Analysis on Operation of a F-FET Memory With an Intermediate Electrode
Tran Dang Khoa and Susumu Horita

Abstract—An operation model of a ferroelectric gate field-effect transistor memory with an intermediate electrode was proposed and analyzed. Read endurance characteristics of the memory during a consecutive reading was simulated using this model. The simulation results showed good agreement with the experimental data.

Index Terms—Capacitor, ferroelectric, ferroelectric devices, ferroelectric film, ferroelectric memory, field-effect transistors (FET).

I. INTRODUCTION

Ferroelectric gate field-effect transistor (F-FET) memory has been massively investigated thanks to its novel features such as nondestructive, high-operation speed and high packing density [1]. However, F-FET has not been commercialized due to some serious problems, including high operation voltage, short retention time and unstable performance [2]–[4]. In order to overcome these problems, Shimada et al. [5] and Horita et al. [6] proposed a new operational principle of F-FET memory with an intermediate electrode inserted between the ferroelectric film and the metal–oxide–semiconductor FET (MOSFET) used for data reading, or R-FET. For data writing, an additional MOSFET connected between the intermediate electrode and the source of R-FET is employed, called W-FET. A schematic integrated circuit (IC) of the memory is shown in Fig. 1. Although this new F-FET requires more cell area than the conventional F-FET, it is possible to reduce the cell area by using the common region of source or drain between the two FETs and by fabricating the W-FET over the R-FET with an insulating layer between them like a structure of static random access memory (SRAM) with a thin-film transistor (TFT). During data reading (W-FET is OFF), the memory can be considered as a system of a ferroelectric capacitor C_I connected in series with the input capacitor C_0 of R-FET. The intermediate voltage V_I (at the gate of R-FET) can be simply expressed as $V_I = C_I V_{RH} / (C_I + C_0)$ when a reading voltage V_{RH} is applied to the system.

When V_I is equal to the threshold voltage V_{th} of R-FET, the threshold reading voltage V_{TH} is equal to $(C_I + C_0) V_{th} / C_I$. Assuming that C_0 is independent of voltage and that the polarization–voltage (P–V) hysteresis loop of C_I is approximated as in Fig. 2, the difference of V_{TH} between the positive remanent polarization P^+_R and the negative remanent polarization P^-_R states, ΔV_{TH}, which gives guidelines for fabrication of C_I is calculated as

$$\Delta V_{TH} = V_{TH}^+ - V_{TH}^- = (1 - C_0 / C_I) (C_0 V_{th} / C_I - V_{th}) \quad (1)$$

Here, C_R and C_{th} are linear ferroelectric capacitances from the P^+_R state, and the P^-_R state to positive voltage direction, respectively. The V_{th} of V_{th} is called “ferroelectric critical voltage,” which characterizes a voltage at which C_I changes from C_R to C_{th}. When $V_{TH}^- < V_I < V_{TH}^+$, the drain current I_D of the R-FET is zero for the P^-_R state and is nonzero for the P^+_R state. Therefore, by detecting I_D at a given V_I, the memory state is decoded.

The detailed merits of the new F-FET memory and experimental data to verify the operational principle had been mentioned in [6]. Fig. 3 shows a schematic model of ideal nondestructive operation of the new F-FET memory for the P^+_R state, where

a) is for retention condition with the memory charge or remanent polarization of Q;

b) is for reading condition using positive reading pulse voltage;

c) is for just finishing reading.

In Fig. 3(b), the applied voltage to C_0 is $\Delta Q / C_0$, defining ΔQ as a charge supplied from the reading voltage source. In Fig. 3(c), the voltage $\Delta Q / C_0$ of C_0 acts like a battery in a moment to charge the C_I with ΔQ. So, after reading the memory, the memory state is the same as Fig. 3(a) of the initial state. Therefore, this memory readout is non-destructive. However, actually, due to a leakage current of W-FET in OFF state as shown in Fig. 4 of the equivalent circuit, this new F-FET memory encounters changes of V_I and Q during a consecutive data reading, which leads to a short read endurance. As a solution to this issue, we proposed a new configuration, the drain-connected configuration (DCC) as seen in Fig. 1 and Fig. 4 (dashed lines), which has experimentally proven its usefulness in [6].

In this brief, we propose an operation model of the new F-FET memory and analyze its time-dependent output during a consecutive reading. The simulation results in both the source-connected configurations (SCC) and the DCC are compared with the experimental data obtained by using a discrete circuit constructed with a self-made MOSFET and self-deposited ferroelectric film.

II. OPERATION MODEL

In this model, we neglect the leakage current of C_I and C_0 as they are assumed to be much smaller than that of W-FET in OFF state.
because the differential capacitors \(C_j \) and \(C_0 \) depend nonlinearly on ferroelectric voltage \(V_f \) and \(V_i \), respectively, when the reading pulse voltage increases from 0 to \(V_R \) on the rising slope of the reading square pulse, \(V_i \) can be calculated as

\[
V_i = \int_0^{V_R} \frac{C_j(V_f)}{C_j(V_f) + C_0(V_i)} dV_R.
\] (2)

\(V_i \) becomes rapidly steady-state just after application of reading pulse in the short term. However, in the long term, \(V_i \) at high reading voltage decreases gradually with the consecutive reading cycle due to the leakage current of W-FET. The decreasing rate is governed by a time constant \(\tau \) which is varied with reading cycle, in particular, for the \(P^- \) state. In addition, when the first reading pulse rises up to \(V_R \) and decreases to zero, \(V_i \) does not fall to zero as normally expected but a voltage \(\Delta V_p \) which indicates that \(V_f = -\Delta V_p \) because of \(V_f + V_i = 0 \), zero reading voltage. Also, from the second reading, \(V_i \) is added by \(\Delta V_p \). The \(\Delta V_p \) originates from the polarization domains, which do not return to virgin remanent polarization states once they are switched [6]. Also, since \(V_f \) is increased with reading cycle as mentioned above, \(\Delta V_p \) is possibly increased with it. Defining \(\Delta V_f \) as the increase of \(V_f \) when \(V_i \) is increased due to \(V_f \) decrease during high reading voltage, \(\Delta V_p \) can be expressed by \(\Delta V_p = k \Delta V_f \Delta C_f/(C_f + C_0) \), where \(\Delta C_f = C_f(V_f) - C_f(0) \), and \(k \) is the nonreturning domain ratio. Physically, \(\Delta C_f \) means that a pure ferroelectric capacitance is equal to the difference between the total capacitance and the paraelectric capacitance assuming \(C_f(V_f = 0) \) is due to only the ferroelectricity and \(k \Delta V_f \Delta C_f \) is the nonreturning domain charge or the remaining charge at the intermediate electrode due to \(\Delta V_f \).

We calculate \(V_i(t) \) for DCC, where \(t \) is the time from the start of measurement, with consecutive unipolar square voltage pulse train as reading voltage. When the height of the pulse is \(V_R \), the pulse train is a superposition of an ac part with the amplitude of \(V_R/2 \) and a dc offset of \(V_R/2 \). For a linear analysis, the whole range up to the total reading cycle \(N_{\text{max}} \) is divided into \(D \) regions with linear systems. Within the \(i \)th region with \(N_i \) reading cycle, the intermediate voltage \(V_i(t) \) is calculated in (3), shown at the bottom of the page, where \(S(t) = 1 \) during high reading voltage and \(-1 \) during zero reading voltage and \(T \) is a period of reading pulse. Here, \(V_{\text{LAC}} \) is induced from the ac part of the reading pulse train and \(V_{\text{TT}} \) is a sum of the drain bias \(V_D \) and an exponential term which is resulted from the dc offset of the reading pulse train. Also, \(\tau_i \) is time constant equal to \(R(C_h + C_0) \) and \(C_h \) is the mean differential ferroelectric capacitance between \(C_f \) at high reading voltage and at zero reading voltage in the first reading pulse of the \(i \)th region. \(V_{\text{LAC}} \) is \(V_{\text{TT}} \) at the first reading cycle of the \(i \)th region. Also, \(V_n(i-1) \) is a sum of \(V_i(i-1) \) at the end of the \((i - 1)^{\text{th}} \) region and \(\Delta V_p(i-1) \) due to \(\Delta V_f \) generated in the \((i - 1)^{\text{th}} \) region. That is

\[
V_n(i-1) = V_i(i-1) \left(\sum_{x=1}^{i-1} N_x T \right) + \Delta V_p(i-1).
\] (4)

Finally, the intermediate voltage was converted with help of transfer conductance characteristics of R-FET to output voltage \(\Delta V_0 = I_D R_D \), where \(R_D \) is drain resistance, compared with the experimental data.

\[
V_0(t) = 0.5 \left(V_{\text{LAC}} - V_n(i-1) \right) S(t) + V_D + 0.5 \left(V_{\text{TT}} - V_n(i-1) \right) + V_n(i-1) - V_D \exp \left[\left(-1 \right) \left(\frac{t - \sum_{x=1}^{i-1} N_x T}{\tau_i} \right) \right]
\] (3)
II. EXPERIMENTAL RESULTS

The experimental results were obtained from the circuit shown in Fig. 5. The ferroelectric capacitor was a 200-nm-thick epitaxial PZT film on an Si substrate. Its area was 78.5×10^{-6} cm2. R-FET is a self-made MOSFET ($C_0 = 200$ pF, $V_{th} \approx 1$ V). To simulate W-FET in OFF state, two diodes connected back-to-back in series (called twin diodes) was used for both SCC and DCC (solid and dashed lines in Fig. 5, respectively). Typical leakage current of the twin diode was about 1 pA at 1 V. The writing voltage is two positive or two negative square pulses of 5 V at 10 kHz for the P$^+$ state and P$^-$ state, respectively. The square voltage is a serial square pulse train of 3, 4, or 5 V within the experimental range of 10^{-2}. The leakage current of the ferroelectric capacitor and the gate oxide of the self-made MOSFET were 0.1 pA and less than 0.01 pA at 1 V, respectively, which were much smaller than that of the twin diode.

The experimental and simulation results of ΔV_0 as a function of reading cycle for SCC are shown in Fig. 6 and for DCC in Fig. 7. (The experimental data and preparation of the used ferroelectric film had been mentioned in [6].) In SCC, for the P$^-$ state, ΔV_0 is constant up to about 3.0×10^5 reading cycles, but starts decreasing with more reading cycles. For the P$^+$ state, ΔV_0 is even decreased faster and finally reached a saturation of nearly zero after about 105 reading cycles. The decrease of ΔV_0 is resulted from V_I decrease due to the loss of charges at the intermediate electrode through the twin diode. On a contrary, ΔV_0 for both polarization states in DCC are almost constant within the experimental range of 6×10^7 reading cycles.

To carry out the simulation, the differential capacitance C_f is determined from a corresponding P–V hysteresis loop measured by a Sawyer–Tower circuit with ramping voltage. For the P$^+$ state, the C_{tf} was calculated from an experimental P–V loop and was found to be about 200 pF and hardly depends on V_I. For the P$^-$ state, the C_{tb} were determined from a modified P–V loop based on an actual experimental P–V loop as in Fig. 8. This is because the ferroelectric capacitor during a consecutive reading is subjected to many switching cycles so that the P–V characteristics are somewhat modified and differs from the loop determined from a single cycle. It can be seen from Fig. 7 that the simulation results are in good agreement with the experimental data for $k \approx 0.8$, which means that our model is physically acceptable. Also, the difference in tendency of ΔV_0 between the P$^+$ and P$^-$ states can be explained as follows. There are three factors contributing to ΔV_0: nonreturning domain charge as origin of ΔV_0 in the simulation, the C_f and the time constant τ which depends on the C_f. The reasons for larger ΔV_0 in the P$^+$ state than in the P$^-$ state are 1) C_{tf} larger than C_{tb} and 2) large ΔV_p for the former. This larger ΔV_p is due to larger C_{in} which means that more ferroelectric domains are subject to switching. The faster decrease of ΔV_0 in the P$^+$ state than that in the P$^-$ state is due to 1) shorter τ and 2) $\Delta V_p = 0$ in the P$^+$ state. The shorter τ is due to C_{tf} smaller than C_{tb}. $\Delta V_p = 0$ in the P$^+$ state is due to $\Delta C_f = 0$. Further, in the P$^-$ state, because a higher V_{R} gives a...
higher V_f so that the C_f is increased, τ becomes longer and the onset of saturation of ΔV_0 is extended by increasing V_{te}.

According to the simulations, for both SCC and DCC, ΔV_0 finally reaches a saturation corresponding to a saturation value of V_f, $V_f(t \to \infty) \equiv V_{SS} = C_{f, \infty} V_0/\left[2(C_{f, \infty} + C_0) + V_D\right]$, where $C_{f, \infty}$ is the C_f at a saturated V_f. Because V_{SS} of DCC is V_D higher than that of SCC, ΔV_0 in DCC saturates at higher value, i.e., DCC is a better configuration in term of read endurance.

Physically, in DCC, positive charges are supplied from the drain or discharged from the intermediate electrode depending on a competition between the V_D and the V_f. During the reading voltage is high, V_f is normally higher than V_D. Positive charges are lost from the intermediate electrode to the drain. When the reading voltage is zero, V_f is lower than V_D, positive charges are supplied to the intermediate electrode. This helps maintain a high V_f against reading cycle and lead to a better read endurance for DCC.

IV. CONCLUSION

An operation model of a ferroelectric gate field-effect transistor memory (F-FET) has been proposed and analyzed by a simulation. The simulation results were compared to the experimental data and show a good agreement with each other. It was found that, the read endurance is mainly decided by the time constant which is dependent on the ferroelectric capacitances of the memory. In SCC, the memory suffers a short read endurance due to leakage current of W-FET in OFF state. In DCC, the read endurance is improved because positive charges are supplied from the drain to the intermediate electrode, which keeps the intermediate voltage decreasing at a lower rate and saturates at a higher value.

REFERENCES

A-Si:H-Based LCLV With an CdTe and VOPc Multiple Absorption Layers

Qi Kangcheng, Cheng Jianbo, Ge Changjun, and Wang Jimin

Abstract—A-Si:H-based liquid crystal light valve (LCLV) is described in this brief. This LCLV employs cadmium telluride (CdTe) and Vanadyl phthalocyanine (VOPc) multiple absorption layers. The multiple absorption layers have high absorption ability in the visible and near-infrared range, which ensures the LCLV to have a high sensitivity and high reading to writing light isolation ratio. Therefore the LCLV with CdTe and VOPc multiple absorption layers has a higher performance compared with a valve with only a CdTe absorption layer. The LCLV has a peak response at the wavelength of 700 nm and is suitable for projection displays.

Index Terms—Absorption layer, cadmium telluride (CdTe), liquid crystal light valve (LCLV), projection displays, Vanadyl phthalocyanine (VOPc).

I. INTRODUCTION

Liquid Crystal Light Valves (LCLVs) are devices suited for wavelength conversion, incoherent-to-coherent light conversion and for image amplification. Therefore, these devices are applied in optical processing [1], optical correlation research [2], and in projection displays [3]. The following properties makes LCLVs particularly attractive: high photo-to-dark conductivity ratio, large-area coverage, excellent spatial resolution, appropriate wavelength response, thin-film type, and low-temperature deposition of a–Si:H film. A–Si:H film is sensitive to red and near-infrared (IR) light, so, an a–Si:H-based LCLV is suitable for being applied in wavelength conversion equipments and in projection displays. In projection displays, light from CRTs or other sources representing the red, green, and blue primary light is projected onto the photoco nductive layer of the corresponding LCLV. The resistance of the photoconductive layer decreases due to the generation of carriers (electrons and holes) that are formed by the incident light. Decrease of the resistance of the photoco nductive layer will increase the voltage applied to the liquid crystal (LC) layer. The reading light generated by a light source is polarized and divided into red, green, and blue beams with high intensity. Each beam incidents upon its corresponding LCLV and is reflected. Because the reading light has a high intensity, the writing image can be considered as being amplified.

The reading light that penetrates through the reflection layer can also generate carriers just as the reading light. This effect is equivalent to the addition of a constant light intensity to the writing image, which will decrease the modulation of the writing image. As a result, the output image will be blurred. In LCLVs, there is an absorption layer to absorb the penetrating reading light. The photosensitivity of the photoco nductive layer, the absorption capability of the absorption layer and the reflectivity of the reflection layer together determine the amplification of the LCLV. The best way to get high amplification is increasing the reflectivity of the reflection layer and the absorption ability of the absorption layer. In this brief we present a novel a–Si:H-based LCLV employing a structure of CdTe and VOPc absorption layers, which have never been reported before.