In organic textures, cell geometry is often stretched
in a certain direction. The aspect ratio of the anisotropy
and its orientation might vary over the entire surface
domain. Two constraints make generating such organ-
ic textures difficult: the rectangular arrangement of the
cells and their anisotropic geometry. These two issues
closely relate to how a region is tessellated. Once you
locate a set of points or generators in a 2D domain, you
can use the popular Voronoi method to tessellate the
domain into a set of polygons.2

The larger challenge, however, is to find a set of points
with a rectangular arrangement in which the rectangles’
orientations are aligned with specified streamlines.
Such point locations cannot be created with the physi-
cally based particle systems previously proposed in com-
puter graphics research, such as the techniques that
include retiling polygon models or representing implic-
it surfaces. This is because each of these particle systems
creates a hexagonal arrangement of points. You can
apply a cellular texture method1 to a rectangular and an
anisotropic tessellation, but because the method is an

Feature Article

This article presents a

method for generating

organic textures by

tessellating a region into a

set of pseudo-Voronoi

polygons using a particle

model and then generating

the detailed geometry of

each of the polygons with

fractal noise.

Takayuki Itoh
IBM Research, Tokyo Research Lab

Kazunori Miyata
Japan Advanced Institute of Science and Technology

Kenji Shimada
Carnegie Mellon University

Generating
Organic Textures
with Controlled
Anisotropy and
Directionality

38 May/June 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

energy-optimization approach rather than a physically
based approach, it requires expensive computations.

We use a different physically based particle system,
called bubble mesh, which was originally devised for solv-
ing various meshing problems in FEM analysis. The bub-
ble mesh system can help create different types of meshes
by packing cells of various shapes—circles for isotropic
triangular meshes,3 ellipses for anisotropic triangular
meshes,4 squares for isotropic quadrilateral meshes,5 and
rectangles for anisotropic quadrilateral meshes.6

As Figure 2 shows, our proposed method consists of
three steps: making a packing pat-
tern of skin cells, generating each
skin cell’s 3D geometry with fractal
noise, and rendering a final image
based on the skin geometry and
lighting parameters.

Pseudo-Voronoi
tessellation

Given a 2D geometric domain, a
desired size distribution of cells, a
desired directionality, and a desired
anisotropy, we can generate a polyg-
onal tessellation consisting primari-
ly of quadrilateral or hexahedral
polygons compatible with the speci-
fied cell sizes, directionality, and
anisotropy. You can specify the input
size distribution or automatically cal-
culate it according to the curvature
of the input domain or other metrics.
Additionally, you can specify the
input directionality or automatically
calculate it by interpolating from the
direction of the input boundary
edges.

This approach is based on the
observation that natural-looking
hexahedral or rectangular tessella-
tions are geometric duals of well-
shaped triangular or quadrilateral
meshes, as Figure 3 shows. Our algo-
rithm performs pseudo-Voronoi tes-
sellation in three steps: packing
elliptic or rectangular cells closely in
the domain (Figures 3a and 3d),
generating a triangular or quadrilat-
eral mesh by connecting the centers
of the ellipses or rectangles (Figures
3b and 3e), and tessellating the
domain into mostly hexagonal and
rectangular polygonal cells (Figures
3c and 3f). Figure 4 (next page)
shows an example of a pseudo-
Voronoi tessellation.

Close cell packing
We designed the particle model implemented here to

obtain a closely packed arrangement of elliptic or rec-
tangular cells. We defined a proximity-based force field
between pairs of cells so that the force field exerts a

repelling force when the two cells are too close togeth-
er. Our system exerts an attracting force when the two
cells are separated by more than a specified distance.
This method—based on the bubble mesh method—

IEEE Computer Graphics and Applications 39

(a) (b)

1 Examples of organic textures: (a) crocodile and (b) lizard.

Direction

Direction

Packing pattern generation Packing pattern

Rendering

Skin
geometry
generation

Texture image

Restriction
line

2 Method overview: After we generate (a) the packing pattern, we generate (b) the skin
geometry. We then obtain (c) a textured image by rendering the texture with specified lighting
conditions.

(a) (b)

(c)

(a) (b) (c)

(d) (e) (f)

3 Pseudo-Voronoi tessellation: (a) elliptic cells, (b) a triangular mesh,
(c) hexahedral Voronoi polygons, (d) rectangular cells, (e) a quadrilateral
mesh, and (f) quadrilateral Voronoi polygons.

tightly packs a set of circles using a force field similar to
the van der Waals force.

In the original bubble mesh method, you calculate the
stable distance between the centers of two adjacent cir-
cular cells as the sum of the desired radii of the two cells.
A user-given scalar field specifies the radii of the cells.
Here, we denote the radii of the two cells as ri and rj; the
distance between the centers of the cells as l; the stable
distance between the cells as l0 = ri + rj; the ratio of the
current distance and l0 as w = l/l0; and the correspond-
ing linear spring constant at the target distance as k0.
We describe the force model used in the bubble mesh
method as a function of w. The essential characteristic
of this approach is that we apply a repulsive force when
w < 1 and an attractive force when w > 1. As Figure 5
shows, the force f(w) satisfies the following conditions:
f(1) = f(1.5) = 0, f′(0) = 0, f′(1) = –k0.

By solving for these conditions, we can write the func-
tion as follows:

We extended the bubble mesh method to provide
close packing of elliptic cells. This approach calculates
the directions of the major and minor axes of a cell from
the given direction and calculates the radii along these
axes from the given cell sizes and anisotropy. We calcu-
late the effective distance between two cells as the sum
of the two lengths measured along the line segment that
connects the centers of the two cells to their boundaries.
If the effective distance is less than the desired stable
distance, then the force is negative and the cells are
repelled from each other. If these two lengths are lij and
lji, as shown in Figure 5, then we can write the effective
distance as l0 = lij + lji.

We also extended the bubble mesh method to achieve
close packing of square cells. We denote a potential field
around a cell as Ψp0. For square cells to align orthogo-
nally, we add four subpotential fields Ψp1, Ψp2, Ψp3, and
Ψp4 at the four corners of the square cell P1, P2, P3, and
P4 to the original potential field Ψ, as Figure 6 shows. If
the desired cell size is locally uniform, the radii of the
four subpotential fields should be (√2 −1)r0, where r0 is
the radius of the central potential field Ψp0. If you spec-
ify graded cell sizes, however, the radii of the subpo-
tential fields should be adjusted accordingly. We express
the potential field shown in Figure 6 as a weighted lin-
ear combination of the central potential field and the
four subpotential fields:

We extended this square cell packing approach to rec-
tangular cell packing, as Figure 6 shows. In all cases, we
assume both the point mass at the center of each cell
and the effect of viscous damping. We then solve the
motion equation numerically to find a tightly packed
configuration of cells using a standard numerical inte-
gration scheme. We terminate the integration process
when the displacements of all cells in an iteration
become small. While solving the equation, we adjust the
number of cells in the domain by checking the popula-
tion density. We add one cell around another cell when
the smallest w value between the cell and its adjacent
cells is larger than a user-specified value. We delete a
cell when the smallest w value between that cell and its
adjacent cells is smaller than a user-specified value.

The geometric input models consist of a set of 3D poly-
gons. As Figure 7 shows, we first pack cells along the
boundaries of the polygons, then pack them inside the
polygons. If the input model is too fine, we pack cells

Ψ Ψ Ψ Ψ Ψ Ψ= + − + + +P P P P P0 1 2 3 42 1()()

f w
k
l

w w w

w

() () .

.
= − + ≤ ≤

≤

0

0

3 25
4

19
8

9
8

0 1 5

0 1 5

Feature Article

40 May/June 2003

(a) (b) (c) (d) (e)

4 Substeps of packing pattern generation: (a) heights of grid points representing preferred cell sizes,
(b) preferred directionality of rectangular packing, (c) closely packed rectangles, (d) primarily quadrilateral mesh,
and (e) pseudo-Voronoi tessellation.

l0

lij
lji

ƒ(w)

w l

1.0

(a) (b)

1.5

5 Circular cell packing and elliptic cell packing: (a) stable distance and
force function of circular cells and (b) stable distance of elliptic cells.

0P

P1 P2

P4 P3

P0

P1 P2

P4 P3

P0

(a) (b)

6 Square cell packing and rectangular cell packing:
(a) a square cell realized using five circular force fields
and (b) a rectangular cell realized using five elliptic force
fields.

using a simplified model, then project them onto the
original input model. We express the complexity of the
cell-packing process as O(mn), where O denotes the
amount of complexity, n denotes the total number of
square cells and m denotes the average number of cells
that suffer attractive or repulsive forces from another
cell. To accomplish this, we store cells in a grid sur-
rounding the entire input domain to search for the adja-
cent cells surrounding a given cell. Because our system
extracts an almost constant number of adjacent cells, we
treat m as a constant. The complexity of the process
increases according to the total number of cells, which
means that our method should be faster than optimiza-
tion-based methods such as the cellular texture method.

Pseudo-Voronoi tessellation from packed cells
Given closely packed elliptic or rectangular cells, our

approach generates anisotropic triangular or quadri-
lateral meshes by connecting the centers of the cells. To
obtain the configuration of an anisotropic triangular
mesh from the centers of elliptic cells, we applied an
anisotropic Delaunay triangulation algorithm.4,6 While
the original Delaunay triangulation algorithm satisfies
the condition that no other vertices lie inside a triangu-
lar element, this anisotropic triangulation uses circum-
ellipses defined by the user-given directionality and
anisotropy, instead of using circumcircles.

To obtain an anisotropic quadrilateral mesh by con-
necting the centers of a set of packed rectangular cells,
we used a triangular-to-quadrilateral mesh-conversion
algorithm. The mesh-conversion algorithm first tests all
the possible quadrilaterals formed by coupling two adja-
cent triangular elements and then computes a score that
measures the quality of each resultant quadrilateral ele-
ment. The algorithm then converts the pairs of triangles
to a set of quadrilaterals in the order of their scores. Our
method then generates a pseudo-Voronoi tessellation
from these anisotropic triangular, quadrilateral, or
mixed meshes. We obtain this tessellation by connect-
ing the center of each mesh element to the centers of all
adjacent mesh elements. As Figure 7 shows, a polygon
encloses each internal mesh node.

Our method does not fill the entire given domain with

the Voronoi polygons. It requires special treatment
around the domain boundary. We call the edge of the
Voronoi polygon a boundary edge. Boundary edges can
run along a given domain’s perimeter or at a set of user-
specified line segments inside the domain. When a node
connects to such boundary edges, our approach con-
nects the center of the boundary edges instead of con-
necting the centers of the mesh elements. Also, our
algorithm does not form pseudo-Voronoi polygons for
a vertex on a boundary edge. Our approach therefore
generates pseudo-Voronoi polygons that are well
aligned along the mesh boundary and along other user-
specified line segments.

Organic texture generation
We obtain the organic texture by generating a skin

texture for each of the pseudo-Voronoi cells created by
the method described previously. We create each skin
texture by generating the initial skin mesh for each
pseudo-Voronoi polygon, smoothing the mesh by a sub-
division surface method, and creating small geometric
features with fractal noise.

Each generated pseudo-Voronoi polygon must be
transformed into a realistic skin surface geometry. First,
depending on the type of target organic texture, we
might add a gap between the cells or pack the cells more
tightly by scaling them. The amount of scaling is spec-
ified by a scaling parameter (Sv). Next, we obtain an
initial 3D skin mesh by sweeping the polygon of each
cell in the normal vector direction. We calculate the
height of this sweeping operation by multiplying the
skin size (the average distance from the center of grav-
ity of a cell polygon to the corners of the polygon) with
a user-specified sweeping parameter. The sweeping
operation defines a prism. We then deform this prism
by displacing the top corners randomly within a speci-
fied displacement range, as Figure 8 shows. We can
adjust the distortion parameter to create various skin
shapes.

After we deform the initial skin shape, we can skew
the prism, as Figure 9 (next page) shows, according to a
specified flow vector F. In Figure 9, we displace each of
the top corners (V1′′, V2′′, and so forth) by vector sF,
where s is a user-defined skewing parameter. This process
adds overlapping layers of skin cells. Choosing a larger
skewing parameter can generate scale-like skins. We can
deform the prism further with a tapering operation, as
Figure 10 shows, by displacing each of the top corners of

IEEE Computer Graphics and Applications 41

(a)

(d) (e)

(b) (c)

7 Cell packing and Voronoi tessellation processes:
(a) cells on the domain boundary, (b) cells inside the
domain, (c) mesh connecting the centers of the cells,
(d) Voronoi tessellation, and (e) boundary treatment.

V1

V2

Vn

V3

V1′
V2′

Vn′
V3′

V1

V2

Vn

V3

V1″

V2″

Vn″
V3″

(a) (b)

n H

8 Initial skin shape: (a) sweeping base polygon and (b) random
displacement.

the prism (T1, T2, and so forth) with a centripetal vector
t(w − vi), where t is the user-defined tapering parameter
and w is the center of gravity of the base polygon. Setting
a larger tapering parameter yields thorny skins.

After we apply all of these deformations, we repre-
sent the shape of each skin cell as a coarse triangular
mesh, called the initial skin mesh. We obtain the final
skin mesh by refining and smoothing the initial skin

mesh. After we generate the initial skin meshes, or ini-
tial control meshes, we have to smooth their sharp cor-
ners. We achieve this smoothing by using a surface
subdivision method. Other researchers have proposed
several surface subdivision methods,7,8 but we use Loop’s
method9 because it generates triangular patches and
works well with our implementation.

With Loop’s method, we insert new vertices at the
midpoint of each edge of a given control mesh. We then
connect the vertices to divide an initial triangular ele-
ment into four smaller triangles. In parallel with the
mesh-smoothing process, we can further displace skin
mesh nodes with fractal noise to add small geometric
features, such as bumps and dents, to a surface.

We generate 3D fractal noise by recursively subdi-
viding a triangular mesh element into smaller triangles
and then adding a new node at the midpoint of each side
of the triangle. The nodal point is then displaced verti-
cally.10 We store and merge the displacement vectors for
nodal points at each subdivision level into the subdivi-
sion surface geometry.

Results
Our system gives us the ability to adjust many para-

meters to create different organic textures:

� Degree of anisotropy, or aspect ratio of cell geometry
� Scaling parameter of cell polygon
� Sweeping parameter of initial skin mesh
� Skewing parameter of initial skin mesh
� Tapering parameter of initial skin mesh
� Distortion parameter of initial skin mesh
� Fractal dimension of fractal noise controlling skin’s

surface roughness
� Amplitude of fractal noise

One unique capability of our texture-generation
method is the ability to control the anisotropy of the tex-

Feature Article

42 May/June 2003

V1

V2

Vn

V3

V1″

V2″

Vn″
V3″

V1

V2

Vn

V3

T1

T2

Tn

T3

sF

(a) (b)

sF

sF

sF

 F

9 Skewing operation: (a) flow vector that defines the direction of skewing
and (b) skewed prism.

V1

V2

Vn

V3

T1′

T2′

Tn′
T3′

V1

V2

Vn

V3

T1

T2

Tn

T3

w

t(w−v1) t(w−vn)

(a) (b)

10 Tapering operation: (a) centripetal displacement and (b) tapered
prism.

11 Textures
with different
degrees of
anisotropy, or
aspect ratios:
(a) 1.5, (b) 2.0,
and (c) 3.0.

(a) (b) (c)

ture cells. Figure 11 shows how texture appearances
change with different aspect ratios. By setting a high
aspect ratio, we can stretch the textures in specific flow
directions. Figure 12 shows the effect of changing the
skewing parameter. Specifying a larger skewing para-
meter leads to some overlapping layers of texture cells,
which can yield scale-like skins. The textures shown in
Figure 12, in contrast to those shown in Figure 11, have
bumpier surfaces because of the larger amplitude of
fractal noise. Figure 13 shows the effect of changing the
tapering parameter. The skins bulge when we use a larg-
er taper parameter.

One of the advantages of our method is the ability to
create cells packed in both hexagonal arrangements and
rectangular arrangements. If you use a triangular mesh
for generating the pseudo-Voronoi tessellation, the resul-
tant cell arrangement becomes hexagonal. And if you
use a quadrilateral mesh, then the resultant cell arrange-
ment becomes rectangular. Our method can generate
organic textures and map them onto a 3D object. Figure
14 shows an example of this technique. In the example,
we packed cells in a rectangular arrangement and spec-
ified their directionality so that the texture cells align
well along the longitudinal direction of the leg.

Computational time changes according to the number
of texture cells to be generated. In the examples shown
in Figures 11, 12, and 13, it takes 10 to 40 seconds to gen-
erate pseudo-Voronoi tessellations; it takes approximately
3 to 6 additional seconds to generate detailed skin geom-
etry on an Intel Pentium III 933-MHz processor. The size
of the generated texture images in all the examples is 512
× 512 pixels. For the examples in Figures 11, 12, and 13,
we laid the 3D meshes on a plane and rendered them in
a parameter space using in-house software. For the exam-

ple in Figure 14, we imported the 3D meshes into 3D Stu-
dio Max and rendered them. The number of generated
triangles depends on the number of cells and their shapes.
Typically, the number runs to around 0.5 million.

The methods we use do not rely on texture maps. The
visual quality of our results might be lower than those
techniques that do rely on texture maps, but the geo-
metrical richness of our approach is competitive with
other methods. We intend to continue extending this
method to generate surface attributes, such as colors
and optical features, procedurally for each skin cell.

IEEE Computer Graphics and Applications 43

12 Textures
with different
values of the
skewing
parameter:
(a) 0.0, (b) 2.0,
and (c) 3.0.

13 Textures
with different
values of the
tapering
parameter:
(a) 0.0, (b) 0.2,
and (c) 0.5.

14 A textured leg illustrating the technique of generating organic textures
and mapping them onto 3D objects.

(a) (b) (c)

(a) (b) (c)

Conclusions
We plan to extend our work into weathering and var-

ied skin conditions. The organic textures presented here
are pristine and immutable, even though real ones are
not. Some weathering effects11,12 such as wear, abrasion,
and wounds are also important factors in improving the
reality of a computer-rendered organic texture. Our
method generates a cell’s shape with a procedural
approach. An interesting consideration for future work
is to generate an organic texture from real sample
images or to simulate various situations such as wet and
dirty skin.13 �

References
1. K.W. Fleischer, et al., “Cellular Texture Generation,” Proc.

Siggraph, ACM Press, 1995, pp. 239-248.
2. K. Mehlhorn and S. Näher, LEDA: A Platform for Combina-

torial and Geometric Computing, Cambridge University

Press, 1999, pp. 686-707.
3. K. Shimada and D.C. Gossard, “Bubble Mesh: Automated

Triangular Meshing of Non-Manifold Geometry by Sphere
Packing,” Proc. 3rd Symp. Solid Modeling and Applications,
ACM Press, 1995, pp. 409-419.

4. K. Shimada, A. Yamada, and T. Itoh, “Anisotropic Trian-
gulation of Parametric Surfaces via Close Packing of
Ellipses,” Int’l J. Computational Geometry and Applications,
vol. 10, no. 4, 2000, pp. 417-440.

5. K. Shimada, J. Liao, and T. Itoh, “Quadrilateral Meshing
with Directionality Control through the Packing of Square
Cells,” Proc. 7th Int’l Meshing Roundtable, Sandia National
Laboratory, 1998, pp. 61-76.

6. N. Viswanath, K. Shimada, and T. Itoh, “Quadrilateral Mesh-
ing with Anisotropy and Directionality Control via Close
Packing of Rectangular Cells,” Proc. 9th Int’l Meshing Round-
table, Sandia National Laboratory, 2000, pp. 227-238.

7. D. Doo and M. Sabin, “Analysis of the Behavior of Recursive
Division Surfaces Near Extraordinary Points,” Computer
Aided Design, vol.10, no.6, 1978, pp. 356-360.

Feature Article

44 May/June 2003

Related Work
Researchers working in generating organic textures have

typically published findings in three areas: tiling textures,
which subdivide a surface into subregions and generate
procedural textures for each subregion; modeling and
rendering of organic materials, which increase scene
richness; and cellular textures, which apply particle systems
for modeling surface details. Among these, the cellular
texture approach is most closely related to our method
because our method also uses a particle system.

Grünbaum and Shephard’s reference book on visual
geometry surveys various aspects of patterns and tiling.1

Yessios presents methods to generate common materials,
such as stones and wood, with 2D line patterns.2 Miyata
proposed an enhanced method for automatically
generating 3D stone wall patterns.3 A limitation of such
tiling textures is that regions must be aligned carefully, or
visible discontinuities—such as seams and gaps—might be
apparent.

Researchers have proposed various methods for modeling
and rendering organic materials. In particular, they have
applied reaction-diffusion equations—originally proposed as
a model of morphogenesis by Turing—to the texture-
synthesis problem.4,5 Fowler et al. have reported a method
of generating seashell patterns using reaction-diffusion
equations.6 Worley reported a cellular texture basis function7

that complements Perlin’s noise function.8

Fleischer et al. proposed a cellular texture method9 that
can model surface details such as scales, feathers, and
thorns. Their method computes the locations, orientations,
and other properties associated with cellular particles. After
you obtain a hexagonal arrangement of a system of
particles by optimization, you convert each particle to a
geometric unit with user-defined appearance parameters
and then render the detail of each texture.

There are several similarities between these works and
ours. These other methods use particle systems, and each
particle has energy potential. The energy potential is
calculated based on particle-to-particle distance and

direction, while the total energy potential is minimized
iteratively. By defining interparticle or intercellular forces
explicitly, we speed up the cell tessellation process
significantly. In Fleischer’s cellular texture method, cells are
located using an energy-optimization approach, and the
energy of each cell is calculated by a cost function
consisting of several energy terms—which requires
extensive computations.

Our approach, on the other hand, calculates the
intercellular force explicitly and solves the equation of
motion, a second-order ordinary differential equation, using
the fourth-order Runge-Kutta method. Consequently, our
method converges very quickly. Most examples using our
method require only 10 to 20 seconds to find the cell
arrangements with an Intel Pentium III PC.

References
1. B. Grünbaum and G.C. Shephard, Tiling and Patterns, W.H. Free-

man and Co., 1987
2. C.I. Yessios, “Computer Drafting of Stones, Wood, Plant and

Ground Materials,” Computer Graphics, vol.13, no. 2, 1979, pp.
190-198.

3. K. Miyata, “A Method of Generating Stone Wall Patterns,” Proc.
Siggraph, ACM Press, 1990, pp. 387-394.

4. G. Turk, “Generating Textures for Arbitrary Surfaces Using Reac-
tion-Diffusion,” Proc. Siggraph, ACM Press, 1991, pp. 289-298.

5. A. Witkin and M. Kass, “Reaction-Diffusion Textures,” Proc. Sig-
graph, ACM Press, 1991, pp. 299-308.

6. D.R. Fowler, H. Meinhardt, and P. Prusinkiewicz, “Modeling
Seashells,” Proc. Siggraph, ACM Press, 1992, pp. 379-388.

7. S. Worley, “A Cellular Texture Basis Function,” Proc. Siggraph,
ACM Press, 1996, pp. 191-294.

8. K. Perlin, “An Image Synthesizer,” Proc. Siggraph, ACM Press,
1985, pp. 287-296.

9. K.W. Fleischer et al., “Cellular Texture Generation,” Proc. Siggraph,
ACM Press, pp. 239-248.

8. E. Catmull and J. Clark, “Recursively Generated B-Spline
Surfaces on Arbitrary Topological Meshes,” Computer
Aided Design, vol. 10, no. 6, 1978, pp. 350-355.

9. C. Loop, Smooth Subdivision Surfaces Based on Triangles,
master’s thesis, Dept. of Mathematics, Univ. of Utah, 1987

10. A. Fournier, D. Fussell, and L. Carpenter, “Computer Ren-
dering of Stochastic Models,” Comm. ACM, vol. 25, no. 6,
1982, pp. 371-384.

11. J. Dorsey and P. Hanrahan, “Modeling and Rendering of
Metallic Patinas,” Proc. Siggraph, ACM Press, 1996, pp.
387–396.

12. J. Dorsey et al., “Modeling and Rendering of Weathered
Stone,” Proc. Siggraph, ACM Press, 1999, pp. 225-234.

13. H.W. Jensen, J. Legakis, and J. Dorsey, “Rendering Wet
Materials,” Proc. 10th Eurographics Workshop on Render-
ing, Springer Verlag, 1999, pp. 273-282.

Takayuki Itoh is a research staff
member at IBM Research, Tokyo
Research Laboratory. His research
interests include mesh generation,
surface reconstruction, photorealis-
tic rendering, scientific visualization,
and information visualization. Itoh

received a PhD in electronics and communications from
Waseda University.

Kazunori Miyata is a professor
in the Center for Knowledge Science
at the Japan Advanced Institute of
Science and Technology in Ishikawa,
Japan. His research interests include
texture synthesis, simulation of nat-
ural phenomena, computer graph-

ics, multimedia applications, and media art. Miyata
received a PhD in computer science from the Tokyo Insti-
tute of Technology.

Kenji Shimada is a professor in
the Department of Mechanical Engi-
neering, the Department of Biomed-
ical Engineering, and the Robotics
Institute at Carnegie Mellon Univer-
sity. His research interests include
geometric modeling, computational

geometry, computer graphics, and computer-assisted
orthopedic surgery. Shimada received a PhD from the
Massachusetts Institute of Technology.

Readers may contact Takayuki Itoh at IBM Research,
Tokyo Research Laboratory, 1623-14, Shimotsuruma, Yam-
ato-shi, Kanagawa, 242-8502 Japan; itot@computer.org.

IEEE Computer Graphics and Applications 45

January/February
Web Graphics

With the popularity of the Internet, we’re seeing a migration of tradition-
al applications to run on the Web environment and a growing demand
for more powerful Web-based applications. Fused by the increasing
availability and dramatic reduction in the cost of 3D graphics accelera-
tors, a new direction of research, called Web Graphics, is emerging. This
includes developing graphics applications as well as tools to support
these applications in the Web environment.

March/April
Graphics Applications for Grid Computing

Grid computing allows access to distributed computing resources with
the same ease as electrical power. In recent years, graphics application
tools that take advantage of distributed computing, or grid environ-
ments, have emerged. New methodologies and techniques that harness
resources for graphics applications are critical for the success of grid
environments.

May/June
Advances in Computer Graphics

This issue covers an array of advances in computer graphics such as
organic textures, lighting, and approximation of surfaces. Also, you’ll
find out about new developments in virtual reality, novel approaches in
visualization, and innovative CG applications. The range of topics
highlights the usefulness of computer graphics for everyone.

July/August
Nonphotorealistic Rendering

Nonphotorealistic rendering (NPR) investigates alternatives that lever-
age techniques developed over centuries by artists and illustrators to
depict the world. One goal of this research is to broaden the achievable
range of image styles and thereby embrace new applications. Additional-
ly, NPR has the potential to open a new line of attack on one of the
central problems of 3D computer graphics today: content creation.

September/October
Perceptual Multimodal Interfaces

This issue focuses on recent advances in methods, techniques, applica-
tions, and evaluations of multimodal interaction. Learn how researchers’
cross-disciplinary approaches helped develop multimodal interfaces
from interaction-centered prototypes to user-oriented and application-
tailored solutions. This issue also explores the notion of moving toward
transparent user interfaces.

November/December
3D Reconstruction and Visualization

Models based on 3D data will ultimately include everything associated
with the environment, such as trees, shrubs, lampposts, sidewalks,
streets, and so on. The main mode of exploration for this massive collec-
tion will be through interactive visualization. Ultimately, you should be
able to fly continuously from overviews of a large city to centimeter-size
details on the side of any building. Smoothly joining these different
scales may require integrating rendering techniques in new ways.

2003Editorial Calendar

http://computer.org/cga

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

