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PAPER Special Section on Parallel/Distributed Computing and Networking

Influence of Inaccurate Performance Prediction on Task Scheduling
in a Grid Environment∗

Yuanyuan ZHANG†a), Nonmember and Yasushi INOGUCHI††, Member

SUMMARY Efficient task scheduling is critical for achieving high per-
formance in grid computing systems. Existing task scheduling algorithms
for grid environments usually assume that the performance prediction for
both tasks and resources is perfectly accurate. In practice, however, it is
very difficult to achieve such an accurate prediction in a heterogeneous and
dynamic grid environment. Therefore, the performance of a task schedul-
ing algorithm may be significantly influenced by prediction inaccuracy. In
this paper, we study the influence of inaccurate predictions on task schedul-
ing in the contexts of task selection and processor selection, which are two
critical phases in task scheduling algorithms. We develop formulas for
the misprediction degree, which is defined as the probability that the pre-
dicted values for the performances of tasks and processors reveal different
orders from their real values. Based on these formulas, we also investigate
the effect of several key parameters on the misprediction degree. Finally,
we conduct extensive simulation for the sensitivities of some existing task
scheduling algorithms to the prediction errors.
key words: grid computing, task scheduling, performance prediction, task
selection, processor selection

1. Introduction

Grid computing [1], the internet-based infrastructure that
aggregates geographically distributed and heterogeneous re-
sources to solve large-scale problems, is becoming increas-
ingly popular because it provides us with the ability to dy-
namically link resources together as an ensemble to sup-
port the execution of large-scale, resource-intensive, and
distributed applications. Many projects have been devel-
oped to implement the pervasive applications of Grid, such
as Globus [2], GrADS [3], DataGrid [4] and Legion [5].

Resource management is the central part of a grid envi-
ronment that makes the grid work properly. The process of
resource management in grid environment involves, in gen-
eral, the discovery of available resources, the selection of an
application-appropriate subset of those resources, and the
mapping of tasks onto the selected resources. The mapping
of tasks onto resources, which is called task scheduling, is
a critical component for achieving high performance in a
grid computing environment. The objective of task schedul-
ing problem is to minimize some metric. A typical goal is

Manuscript received April 4, 2005.
Manuscript revised August 16, 2005.
†The author is with the School of Information Science, JAIST,

Nomi-shi, 923–1292 Japan
††The author is with the Center for Information Science, JAIST,

Nomi-shi, 923–1292 Japan
∗This research is conducted as a program for the “21st Century

COE Program” by Ministry of Education, Culture, Sports, Science
and Technology, Japan.

a) E-mail: yuanyuan@jaist.ac.jp
DOI: 10.1093/ietisy/e89–d.2.479

to minimize the application makespan, the time elapsed be-
tween the first application task starts executing and the last
task completes. Since this problem is NP-complete in most
cases [6], different heuristics have been used to reach a near-
optimal solution.

Because of its key importance, the task scheduling
problem has been extensively studied and various algo-
rithms have been proposed in the literature [7]–[10]. Usu-
ally, the scheduling process of these algorithms involves
two phases: task selection and processor selection. In the
task selection phase, the tasks are sorted in a list; while in
the processor selection phase, the first task in the list is se-
lected and allocated to a processor. Scheduling algorithms
often use prediction values for the performances of tasks
and processors to perform the assignment of tasks to re-
sources, therefore, accurate performance prediction is criti-
cal for the achievement of satisfactory performance of a grid
task scheduling system. Usually such predictions are exe-
cuted by some performance prediction tool and can be dis-
tinguished into two categories: application run time predic-
tion [11], [12] and processor load prediction [13]–[15], each
of which has been widely studied.

It is almost always assumed that a scheduling algo-
rithm is able to obtain perfect prediction knowledge about
the performance of both tasks and processors, and thus don’t
take prediction error into consideration. However, although
modern performance prediction tools are increasingly accu-
rate, it is still impossible to obtain exact predictions since
the grid, in which many applications share resources, is a
highly dynamic environment. The implementations of the
scheduling algorithms will use inaccurate predictions, ac-
cordingly the performance of these algorithms is influenced
by such inaccuracies, and different algorithms reveal differ-
ent degrees of sensitivity to them. Therefore it is necessary
to evaluate the scheduling algorithms not only under the tra-
ditional assumption of perfectly accurate prediction, but also
under a variety of prediction error scenarios. In this paper,
we focus on the influence of inaccurate performance pre-
diction on task scheduling in detail from the perspectives of
task selection and processor selection in a grid environment.

The remainder of this paper is organized as follows: in
the next section, we analyze the influence of inaccurate pre-
diction on task scheduling, introduce the concept of mispre-
diction degree, and establish related formulas. The impact
of some key parameters in the formulas is evaluated and pre-
sented in Sect. 3. Section 4 presents the simulation results
of the sensitivity of several existing scheduling algorithms
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to the inaccurate performance prediction. Finally, we con-
clude the paper in Sect. 5.

2. Analysis of the Influence of Prediction Error on Task
Scheduling

Grid computing is a highly heterogeneous and dynamic en-
vironment. The heterogeneity comes from the fact that
the resources in grid can cover many different types of
resources, such as supercomputers, storage systems and
databases, scientific instruments, and visualization devices;
even resources of same type may have different configu-
rations. The dynamic characteristic comes from the non-
dedicated nature of grid resources, that is, grid applica-
tions can only use the spare capability of the grid resources.
Therefore the task scheduling problem in a grid environment
is much different from that in a homogeneous system and is
much more difficult. In this section, we analyze the effect of
inaccurate prediction on task scheduling from task selection
phase and processor selection phase.

2.1 Notations

Table 1 describes the notations used in the paper.
For two tasks T1 and T2, let at1 and at2 be respectively

the actual run times of T1 and T2. et1 and et2, which de-
note prediction errors of at1 and at2, are independent ran-
dom variables. In a grid scheduling system, when we use
performance prediction tools to predict the performance of
the tasks, the predicted errors usually lie in an interval of
the actual run times according to some probability distribu-
tion [16], so we assume et1 and et2 follow some probability
distribution with the probability density function g(et)in the
ranges of [−αat1, βat1] and [−αat2, βat2].

pt1 and pt2 are the predicted run times of T1 and T2.
For pt1 and pt2, we have the following equations:

pt1 = at1 + et1; pt2 = at2 + et2. (1)

Since eti(i=1,2) is in [−αati, βati], pti will fall in
[(1−α)ati, (1+β)ati]. Because pti>0, the possible value
ranges of α and β are [0, 1) and [0,∞) respectively.

For the relationship between actual and predicted
speeds of processors, we also have similar equations.

Table 1 Notations.

Phase Notation Description

Ti A task in the application
ati Actual run time. ati>0

Task eti Prediction error of ati
Selection pti Predicted run time. pti>0

f(at) p.d.f. of actual run time at
g(et) p.d.f. of et

m Number of processors
Pi A processor in the grid

Processor asi Actual speed. asi>0
Selection esi Prediction error of asi

psi Predicted speed. psi>0
h(es) p.d.f. of es

2.2 Task Selection

Since it is impossible to obtain accurate predictions for the
run times of the tasks because of the dynamic nature of the
grid, the actual run times of the tasks will be different from
the predicted values, and this will affect the performance
of task scheduling algorithms in the grid environment. For
example, if the actual run time of task Ti is less than that
of task T j, while because of prediction error, the predicted
run time of Ti is more than that of T j, then we will make
an incorrect scheduling decision if we schedule the tasks
based on their predicted run times. Furthermore, different
algorithms will have different degrees of sensitivity to such
an error.

In this paper we focus on a grid application which is
composed of a set of independent tasks. The actual run
times of these tasks are independent identical distribution
(i.i.d.) random variables. Usually task scheduling algo-
rithms schedule tasks based on their predicted run times.
When, for example, an algorithm schedules the task with
the longest run time first or with the shortest run time first,
inaccurate prediction can have a remarkable influence on its
performance if the actual run time of task T1 is smaller than
that of task T2 while the predicted value of T1 is greater
than that of T2. We call such a situation misprediction. Be-
cause different performance prediction tools have different
degrees of prediction inaccuracy, they can create different
degrees of misprediction. Therefore, what we are interested
in is the probability that misprediction will occur, i.e., P(pt1
> pt2|at1 < at2), which is called misprediction degree for
two tasks here.

The above probability can be converted into:

P (pt1 > pt2|at1 < at2)

= P(at1 + et1 > at2 + et2|at1 < at2)

= P(et1 > et2 + at2 − at1|at1 < at2), (2)

where et1∈[−αat1, βat1], and et2∈[−αat2, βat2].
In the coordinate system of et1 and et2, the inequality

et1 > et2 + at2 − at1 is the area above the line L: et1 = et2 +
at2 − at1, and the probability of P(et1 > et2 + at2 − at1|at1 <
at2) can be expressed by the area of the overlapping region
between L and the rectangle surrounded by the lines et1 =

Fig. 1 The probability P(et1 > et2 + at2 − at1 |at1 < at2) can be expressed
as the overlapping area between L: et1 = et2 + at2 − at1 and the rectangle.
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Fig. 2 The case when there is no misprediction. (a) value ranges of pre-
dicted run times which don’t overlap; (b) situation of the misprediction
degree.

−αat1, et1 = βat1, et2 = −αat2 and et2 = βat2, as shown in
Fig. 1.

About the overlapping region, we have the following
conclusion:

Proposition 1. There are only two cases for the over-
lapping region between L and the rectangle: either they
don’t overlap or they overlap in a triangle region.

Proof. (1) The line which is parallel to L and passes the
point (βat1, −αat2) is et1 = et2 + αat2 + βat1. If L is above
this line, then we can see intuitionally that there is no over-
lapping between L and the rectangle. That is to say, if at2
− at1 ≥ αat2 + βat1, i.e., if (1−α)at2 ≥ (1+β)at1, the prob-
ability P(et1 > et2 + at2 − at1|at1 < at2) equals to 0. This
is very easy to understand because in this case the predicted
run time of T2 is always greater than that of T1, it is impos-
sible for the misprediction to happen. This case is shown in
Fig. 2. It can be expressed mathematically as:

P(et1 > et2 + at2 − at1|at1 < at2) = 0

i f (1 − α)at2≥ (1 + β)at1, at2>at1 (3)

(2) If L is under the line et1 = et2 + αat2 + βat1, then it will
overlap with the rectangle. The probability for mispredic-
tion to happen is equal to the area of the overlapping region.
The line which is parallel to L and passes the point (−αat1,
−αat2) is: et1 = et2 + α(at2 − at1). Since 0 ≤ α < 1, α(at2
− at1) < at2 − at1. So L is always above the line et1 = et2
+ α(at2 − at1). From Fig. 3 we can see that the overlapping
region can only be a triangle.

So the proof is completed.

In the case in which L and the rectangle overlap in a
triangle, the area of the overlapping region, i.e., the prob-
ability P(et1 > et2 + at2 − at1|at1 < at2), can be expressed
by the double integral of the probability density functions
g(et1) and g(et2). So we have the following equation:

Fig. 3 The case in which misprediction happens. (a)the value ranges of
the predicted run times which overlap; (b)situation of the misprediction
degree. The overlapping region is a triangle.

P(et1 > et2 + at2 − at1|et1 < et2)

=

∫ (1+β)at1−at2

−αat2

∫ βat1

et2+at2−at1

g(et1)g(et2)det1det2

i f (1 − α)at2 < (1 + β)at1 (4)

If the probability density function of the actual run
times of the tasks in the grid application is f(at) and the value
range is [tl, tu], then the misprediction degree for the grid
application, which is denoted by DM, is defined as the av-
erage of the misprediction degree between any two tasks in
the application. By virtue of the equation for the mispredic-
tion degree between two tasks as shown before, DM can be
expressed as:

DM =
∫ tu

tl

∫ 1+β
1−α at1

tl
f (at1) f (at2)

∫ (1+β)at1−at2

−αat2∫ βat1

et2+at2−at1

g(et1)g(et2)det1det2dat2dat1

(5)

This result is independent of the specific probability
density functions for f (at) and g(et).

2.3 Processor Selection

In processor selection phase of a task scheduling algorithm,
the algorithm usually selects a processor to execute the se-
lected task according to the execution times of the task on
the processors. Given the computational size, the running
time of a computational-bound task on a processor is de-
cided by the computational speed of the processor which is
perceived by this task, that is, the speed dedicated to exe-
cute this task, which is in turn decided by the load on the
processor. Many researchers have worked on the processor
load prediction, but as a grid is a highly dynamic environ-
ment, the prediction for the processor loads usually can’t be
perfectly accurate, so that the predicted speed to execute the
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task on the processor will be different from the actual speed,
and such inaccurate prediction will affect the performance
of the task scheduling algorithm.

Let asi and as j be the actual speeds of processor Pi and
P j respectively(asi > 0, as j > 0). The prediction errors for
them are esi and es j, which are independent random vari-
ables. esi and es j lies in [−γasi, θasi] and [−γas j, θas j] re-
spectively with the same probability density function h(es).
Similar as the constraint for the values of α and β in task
selection phase, we have 0 ≤ γ < 1, θ ≥ 0. The predicted
speeds of Pi and P j are psi and ps j(psi > 0, ps j > 0). We
have the following equations:

psi = asi + esi; ps j = as j + es j. (6)

The misprediction degree for two processors is defined as
the probability of the event that the actual computational
speed asi is smaller than as j, while because of prediction
errors, the predicted speed psi is greater than ps j, that is,
the probability P(psi > ps j|asi < as j). This can be further
transformed to:

P(psi > ps j|asi < as j)

= P(asi + esi > as j + es j|asi < as j)

= P(esi > es j + as j − asi|asi < as j) (7)

Following a similar method as in task selection, we can
derive the equation for processor selection:

P (esi > es j + as j − asi|asi < as j) = 0

i f (1 − γ)as j ≥ (1 + θ)asi (8)

and

P (esi > es j + as j − asi|asi < as j)

=

∫ (1+θ)asi−as j

−γas j

∫ θasi

es j+as j−asi

h(esi)h(es j)desides j

i f (1 − γ)as j < (1 + θ)asi (9)

The misprediction degree for the scheduling of a task in a
grid system with m processors, which is denoted by DMp, is
defined as the average of the misprediction degree between
any two processors. In virtue of the equation for the mis-
prediction degree between two processors as shown before,

Fig. 4 Influence of parameters α and β on DM:(a) influence of range size of prediction errors.
(b)influence of range location of prediction errors.

DMp can be expressed as:

DMp =
1

C2
m

m−1∑
i=1

m∑
j=i+1

P(esi>es j+as j− asi|asi<as j) (10)

3. Study of Evaluation Results

The formulas established in Sect. 2 do not depend on the
specific distribution of the probability density functions
f(at), g(et) and h(as). In this section, we present the results
of extensive evaluations which assess the impact of the pa-
rameters in formula (5) and formula (10), which represent
the influence of inaccurate prediction on task selection and
processor selection respectively.

3.1 Task Selection Phase

For task selection phase, in formula (5) the parameters are
α, β, tl, tu, f(at) and g(et). For our evaluation, we choose
uniform distribution for both f(at) and g(et). The evaluation
results are shown in Figs. 4 and 5.

Figure 4 shows the influence of parameters α and β on
the misprediction degree for a grid application. In Fig. 4 (a),
(α, β) increases from (0.1, 0.1) to (0.9, 0.9) with the range of
prediction error increases from (−0.1ati, 0.1ati) to (−0.9ati,
0.9ati), while the average prediction error remains con-
stantly to be 0. From Fig. 4 (a) it’s shown that under same
average prediction error, DM increases as range of predic-
tion error increases. This is because as the enlargement of
the range of prediction errors, the range of predicted run
times also increases, so that the probability of misprediction
is increased. In Fig. 4 (b), the range of (α, β) shifts gradu-
ally from (0.1, 0.9) to (0.9, 0.1), so that the predicted error
shifts gradually from (−0.1ati, 0.9ati) to (−0.9ati, 0.1ati),
that is, the range size of prediction error remains, while its
value shifts gradually from overestimate to underestimate.
From Fig. 4 (b) we can see that with the same range size of
prediction error, DM increases as the prediction shifts from
overestimate to underestimate. This can be explained as fol-
lows: for any two tasks T1 and T2 with at1<at2, pti is in
[(1−α)ati,(1+β)ati](i=1,2). As the prediction changes from
overestimate to underestimate, that is, α is increased and β
is decreased, both of the average values of pt1 and pt2 de-
creases, but the decrease of mean of pt2 is larger than that of
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Fig. 5 Influence of actual run time on DM:(a)influence of range size of actual run time. (b)influence
of range location of actual run time.

Fig. 6 Influence of parameters γ, θ, m and processor heterogeneity on the misprediction degree.

pt1 since at2>at1, therefore the probability P(pt1 > pt2|at1 <
at2) increases.

Figure 5 shows the influence of actual run time on DM.
In Fig. 5 (a), the average value of actual run times remains
(at 10), while the range size decreases. Figure 5 (a) shows
that with same average value of actual run time, DM in-
creases as the range size of actual run time decreases. This

is because as the range size of actual run times decreases,
the range size of predicted run times also decreases, so that
increases the probability of misprediction. In Fig. 5 (b), the
range size of actual run time remains constant, while the av-
erage actual run time increases. Figure 5 (b) shows that DM
increases in this case.
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3.2 Processor Selection Phase

The parameters in formula (10) are γ, θ, m, asi (1 ≤ i ≤
m) and h(es). In our investigations, uniform distribution
for h(es) is assumed. The evaluation result is shown in
Fig. 6 (a)–(f), where the horizontal axis in every figure is the
combination of the values of γ and θ, and the vertical axis
is DMp, the misprediction degree for processor selection in
the grid task scheduling system. We assume the processors
are sorted by increasing actual speeds here, that is, we have
asi ≤ as j if i < j.

Figure 6 (a), (c) and (e) show the influence of grid scale
on the misprediction degree, while (b), (d) and (f) show the
impact of heterogeneity. From Fig. 6 (a), (c) and (e) we can
see that the influence of prediction error on the mispredic-
tion degree increases as the number of processors increases
under same processor heterogeneity, while from Fig. 6 (b),
(d) and (f) we draw the conclusion that the influence of
prediction error on the misprediction degree decreases as
the heterogeneity of grid system increases under same grid
scale(number of processors remains). The misprediction de-
gree is maximum(0.5) when the grid becomes a homoge-
neous environment.

In Fig. 6 (a) and (b) the range of (γ,θ) shifts gradu-
ally from (0.1, 0.9) to (0.9, 0.1), so that the predicted error
shifts gradually from overestimate to underestimate. From
Fig. 6 (a) and (b) we draw the conclusion that the mispredic-
tion degree increases gradually as the inaccurate prediction
changes from overestimate to underestimate. This result is
consistent with that in task selection phase. Moreover, such
an increase is slow in highly heterogeneous grid systems,
while in grid systems with low heterogeneity, the mispre-
diction degree increases faster with the shift of (γ,θ).

In Fig. 6 (c) and (d), the range size of prediction error
increases with the increase of (γ,θ), while the average pre-
diction error remains constantly to be 0. In Fig. 6 (c) and
(d), the misprediction degree increases as the range of pre-
diction error increases. This can be explained similarly as in
Fig. 4 (a).

In Fig. 6 (e) and (f), the predicted error shifts from
[−0.1asi, 1.9asi] to [−0.9asi, 1.1asi]. Comparing Fig. 6 (e)
with (a) and (f) with (b), we draw the conclusion that the
misprediction degree increases when both of the range size
and average of prediction error increase.

4. Evaluation of Performance Fluctuation of Schedul-
ing Algorithms under Prediction Error

As we have said in Introduction, different scheduling algo-
rithms have different sensitivities to the prediction inaccu-
racy. We have simulated some existing scheduling algo-
rithms to evaluate the influence of inaccurate predictions on
their performances.

4.1 Simulation Environment

To effectively evaluate and compare the efficacy of the
scheduling algorithms over inaccurate prediction for in-
creasingly complex distributed, dynamic, heterogeneous en-
vironments in order to determine which ones are practical
in computational grid settings, we have developed a simu-
lated grid environment to simulate these algorithms based
on Simgrid toolkit [17] which provides core functionalities
for the simulation of distributed applications in heteroge-
neous distributed environments.

In the simulated grid environment, there are 100 pro-
cessors. Taking into account the characteristic of dynamic-
ity of grid environment, the background load of every pro-
cessor are simulated by a vector of time-stamped values, or
traces, obtained from NWS [18] measurements on real re-
sources. NWS provides dynamic performance prediction
for network and resources over a given time interval. The
total number of tasks is 4000 and tasks arrive in a Poisson
process with the average task arrival interval is 5s. The ac-
tual run times of the tasks are also modelled by traces to
simulate the application in the real world. The scheduling
interval is 1000s.

The task scheduling algorithms we choose here are Fast
Greedy algorithm, Min-Min algorithm, Max-Min algorithm
and Sufferage heuristic [19]. For every condition, we simu-
late every algorithm for 1000 runs to get an unbiased result.
The performance metric we use to evaluate the algorithms is
makespan.

4.2 Experimental Results

In our simulation, we assume uniform distribution for the
prediction error of both application run time and processor
speed.

In Fig. 7, every algorithm is executed with accurate pre-
diction, ±5%, ±10%, ±15%, ±20%, ±25%, and ±30% pre-
diction errors respectively for both of the task run time and
processor speed. Figure 7 shows the average, minimum and
maximum values of makespan of every algorithm under the
selected prediction errors. From the figure we can see that
all of the average value, maximum and minimum value of
makespan of every algorithm increase as the increase of the
prediction error. This means that the influence of prediction
error on all of the scheduling algorithms increases as the
range size of prediction error increases, which is consistent
with our expectation.

From Fig. 7 it can be seen that under the given grid
environment, for accurate prediction, among the four se-
lected scheduling algorithms the makespan of Min-Min is
largest while Max-Min algorithm has the best scheduling
performance. However, under same prediction error, the in-
crease of makespan over the actual values is fastest for the
Sufferage algorithm, while it is slowest for Min-Min algo-
rithm, this means that the influence of inaccurate prediction
is smallest for Min-Min algorithm although it reveals worst
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Fig. 7 Influence of prediction error to different scheduling algorithms.

Fig. 8 Performance of different scheduling algorithms under different prediction errors for tasks and
processors.

performance under accurate prediction.
In Fig. 7 it should also be noticed that in most cases,

scheduling results with prediction errors are worse than
without errors. However, in some cases, scheduling with

prediction errors results in better performance than with ac-
curate prediction. This is because these algorithms are only
heuristics; although they can provide good scheduling per-
formance in most cases, it can not be ensured that what they
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provide is the best result every time. Therefore in some
cases the scheduling result with inaccurate predictions is
better than with accurate ones.

Figure 8 shows the simulation results for the schedul-
ing algorithms with different prediction errors for tasks and
processors. It is shown that for same task(or processor)
prediction error, the average makespan of every algorithm
increases as the increase of the prediction error of proces-
sor(tasks).

5. Conclusion

Task scheduling algorithms usually include two phases: task
selection and processor selection. Prediction inaccuracy for
the performances of tasks and processors usually exists, so
influencing the performance of task scheduling algorithms.
This paper studies the influence of inaccurate prediction on
task scheduling from the perspectives of task selection and
processor selection respectively. Evaluation results show
that in general, underestimating performance can have a
greater influence on task scheduling compared with an over-
estimate of performance, while higher heterogeneity in a
grid computing system results in a smaller influence. Since
different task scheduling algorithms have different degrees
of sensitivity to the prediction error, the sensitivity of four
selected scheduling algorithms to inaccurate performance
prediction is also evaluated by extensive simulation. Our
results are of significant benifit for task scheduling using
predicted data in heterogeneous and dynamic grid environ-
ments.
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