
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title CPU Load Predictions on the Computational Grid

Author(s) ZHANG, Yuanyuan; SUN, Wei; INOGUCHI, Yasushi

Citation
IEICE TRANSACTIONS on Information and Systems,

E90-D(1): 40-47

Issue Date 2007-01-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4662

Rights

Copyright (C)2007 IEICE. Yuanyuan Zhang, Wei Sun

and Yasushi Inoguchi, IEICE TRANSACTIONS on

Information and Systems, E90-D(1), 2007, 40-47.

http://www.ieice.org/jpn/trans_online/

Description



40
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.1 JANUARY 2007

PAPER Special Section on Parallel/Distributed Processing and Systems

CPU Load Predictions on the Computational Grid∗∗

Yuanyuan ZHANG†∗a), Wei SUN†, Nonmembers, and Yasushi INOGUCHI††, Member

SUMMARY To make the best use of the resources in a shared grid en-
vironment, an application scheduler must make a prediction of available
performance on each resource. In this paper, we examine the problem
of predicting available CPU performance in time-shared grid system. We
present and evaluate a new and innovative method to predict the one-step-
ahead CPU load in a grid. Our prediction strategy forecasts the future CPU
load based on the variety tendency in several past steps and in previous
similar patterns, and uses a polynomial fitting method. Our experimental
results on large load traces collected from four different kinds of machines
demonstrate that this new prediction strategy achieves average prediction
errors which are between 22% and 86% less than those incurred by four
previous methods.
key words: grid computing, task scheduling, CPU load prediction, poly-
nomial fitting

1. Introduction

The term computational grid [1], a hotspot in recent research
field, derives its name from the analogy with the electric
power grid from which we make use of the electricity with-
out the knowledge of where it is from or how it is gener-
ated. A computational grid is a hardware and software in-
frastructure that provides dependable, consistent, pervasive,
and inexpensive access to heterogeneous and dynamic re-
sources. Task scheduling of the applications is an important
component for achieving high performance in a grid envi-
ronment, while most of such work involves predicting the
performance of the tasks on the prospective resources.

CPU load on a host significantly influence the running
time of computation-intensive tasks. In fact, for some ap-
plications the running time of a computational task is al-
most linearly related to the measured load during its exe-
cution [2]. If we could predict the load during the execu-
tion of a task on a host, we could predict easily the running
time of the task on the host. Therefore, CPU load predic-
tion can be useful for guiding job scheduling strategies to
achieve high application performance and efficient resource

Manuscript received March 1, 2006.
Manuscript revised June 30, 2006.
†The authors are with the Graduate School of Information Sci-

ence, JAIST, Nomi-shi, 923–1292 Japan.
††The author is with the Center for Information Science, JAIST

and PREST, Japan Science and Technology Agency, Nomi-shi,
923–1292 Japan.

∗The autor has moved to Fujitsu Laboratry Ltd.
∗∗This research is conducted as a program for the “21st Century

COE Program” by Ministry of Education, Culture, Sports, Science
and Technology, Japan.

a) E-mail: yuanyuan@jaist.ac.jp
DOI: 10.1093/ietisy/e90–d.1.40

use [3]–[5]. However, in grid since users with competing
goal share resources, resources are upgraded, fail, and so
on, host load and availability vary over time. Such dynam-
icity makes the load prediction problem more difficult. In
this paper we propose a new one-step-ahead time series pre-
diction strategy which behaves better than previously pro-
posed techniques. Such one-step-ahead load prediction can
be extended to multi-steps-ahead prediction, and then task
running times can be predicted based on such CPU load pre-
dictions, so one-step-ahead load prediction is the basis for
the task running time prediction, and in turn very important
for the performance of applications and grid schedulers. We
have achieved some preliminary results for using the work
in this paper to solve the task running time prediction prob-
lem, which can be found in [6].

Our one-step-ahead CPU load prediction strategy is a
kind of tendency-based method, which predicts the one-
step-ahead load value based on the “ascending” or “de-
scending” tendency of load signal several steps backward,
and uses 2nd or 3rd order polynomial fitting to determine
the prediction value. We also predict based on a search of
previous similar “patterns”. Our experimental results on a
commonly used host load measurement dataset show that
our proposed strategy consistently outperforms the previ-
ous Last Measurement predictor, Tendency-based predictor,
AR linear models, and the Network Weather Service (NWS)
system [7].

The paper structure is as follows. In Sect. 2, we discuss
related work. In Sect. 3, we introduce our prediction strategy
in detail. Section 4 describes the results of experiments in
which our prediction method was compared with previous
work. Finally in Sect. 5 we conclude the paper.

2. Related Work

In [8] Dinda presented a comprehensive analysis on the sta-
tistical properties of host load. The significant result is that
although load exhibits complex properties, it is still consis-
tently predictable to a very useful degree from past behavior.
This work encourages us that there is abundant opportunity
for prediction algorithms to improve matters.

Several CPU load prediction strategies have been pro-
posed [9], [10]. Among them, NWS is a system that dy-
namically forecasts the performance of network and com-
putational resources. For every resource, NWS uses several
methods to forecast simultaneously. The overall best per-
formed method at time t is then used to predict the load at

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



ZHANG et al.: CPU LOAD PREDICTIONS ON THE COMPUTATIONAL GRID
41

time t+1. The predictive methods currently used in NWS
include running average, sliding window average, last mea-
surement, adaptive window average, median filter, adaptive
window median, α-trimmed mean, stochastic gradient, and
auto-regression (AR).

Dinda et al. [2] evaluated different linear time series
models [11], including AR, MA, ARMA, ARIMA, and
ARFIMA, for predicting load from 1 to 30 seconds into the
future. His conclusion is that considering both computa-
tional overhead and prediction accuracy, simple, practical
models such as AR models with the model order higher than
16 are sufficient for host load prediction.

Yang et al. [12] proposed several homeostatic and
tendency-based one-step-ahead prediction strategies. The
idea of homeostatic methods is that the mean of a load series
remains steady, while tendency-based strategies assume that
a load series always retains its “tendency”, that is, if current
value increases, the next value will also increase, or vice
versa. The increment/decrement used in the methods is ad-
justed according to the values of the last load measurement
and the last prediction error.

In this paper we propose and evaluate a new one-step-
ahead load prediction strategy. Our strategy is tendency-
based, which predicts based on the variety tendency of load
signal several steps backward, and uses polynomial fitting
to determine the prediction value. We also predict based on
the measurements in previous similar “patterns”.

3. CPU Load Prediction

Based on our study on the statistical properties of host load
traces, our prediction strategy predicts the next load value
based on polynomial fitting and “similar” patterns.

We use the following notations in the description of the
prediction strategy:

VT : the measured load at the Tth measurement.
PT+1: predicted value for the (T+1)th measurement.
N: number of historical data points used for the predic-

tion of PT+1.

3.1 Prediction Based on Polynomial Fitting

Polynomial models are a great tool for many engineering
and manufacturing applications, hence polynomial fitting is
sometimes used to estimate and predict the future data and
their direction [13]. In most modern data analysis tools for
example Matlab and Origin, the polynomial fitting is a basic
function. In the modern computer science polynomial fitting
has become a common approach for signal processing and
data analysis [14].

Similar to some methods in [12], our prediction strat-
egy is a kind of tendency-based method because we pre-
dict based on the increases or decreases of previous mea-
surements. However, our method to predict the increment
or decrement for next step is based on multi-order polyno-
mial fitting, while the tendency-based method used in [12] is
somewhat a 1st order polynomial fitting method, i.e., linear

fitting. It is obvious that such linear fitting is not so consis-
tent with reality, so we try the multi-order polynomial fitting
method. To determine the order of the polynomial function,
we have studied the rule that the CPU load traces vary and
run a set of experiments. From our observations we found
that 2nd or 3rd order polynomial fitting achieves much better
(and the best) fitting effect than the 1st order (linear) fitting
does when a load trace varies smoothly and monotonously;
therefore in our prediction we try both 2nd and 3rd order
polynomial fitting and choose the one that is closer to the
current measurement as the predicted value for next load
measurement. The detail is that when the last 3 (VT−2, VT−1,
VT ) or 4 (VT−3, VT−2, VT−1, VT ) load measurements increase
or decrease monotonously, we use these measurements to
produce a 2nd or 3rd order polynomial fitting function and
then use the function value at the next time point as PT+1.

3.2 Prediction Based on Similar Patterns

The polynomial fitting method can provide satisfying pre-
diction when load traces vary smoothly and monotonously,
however, such fitting does not work well for the prediction
of a “turning point”, the time when a load series changes its
“direction”, (that is, the point at which a load series begins
to decrease after a number of increases, or starts to increase
after some successive decreases), or when a “turning point”
is used as one data point to fit the polynomial function. For
such turning points, the tendency-based prediction method
in [12] uses the average of all the past measurements as the
threshold to judge if the point to be predicted will be a turn-
ing point or not; if yes, it adjusts the increment according to
the magnitude of the last measurement. However, if the cur-
rent point is a turning point, for example, if the load trace
begins to decrease at this point after several increases, ac-
cording to the tendency-based method the predicted value
will still increase, although the real measurement decreases.
Therefore such a prediction strategy introduces considerable
prediction error.

To deal with this problem, we predict the load value at
a possible turning point based on the information of pre-
vious similar “patterns”. Here a “pattern” is the succes-
sive increases or decreases between two neighboring turn-
ing points. Two patterns with same number of data points
and same tendency are thought to be “similar”. We observe
that there are many successive and similar “patterns” occur-
ring in the load series, as shown in Fig. 1. Because of this
observation, we can predict the value of a possible turning
point based on the information of previous similar patterns.
In detail, if the point to be predicted comes after several (at
least 3) successive decreases (the first point of these succes-
sive decreases is a turning point), while there are same num-
ber of successive decreases before this series of decreasing
points, then we think that the point to be predicted is quite
possibly a turning point and these two decreasing series are
similar “patterns”, so we use the value of last turning point
as the prediction value, PT+1. If we can’t find such similar
patterns we will still use the polynomial fitting method to



42
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.1 JANUARY 2007

Fig. 1 Similar “patterns” in the load traces.

predict.
To predict a point one or two steps after a turning point,

a polynomial fitting based prediction will also result in a
large prediction error because such prediction uses the turn-
ing point, so we predict such points also based on similar
patterns: we use the increment for the point in same posi-
tion in last pattern as the increment for current point if last
two patterns are similar.

To predict a point after several (at least 3) successive
increases, if we can find a successively increasing pattern
immediately before these increasing points, we will use the
information of this pattern to judge if current point is a turn-
ing point or not and then predict: if the number of points
in this pattern has been same as that of last pattern, then we
think that next point will be a turning point and use the value
of last turning point as PT+1; if the number is less than that
of last pattern, then we use polynomial fitting to predict next
value; if we can’t find a successively increasing series we
will choose a “conservative” strategy: we use VT as PT+1.

For the other cases we also choose a conservative pre-
diction strategy that sets the increment/decrement between
VT and PT+1 at 0.

3.3 Analysis of Time Complexity

It is obvious that the time complexity of our proposed pre-
diction algorithm mainly depends on polynomial fitting,
while since we only use 3 or 4 load measurements to fit a
2nd or 3rd order polynomial fitting function, the computa-
tional cost is very small. This complexity is comparative
with Last Measurement and Tendency-based method, and
much lower than that of AR linear models and NWS.

4. Experimental Evaluations

4.1 Experimental Environment

To validate if our proposed prediction strategy performs bet-
ter than the other methods or not in the context of CPU load
prediction, we ran a series of experiments to compare our
method with Last Measurement, Tendency-based, AR mod-
els, and NWS on a large set of CPU load time series with

a variety of statistical properties. The load traces we used
are the load time series set on a Unix system and were col-
lected by Dinda [15]. The load here refers to the number of
processes that are running or ready to run. The kernel sam-
ples the number at some period and exponentially averages
some previous samples to produce a load average. To satisfy
the Nyquist criterion, Dinda chose a 1 HZ sample rate and
exponentially averaged with a time constant of five seconds.

In the first and second part of this section, we evalu-
ate these five time series prediction strategies on CPU load
traces collected from four heterogeneous machines. These
four machines demonstrate different CPU load statistical
properties, as illustrated in Fig. 2. There are two groups of
machines. The first is in an Alpha cluster. In this group,
the machine axp0 is an interactive machine, while axp7 is
a batch machine. The machines in the second group are
a compute server named sahara and a desktop workstation
named themis.

axp0.psc.edu is a heavily loaded, highly variable in-
teractive machine with mean CPU load 1 and standard de-
viation 0.54. The total number of data in this time series is
1,296,000 (for 75 days).

axp7.psc.edu is a more lightly loaded batch machine
which reveals interesting epochal behavior. The average of
CPU load is only 0.12 and its standard deviation is 0.14. The
total number of data is 1,123,200 (for 65 days).

sahara.cmcl.cs.cmu.edu is a moderately loaded (mean
load 0.22), big memory compute server. The standard devi-
ation of the CPU load is 0.33. The total number of data is
345,600 (for 20 days).

themis.nectar.cs.cmu.edu is a moderately loaded
(mean load 0.49) desktop machine. The load on this ma-
chine has high standard deviation of 0.5. The total number
of data is 345,600 (for 20 days).

4.2 Evaluation Results for AR Models

For the data set on each machine we want to compare our
proposed method with AR linear models using different
numbers of data from 1 day to the total number of the data to
evaluate its effectiveness. We choose AR model other than
other linear or nonlinear time series models is because that
as Dinda has mentioned, AR models can achieve consid-
erably accurate prediction with much lower computational
cost comparing with other models.

For an AR model, if the current value of a time series
is only related to the last p values, then the model is called
a p-order model, or AR(p) model. Since the order is the
most important parameter for an AR model, first of all we
want to know which order we should choose for prediction
with an AR model considering both the prediction accuracy
and the computational overhead. To do this, we conducted
prediction experiments on the load traces collected from the
above four machines with the model order of AR models
increasing from 1 to 20 to try to disclose the relationship
between AR model order and the prediction accuracy.

The result is shown in Fig. 3. Here the prediction error



ZHANG et al.: CPU LOAD PREDICTIONS ON THE COMPUTATIONAL GRID
43

(a) axp0.psc.edu (b) axp7.psc.edu

(c) sahara.cmcl.cmu.edu (d) themis.nectar.cmu.edu

Fig. 2 CPU load time series collected from four machines.

for a measurement is the ratio between the absolute value of
prediction error (the difference between a predicted value
and the measurement) and the measurement. The mean
of prediction errors is the average error ratio for the pre-
diction error ratios of all the data in a time series. From
Fig. 3 we can see that the prediction error doesn’t decrease
monotonously as the increase of the order of AR models.
This means that a higher order AR model does not always
correspond to more accurate prediction. This is an interest-
ing phenomenon which is beyond our expectation.

What should also be noticed is that the curves which
represent the prediction errors with different numbers of
data on each of the four machines are very similar, that is,
the orders of AR models corresponding to the best predic-
tions with different numbers of data on each machine are
same, although the prediction curves on different machines
vary significantly. For example, on machine axp7, traces
with data of 1 day, 5 days, 10 days, 15 days, 20 days and
65 days achieve minimum prediction error all using AR(6)
model. On machine axp0, although the best AR models for
traces with different numbers of data are different, the differ-
ences of prediction errors between the best AR models with
different numbers of data are negligible. For example, trace
with data of 1 day on axp0 achieves best prediction with
AR(17) model, while the best order of AR model for trace
with data of 5 days on same machine is 7, but the prediction
errors for AR(7) and AR(17) models with either data of 1
day or 5 days are almost same. This is because although the
numbers of data for traces on a machine are different, these
traces reveal similar statistical characteristics; therefore the

best AR models for them are same. This hints us that if we
use AR model for CPU load prediction, we can use only a
small part of the load trace history as training data to find
the best AR model for this trace, and then use the model to
predict the future CPU load.

4.3 Comparison of Five Prediction Strategies

The evaluation results, using our prediction strategy to pre-
dict the CPU load on the above four machines, are shown
in Table 1. Here the standard deviation (SD) of prediction
errors is the standard deviation for the prediction error ra-
tios of all the data in a time series. We conduct a com-
parison for our proposed method with Last Measurement,
Tendency-based, AR models, and NWS.

We try AR models with the model order increases from
1 to 20. For AR model in Table 1, the data in the bracket
following the prediction error is the order of AR model
which achieves best prediction for AR models from AR(1)
to AR(20).

For Last Measurement, AR models and NWS, since
NWS uses the best performed method among methods in-
cluding Last Measurement and AR models to predict next
value, its performance usually should be no worse than that
of the other two. Our evaluation results shown in Table 1
validate this. For the Tendency-based method and NWS, Ta-
ble 1 shows that usually NWS achieves better performance
compared with the Tendency-based strategy. While for Last
Measurement, Tendency-based and AR models, there is no
strict ordering relationship among them. Notice that the pre-



44
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.1 JANUARY 2007

(a) axp0 (b) axp7

(c) sahara (d) themis

Fig. 3 Prediction errors for the AR models from AR(1) to AR(20) on the four machines.

diction result for AR model we show here is actually the best
result for all the AR models from AR(1) to AR(20), there-
fore the overhead of AR models is much higher than that of
the other two methods.

For the data set on each machine we evaluate the five
strategies using different numbers of data from 1 day to the
total number of the data. The results show that the predic-
tion error has no direct relationship with the amount of data,
but from the experimental results we can see that in all cases
our prediction strategy performs quite better than the other
four methods for all of the four load traces which have dif-
ferent load properties. Specifically, for the total number of
data on the four machines, our proposed method gives an av-

erage prediction error rate of 10.57% on axp0 which is 22%
less than that incurred by NWS and the best AR model be-
tween AR(1) and AR(20), 44% less than that of Tendency-
based method, and 39% less than that of Last Measurement
method; 2.73% for load series collected from axp7 which
is 75% less than that incurred by NWS and the best AR
model, 82% less than that of Tendency-based method, and
86% less than that of Last Measurement method; 9.2% for
load series collected from sahara which is 47% less than the
error rate of NWS, 58% less than that of the best AR model,
50% less than that of the Tendency-based method, and 56%
less than that of Last Measurement; and 10.6% for load se-
ries collected from themis which is 35% less than that of



ZHANG et al.: CPU LOAD PREDICTIONS ON THE COMPUTATIONAL GRID
45

Table 1 Mean and SD of prediction errors of different prediction strategies.

(1) Mean and SD of the prediction errors on time series collected from axp0.psc.edu.
axp0 1 day 5 days 10 days 15 days 20 days 75 days

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
(%) (%) (%) (%) (%) (%)

Last Measurement 10.09 0.41 13.08 0.48 15.02 0.44 15.26 0.48 15.71 0.46 17.25 0.50
Tendency-based 10.58 0.43 13.73 0.54 15.93 0.40 16.32 0.47 16.80 0.48 18.99 0.44

AR Model 9.39 0.37 12.90 0.45 15.00 0.43 15.20 0.47 15.74 0.35 13.50 0.47
(order of model) (17) (17) (7) (7) (1) (1) (1) (1) (1) (1) (1) (1)

NWS 9.39 0.37 12.9 0.45 13.47 0.41 14.73 0.44 15.2 0.41 13.5 0.47
Our method 6.54 0.20 7.86 0.22 8.31 0.33 9.33 0.28 10.10 0.39 10.57 0.37

(2) Mean and SD of the prediction errors on time series collected from axp7.psc.edu.
axp7 1 day 5 days 10 days 15 days 20 days 65 days

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
(%) (%) (%) (%) (%) (%)

Last Measurement 24.44 0.27 22.37 0.24 21.32 0.37 19.18 0.34 17.56 0.36 18.97 0.33
Tendency-based 20.45 0.22 18.00 0.26 17.02 0.39 15.34 0.29 20.45 0.32 15.02 0.38

AR Model 8.28 0.19 10.83 0.17 12.17 0.29 13.27 0.20 14.19 0.35 10.76 0.25
(order of model) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)

NWS 8.28 0.19 10.83 0.17 11.37 0.21 13.27 0.20 14.19 0.35 10.76 0.25
Our method 3.14 0.16 3.06 0.23 2.92 0.13 2.83 0.07 2.81 0.08 2.73 0.08

(3) Mean and SD of the prediction errors on time series collected from sahara.cmcl.cs.cmu.edu.
sahara 1 day 5 days 10 days 15 days 20 days

Mean SD Mean SD Mean SD Mean SD Mean SD
(%) (%) (%) (%) (%)

Last Measurement 27.39 0.41 24.8 0.39 24.09 0.34 22.14 0.35 20.99 0.31
Tendency-based 23.59 0.33 20.90 0.35 20.20 0.26 18.74 0.34 18.28 0.37

AR Model 26.22 0.36 24.10 0.47 23.79 0.23 22.69 0.39 21.95 0.42
(order of model) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)

NWS 13.52 0.31 15.14 0.31 16.32 0.19 18.15 0.26 17.3 0.29
Our method 7.54 0.25 9.86 0.31 10.31 0.12 11.33 0.21 9.20 0.23

(4) Mean and SD of the prediction errors on time series collected from themis.nectar.cs.cmu.edu.
themis 1 day 5 days 10 days 15 days 20 days

Mean SD Mean SD Mean SD Mean SD Mean SD
(%) (%) (%) (%) (%)

Last Measurement 3.63 0.07 17.73 0.60 22.51 0.39 24.06 0.37 20.33 0.34
Tendency-based 3.13 0.05 20.30 0.55 25.85 0.34 27.48 0.51 27.37 0.48

AR Model 2.23 0.05 18.10 0.48 23.06 0.30 24.89 0.41 20.86 0.40
(order of model) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)

NWS 2.23 0.05 14.25 0.46 15.42 0.24 17.11 0.21 16.21 0.35
Our method 1.97 0.05 8.93 0.40 9.51 0.04 11.39 0.14 10.60 0.25

NWS, 49% less than that of the best AR model, 61% less
than that of the Tendency-based strategy, and 48% less than
that of Last Measurement. Compared with other methods,
our strategy is especially effective for predicting CPU load
on machine axp7.

4.4 Varied Load Series Comparisons

Dinda provides traces on 38 machines in his homepage.
We hope to conduct a complete comparison between our
method and the previous strategies on all of these traces,
but unfortunately the other traces are not available currently,
therefore to further testify the effect of our prediction strat-
egy, we downloaded traces from the homepage of Yang [16].
The number of data in every trace is 10,000. We classify
these traces into four groups according to the values of their
means and standard deviations. The mean that is larger than
1 is called “high” mean; while one which is smaller than 0.5
is called a “low” mean. On the other hand, the standard de-

viation which is larger than 0.25 is called a “high” standard
deviation, or in short high std.; while std. smaller than 0.2
is judged as “low” std.. We classify the traces into groups
of “High mean” and “High std.” (HH), “High mean” and
“Low std.” (HL), “Low mean” and “Low std.” (LL), and
“Low mean” and “High std.” (LH). There are 14 traces in
each group.

The experimental results for the above five strategies
on these four groups of traces are shown in Fig. 4. The cap-
tion of horizontal axis in each figure represents the names
of the load traces. Among Last Measurement, Tendency-
based, AR models and NWS, we can see that NWS achieves
the best prediction performance for all of the four groups,
while there is no clear ordering relationship among the other
three. For all of the traces, our prediction strategy performs
better than all of the other four strategies. The reduction
of prediction errors is especially significant in Fig. 4 (c) and
Fig. 4 (d).



46
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.1 JANUARY 2007

(a) Traces with high mean, high std. (b) Traces with high mean, low std.

(c) Traces with low mean, low std. (d) Traces with low mean, high std.

Fig. 4 Prediction results of different prediction strategies for traces with different statistical characteristics.

5. Conclusion

Prediction of future system performance is helpful and im-
portant for job scheduling and resource management in a dy-
namic, resource-sharing grid environment. In this paper we
introduce and evaluate a one-step-ahead CPU load predic-
tion strategy which predicts based on the variety tendency of
a number of past steps and on previous similar patterns, us-
ing a polynomial fitting method. The experiment results we
conducted on over 50 CPU load series demonstrate that this
new prediction strategy outperforms the previously methods

significantly. Specifically, for four large traces on four dif-
ferent types of machines, its average prediction errors are
between 22% and 86% less than those incurred by four ex-
isting prediction strategies. Our future work is to extend the
application of our prediction strategy to other resource sig-
nals.

References

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New Com-
puting Infrastructure, Morgan Kaufmann Publishers, San Fransisco,
CA, 1999.

[2] P.A. Dinda and D.R. O’Hallaron, “Host load prediction using linear



ZHANG et al.: CPU LOAD PREDICTIONS ON THE COMPUTATIONAL GRID
47

models,” J. Cluster Computing, vol.3, no.4, pp.265–280, 2000.
[3] P.A. Dinda, “A prediction-based real-time scheduling advisor,” Proc.

16th Int’l Parallel and Distributed Processing Symp. (IPDPS 2002),
pp.1–8, 2002.

[4] S. Jang, X. Wu, and V. Taylor, “Using performance prediction to
allocate grid resources,” Technical report, GriPhyN 2004-25, pp.1–
11, 2004.

[5] L. Yang, J.M. Schopf, and I. Foster, “Conservative scheduling: Us-
ing predicted variance to improve scheduling decisions in dynamic
environment,” Proc. ACM/IEEE SC2003 Conf. on High Perfor-
mance Networking and Computing, pp.1–16, 2003.

[6] Y. Zhang, W. Sun, and Y. Inoguchi, “Predict running time of grid
tasks based on CPU load predictions,” The 7th IEEE/ACM Int’l
Conf. on Grid Computing (Grid2006), pp.1–7, 2006.

[7] M. Swany and R. Wolski, “Multivariate resource performance fore-
casting in the network weather service,” Proc. ACM/IEEE SC2002
Conf. on High Performance Networking and Computing, pp.1–10,
2002.

[8] P.A. Dinda, “The statistical properties of host load,” Technical Re-
port, CMU, pp.1–23, 1998.

[9] S. Akioka and Y. Muraoka, “Extended forecast of CPU and net-
work load on computational grid,” 2004 IEEE Int’l Symp. on Cluster
Computing and the Grid, pp.765–772, 2004.

[10] J. Liang, K. Nahrstedt, and Y. Zhou, “Adaptive multi-resource pre-
diction in distributed resource sharing environment,” 2004 IEEE
Int’l Symp. on Cluster Computing and the Grid, pp.1–8, 2004.

[11] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis, Forecast-
ing and Control, Prentice Hall, 1994.

[12] L. Yang, I. Foster, and J.M. Schopf, “Homeostatic and tendency-
based CPU load predictions,” Proc. 17th Int’l Parallel and Dis-
tributed Processing Symp. (IPDPS 2003), pp.42–50, 2003.

[13] http://www.itl.nist.gov/div898/handbook/
[14] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction

to Algorithms, Second ed., The MIT Press, 2001.
[15] http://www.cs.cmu.edu/˜pdinda/LoadTraces/
[16] http://people.cs.uchicago.edu/˜lyang/Load/

Yuanyuan Zhang received the B.E. degree
in School of Mechano-Electronic Engineering,
and M.E. degree in School of Computer Sci-
ence and Technology from Xidian University,
China, in 2000 and 2003, respectively. She re-
ceived Ph.D. from Graduate School of Infor-
mation Science, JAIST (Japan Advanced Insti-
tute of Science and Technology) in 2006. She
is a researcher of Fujitsu Laboratory Ltd since
2006. Her current research interest is about re-
source management and information service in

grid computing.

Wei Sun received his B.E. and M.E. de-
grees from Tianjin University, China, in 1998
and 2005. From 1998 to 2002 he was an engi-
neer in the Sixth Research Institute (Electronics)
of Ministry of Information Industry of China.
He is currently a PhD candidate at JAIST. His
research deals with large scale distributed sys-
tem, parallel and heterogeneous computing.

Yasushi Inoguchi received his B.E. degree
from Department of Mechanical Engineering,
Tohoku University in 1991, and received M.S.
degree and Ph.D from Japan Advanced Institute
of Science and Technology (JAIST) in 1994 and
1997, respectively. He is currently a Associate
Professor of Center for Information Science at
JAIST. He was a research fellow of the Japan
Society for the Promotion of Science from 1994
to 1997. He is also a researcher of PRESTO pro-
gram of Japan Science and Technology Agency

since 2002. His research interest has been mainly concerned with paral-
lel computer architecture, interconnection networks, and high performance
computing on parallel machines. Dr. Inoguchi is a members of IEEE and
IPS of Japan.


