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PAPER

Comparative Performance Analysis of Ordering Strategies

in Atomic Broadcast Algorithms

Xavier DÉFAGO†,††, Regular Member, André SCHIPER†††,
and Péter URBÁN†††, Nonmembers

SUMMARY In this paper, we present the results of a com-
parative analysis of Atomic Broadcast algorithms. The analysis
was done by using an analytical method to compare the perfor-
mance of five different classes of Atomic Broadcast algorithms.
The five classes of Atomic Broadcast algorithms are determined
by the mechanisms used by the algorithms to define the delivery
order. To evaluate the performance of algorithms, the analy-
sis relies on contention-aware metrics to provide a measure for
both their latency and their throughput. The results thus ob-
tained yield interesting insight into the performance tradeoffs of
different Atomic Broadcast algorithms, thus providing helpful in-
formation to algorithms and systems designers.
key words: distributed algorithms, Atomic Broadcast, total or-
der, performance analysis, contention-aware metrics

1. Introduction

Atomic Broadcast, also sometimes called Total Order
Broadcast, is a fundamental problem for distributed
systems. Informally, the problem is defined as a broad-
cast primitive whereby all processes deliver the same
sequence of messages. For instance, it is a powerful
abstraction for solving problems such as process repli-
cation (using the state machine approach) [15] and sup-
port for transactions in replicated databases [12].

There exists a vast amount of literature about
Atomic Broadcast, with more than sixty different al-
gorithms published [8]. However, important as it is,
there have been few analyses on the performance trade-
offs between those algorithms. Cristian et al. [6] study
four different algorithms and compare them using dis-
crete event simulation with random communication de-
lays. Friedman and van Renesse [9] measure the perfor-
mance of six different algorithms over a local network.
They confirm the general observations made by the for-
mer study, and show that packing messages can signif-
icantly improve the performance of Atomic Broadcast
algorithms. These two analyses are indeed interesting,
but they are limited to a few classes of algorithms.
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The aim of our study is to highlight the perfor-
mance tradeoffs inherent to each algorithm, thus help-
ing system designers in their choice. In this paper, we
provide a quantitative comparison of Atomic Broadcast
algorithms, which builds upon previous work on a qual-
itative comparison of those algorithms [8]. We measure
the performance of algorithms using contention-aware
metrics [16],∗ which evaluate both the latency and the
throughput of algorithms. Unlike traditional complex-
ity metrics, those metrics take account of contention on
two types of resources: CPU and network.

The efforts needed to compute the metrics for ev-
ery single algorithm published so far are of course to-
tally disproportionate, and would anyway ask for a
much more precise description of the algorithms. To
overcome this problem, we use the classification sys-
tem defined when surveying of more than sixty differ-
ent Atomic Broadcast algorithms [8]. We rely on the
observation that two different algorithms which belong
to the same class generally have similar communication
patterns. Thus, we can compare classes rather than in-
dividual algorithms, unlike what was done in previous
analyses. Consequently, our results are more general
in scope, but somewhat less accurate. Beside, we can
compare classes of algorithms, but not obtain a realis-
tic estimation of their absolute performance. The re-
sults obtained are however significantly more accurate
than when using only time and message complexity, and
more general than those obtained with simulation. In
short, we use an analytic approach, in contrast to Cris-
tian et al. [6] who use simulation, and Friedman and
van Renesse [9] who measure the actual performance of
the algorithms in a specific settings.

The aim of our study is to highlight important per-
formance tradeoffs associated with the main ordering
strategies. More concretely, our results show that the
choice of an appropriate algorithm depends greatly on
the requirements of the system in which it is to be used.
For instance, we confirm that communication history
algorithms usually provide a good throughput at the
expense of latency, and that fixed sequencer algorithms
have good latency but poor throughput. In most cases,

∗In [16] we also present a comparison of Atomic Broad-
cast algorithms as an illustration for the metrics. However,
that previous analysis is limited to a few algorithms.
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moving sequencer algorithms provide a comprise. We
also show that, contrary to popular belief, the ratio
between computer and network speed is also a deter-
minant factor when choosing an ordering strategy.

The rest of the paper is structured as follows. Sec-
tion 2 presents the system model and important defini-
tions. Section 3 defines the representative algorithms.
Section 4 presents the contention-aware metrics. Sec-
tion 5 analyzes the non-uniform algorithms, followed by
Sect. 6 for the uniform ones. Section 7 consolidates the
observations made previously and concludes the paper.

2. System Model and Definitions

The algorithms considered in this paper are based on
an asynchronous system model (i.e., no assumption on
messages delays or process speed). Communication
channels are reliable and FIFO. Processes can only
fail by crashing, and failures are handled by a group
membership service. The group membership is left un-
specified because we do not analyze the case when fail-
ures (or suspicions) occur. If we did, we would end
up comparing different group membership implemen-
tations instead of Atomic Broadcast algorithms.

2.1 Definition of Atomic Broadcast

Formally, Atomic Broadcast is defined in terms of two
primitives called A-broadcast(m) and A-deliver(m),
where m is some message. When a process p executes
A-broadcast(m) (resp., A-deliver(m)), we may say that
p A-broadcasts m (resp., A-delivers m). We assume
that every message m can be uniquely identified, and
carries the identifier of its sender, given by sender(m).
In this context, Atomic Broadcast is defined by the fol-
lowing properties [4], [10]:

(Validity) If a correct process A-broadcasts a mes-
sage m, then it eventually A-delivers m.

(Agreement) If a correct process A-delivers a mes-
sage m, then all correct processes eventually A-
deliver m.

(Integrity) For any message m, every process A-
delivers m at most once, and only if m was pre-
viously A-broadcast by sender(m).

(Total Order) If correct processes p and q both A-
deliver messages m and m′, then p A-delivers m
before m′ if and only if q A-delivers m before m′.

In this paper, we also consider the stronger defini-
tion of uniform Atomic Broadcast which is defined by
stronger properties for agreement and total order.

(Uniform Agreement) If a process (correct or not)
A-delivers a message m, then all correct processes
eventually A-deliver m.

(Uniform Total Order) If processes p and q (cor-
rect or not) both A-deliver messages m and m′,
then p A-delivers m before m′ if and only if q A-
delivers m before m′.

Uniform properties are required by certain classes
of applications, such as atomic commit or active repli-
cation. For instance, in systems where replicated
processes can have side-effects, using a non-uniform
Atomic Broadcast algorithm could result in conflicting
actions from different replicas. However, uniformity is
not required by all applications, and unfortunately has
a significant cost. For this reason, we consider here both
uniform and non-uniform algorithms, but separately.

3. Atomic Broadcast Algorithms

In this analysis, we consider algorithms to represent
each of five classes of Atomic Broadcast algorithms de-
fined in previous work [8]. The classification, based on
the ordering mechanism, was determined by surveying
around 60 algorithms. It relies on the fact that the
ordering is generated by either one of three types of
processes: sender, destinations, or a sequencer. With
other factors, this leads to the following five classes:
fixed sequencer, moving sequencer, privilege-based, com-
munication history, and destinations agreement.

In this section, we describe each class and its repre-
sentative algorithms. The latter are just simplifications
of existing algorithms. Whenever possible, we consider
both a uniform and a non-uniform variant. For read-
ability and conciseness, we describe each algorithm in-
formally, illustrating their execution on a time-space
diagram (see Table 1). Each scenario shows an execu-
tion of the algorithm wherein a single process broad-
casts one message m. The communication pattern thus
described is sufficient for computing the metrics.

3.1 Fixed Sequencer

Fixed sequencer algorithms are by far the simplest. The
idea is that one process in the system is elected as a
sequencer that is responsible for ordering all messages.

The representative algorithms run as follows (see
Table 1): when a process p wants to broadcast a mes-
sage m, it sends m to the sequencer. The sequencer
assigns a sequence number to m, and sends both m
and the sequence number to the other processes. In
the non-uniform algorithm, processes deliver m as soon
as they receive it with its sequence number. In the uni-
form algorithm, the processes can deliver m only after
it has been acknowledged by all processes.

Fixed sequencer algorithms are rarely uniform.
This is probably because uniformity is comparatively
more expensive than for algorithms of other classes.
Isis [3] and Amoeba [11] are two well-known examples
of fixed sequencer algorithms.
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Table 1 Representative uniform and non-uniform algorithms for each class.

3.2 Moving Sequencer

With moving sequencer algorithms, the role of se-
quencer is passed from one process to another. This
is done by a token which carries a sequence number
and constantly circulates among the processes.

For both the uniform and non-uniform algorithms,
Table 1 illustrates a run in which process p2 broadcasts
a message m and process p1 is the current token holder
(i.e., sequencer). The messages that carry the token are
represented by a dashed arrow.

In short, the non-uniform algorithm works as fol-
lows. When a process p wants to broadcast a mes-
sage m, it sends m to all other processes. Upon receiv-
ing m, processes store it into a receive queue. When
the current token holder q has a message in its receive
queue, it assigns a sequence number to the first mes-
sage in the queue and broadcasts that number together
with the token.† A process can then deliver m when it
has (1) received m, (2) received its sequence number,
and (3) delivered every message which comes before m.

The uniform algorithm is similar, except that the
destination processes must also wait until m is stable
(i.e., until it has been acknowledged by all processes)
before they can deliver it. The detection of stability is
performed by the token which gathers the acknowledg-
ments. Besides, in the moving sequencer algorithms,
the token does not need to rotate all the time, and thus
eventually stops. In the non-uniform algorithm, the to-
ken can stop earlier than with its uniform counterpart
because the detection of stability is not necessary.

The Atomic Broadcast algorithm proposed by
Chang and Maxemchuck [5] is a well-known example
of a moving sequencer algorithm.

3.3 Privilege-Based

With privilege-based algorithms, the delivery order is
determined by the senders. When a process has a mes-
sage to broadcast, it must first obtain that privilege.

The non-uniform algorithm works as follows (see
Table 1). When a process p wants to broadcast a mes-
sage m, it simply stores m into a send queue until it
receives the token. The token carries a sequence num-
ber and constantly circulates amongst the processes.
When p receives the token, it extracts m from its send
queue, uses the sequence number carried by the token,
and broadcasts m with the sequence number. Then,
p increments the sequence number and transmits the
token to the next process. To reduce the number of
messages, p can broadcast the token along with m in
a single message. When a process receives m, it deliv-
ers m according to its sequence number.

In the uniform algorithm (Table 1), the token also
carries the acknowledgments. Before delivering a mes-
sage m, processes must wait until m is stable, which
requires a full round-trip of the token.

Totem [1] is a typical illustration of a privilege-
based Atomic Broadcast algorithm. A less typical ex-
ample is the on-demand protocol [7].

†The token carries the identity of the next token holder.
To reduce traffic, the token is embedded in the broadcast
message, and ignored by all but the next token holder.
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3.4 Communication History

With communication history algorithms, the delivery
order is determined by the senders, just like with
privilege-based algorithms. The main difference is that
processes can send messages at any time. The desti-
nations observe the messages generated by the other
processes to learn when delivering a message will no
longer violate the total order. In most cases, commu-
nication history algorithms use a partial order defined
by the causal history of messages and transform this
partial into a total order, where concurrent messages
are ordered according to some predetermined function.

The communication history algorithm considered
in this paper (see Table 1) works as follows. A par-
tial order is generated by using logical clocks [13] to
“timestamp” each message m with the logical time of
the A-broadcast(m) events. This partial order is then
transformed into a total order by using the lexicograph-
ical order on the identifiers of sending processes to arbi-
trate ties: if two messages m and m′ have the same log-
ical timestamp, then m is before m′ if id(sender(m)) <
id(sender(m ′)), where id(p) is the identifier of pro-
cess p. It follows that a process p can deliver some mes-
sage m only once it knows that no message m′ received
in the future will carry a lower timestamp (or an equal
timestamp with id(sender(m ′)) < id(sender(m))).

The algorithm is not live as it stands, because a
silent process could prevent other processes from deliv-
ering. To avoid this, a process p is required to broad-
cast an empty message after a delay ∆live, if it has
nothing else to broadcast. When computing the la-
tency metrics, we make the simplifying assumption that
∆live = 0. In the case of computing the throughput, the
scenario does not generate any empty message anyway.

Communication history algorithms are an applica-
tion of Lamport’s mutual exclusion algorithm based on
logical clocks [13]. Psync [14] is well-known example.

3.5 Destinations Agreement

With destinations agreement algorithms, the delivery
order is determined by the destination processes. In
short, this is done in one of two ways; (1) ordering in-
formation generated by every process is combined de-
terministically, or (2) the order is obtained by an agree-
ment between the destinations (e.g., consensus).

The algorithm considered in this paper uses the
first approach and is adapted from Skeen’s algorithm
(as described in [2]). The algorithm works as follows
(see Table 1). To broadcast a message m, process p1

sends m to all processes and acts as a coordinator for
the delivery of m. Upon receiving m, a process q sends
an acknowledgment and a logical timestamp tsq(m)
back to p. Process p1 gathers all timestamps and com-
putes the final timestamp TS (m) as the maximum of

all received timestamps. Finally, p1 sends TS (m) to all
processes which deliver m according to TS (m).

An example of the second approach, based on con-
sensus, is due to Chandra and Toueg [4].

4. Contention-Aware Metrics

In this paper, we compare Atomic Broadcast algorithms
using the contention-aware metrics defined in [16]. We
briefly describe but do not motivate them, as this is
already done extensively in [16].

The contention-aware metrics evaluate distributed
algorithms according to their latency or to their
throughput. The two metrics take account of resource
contention that occurs for both CPU and network. The
definitions of the metrics are based on a common sys-
tem model, denotedMpp(n, λ), which assumes a point-
to-point network. Finally, we define a variant of the
metrics based on a second model (Mbr(n, λ)) which
supports broadcast communication.

4.1 Point-to-Point Model

The model is defined around a single network resource
and one CPU resource attached to each process. When
a message m is transmitted from a process pi to a des-
tination process pj , m must consecutively acquire and
release the following resources: CPUi, network, and
CPUj (see Fig. 1). Resources are accessed in mutual
exclusion, and a fixed cost is associated with each one.
The transmission of m from pi to pj occurs as follows:

1. m enters the sending queue† of pi, waiting for
CPUi to be available.

2. m takes the resource CPUi for λ time units, where
λ is a parameter of the system model (λ ∈ R

+
0 ).

3. m enters the network queue of pi and waits until
the network is available for transmission.

4. m takes the network resource for 1 time unit.
5. m enters the receiving queue of pj and waits until
CPUj is available.

6. m takes the resource CPUj of pj for λ time units.

Fig. 1 Decomposition of the end-to-end delay (tu=time unit).

†All queues (sending, receiving, and network queues) in
the model use a FIFO policy.
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7. Message m is received by pj in the algorithm.

Resource conflicts are resolved according to the fol-
lowing rules, thus making the model deterministic.

Network. Concurrent requests to the network may
arise when messages at different hosts are simul-
taneously ready for transmission. The access to
the network is modeled by a round-robin policy.

CPU. For each CPU resource, conflicts between out-
going messages (i.e., in sending queue) and incom-
ing ones are resolved by giving the priority to the
outgoing messages.

Send to all (point-to-point). If p is a process that
sends a message m to all processes, then p sends
the message m consecutively to all processes in the
lexicographical order (p1, p2, . . . , pn) except itself.

Definition 1 (point-to-point): Model Mpp(n, λ) is
the model described above, with parameters n ∈ N and
λ ∈ R

+
0 , where n > 1 is the number of processes and λ

is the relative cost between CPU and network.

4.1.1 Latency Metric

The definition of the latency metric uses the terms:
“start” and “end” of a distributed algorithm. The defi-
nition of these terms depends on the problem that an al-
gorithm A solves. In the case of Atomic Broadcast, one
considers the broadcast of a single message m. Then,
“start” is the execution of A-broadcast(m) and “end”
is the execution of the last A-deliver(m).

Definition 2 (latency, point-to-point): Let A be a
distributed algorithm. The metric Latencypp(A)(n, λ)
is defined as the number of time units between the start
and the end of algorithm A in model Mpp(n, λ).

4.1.2 Throughput Metric

The throughput metric of an algorithm A relates to the
usage of system resources in one run of A. The most
heavily-used resource acts as a bottleneck and sets a
limit on the maximal throughput ; an upper bound on
the frequency at which the algorithm can be run.

Definition 3 (throughput, point-to-point): Let A be
a distributed algorithm. The throughput metric is de-
fined as follows:

Thputpp(A)(n, λ) def=
1

maxr∈Rn Tr(n, λ)
(1)

where Rn denotes the set of all resources (i.e., the net-
work and CPU1, . . . ,CPUn), and Tr(n, λ) denotes the
total duration for which resource r ∈ Rn is utilized in
one run of algorithm A in model Mpp(n, λ).

Notice that the definition above (Def. 3) is in fact
a simplification of the actual one. When there are sev-
eral possible execution patterns for the same algorithm,
Tr(n, λ) becomes the duration amortized over all possi-
ble cases and their occurrence rate. For instance, with a
moving sequencer algorithm, each process is sequencer
1/n-th of the time, and a normal process otherwise. All
formulas computed in this paper use amortized cost.

4.2 Broadcast Model

The definition of the broadcast modelMbr(n, λ) is sim-
ilar to that of the point-to-point model, except for
“send to all” which is replaced by the following rule:

Send to all (broadcast). If p is a process that sends
a message m to all, then p sends a single copy of m,
the network transmits a single copy of m, and each
process (except p) receives a copy of m.

The definition of Latencybr(A)(n, λ) differs from
that of Latencypp(A)(n, λ) (resp., Thputbr(A)(n, λ)
differs from Thputpp(A)(n, λ)) only by the fact that
the former is defined in broadcast model Mbr(n, λ) in-
stead of point-to-point model Mpp(n, λ).

5. Evaluation of Non-Uniform Algorithms

We use the contention-aware metrics to analyze the la-
tency of the non-uniform algorithms. We discuss the
four non-uniform algorithms: non-uniform privilege-
based, non-uniform moving sequencer, non-uniform
fixed sequencer, and destinations agreement. For the
sake of readability, we only give a graphical representa-
tion of the results obtained with the metric. The exact
formulas are given in the appendix.

5.1 Point-to-Point Networks

5.1.1 Latencypp(Non-Unif. Atomic Broadcast)(n, λ)

Figure 2 shows the latency of the non-uniform algo-
rithms in point-to-point networks. The figure has three
parts: the top gives a three-dimensional view of the la-
tency, according to the two parameters n and λ; the
lower left part shows the curves when λ is fixed (λ = 1)
and n varies; similarly, the lower right part shows the
curves when n is fixed (n = 10) and λ varies.

(best) fixed seq. < moving seq.
< privilege < dest. agr. (worst)

Figure 2 shows that the four algorithms form two
groups, with a clear separation between the moving
sequencer and the privilege-based algorithms. In ad-
dition, the fixed and moving sequencer algorithms have
the same latency (see Fig. 2, lower right) for large values
of λ. This last point is explained by the lesser impact
of network contention.
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Fig. 2 Graphical representation of Latencypp(A)(n, λ) for
non-uniform algorithms.

Fig. 3 Graphical representation of Thputpp(A)(n, λ) for
non-uniform algorithms.

5.1.2 Thputpp(Non-Unif. Atomic Broadcast)(n, λ)

Figure 3 shows the throughput of the non-uniform algo-
rithms. In addition, Fig. 4 gives a detailed view of the
upper part of Fig. 3, where the privilege-based and the
destinations agreement algorithms have been removed
to make visible the intersection between the fixed and
the moving sequencer algorithms.

(best) privilege > moving seq. > dest. agreement

The privilege-based algorithm has clearly the best

Fig. 4 Graphical representation of non-uniform moving and
fixed sequencer algorithms (detail of Fig. 3).

throughput (see Fig. 3). In spite of their differences, the
privilege-based, the moving sequencer, and the destina-
tions agreement algorithms have a comparable behavior
with respect to parameter changes.

The most interesting point is the behavior of the
fixed sequencer algorithm. Indeed, its performance
largely depends on the value of λ: the algorithm moves
from the second position when λ is small, to the last
position when λ is big. This is visible in Fig. 3 (lower
right) and on Fig. 4. The fixed sequencer has a good
throughput when λ is small. However, the sequencer
becomes a bottleneck when λ increases. The moving
sequencer and the destinations agreement algorithms
are less prone to this problem as they better distribute
the load among the processes.

5.2 Broadcast Networks

5.2.1 Latencybr(Non-Unif. Atomic Broadcast)(n, λ)

Figure 5 shows the latency for the non-uniform algo-
rithms in a broadcast network. In a broadcast network,
the latency of the moving sequencer and the fixed se-
quencer algorithms are equal. For this reason, both
algorithms are plotted together.

It is clear from Fig. 5 that the sequencer algorithms
(fixed and moving) have the best latency. The extra
overhead that the moving sequencer algorithm has to
pay for the first broadcast in a point-to-point network,
disappears in a broadcast network. As a result, both
sequencer algorithms have the same latency.

Figure 5 shows an interesting comparison between
privilege-based and destinations agreement algorithms.
First, Fig. 5 (lower left) clearly shows that the latter
has the best latency when n is large. But, the relative
performance of the algorithms when λ varies is even
more interesting, as shown in Fig. 5 (top; lower right).
The privilege-based algorithm performs better than the
destinations agreement for small values of λ, but also
for large values of λ. This is because the destinations
agreement algorithm benefits from a concurrent use of
both network and CPU resources.
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Fig. 5 Graphical representation of Latencybr(A)(n,λ) for
non-uniform algorithms.

Fig. 6 Graphical representation of Thputbr(A)(n, λ) for
non-uniform algorithms.

5.2.2 Thputbr(Non-Unif. Atomic Broadcast)(n, λ)

Figure 6 depicts the throughput of the non-uniform al-
gorithms in a broadcast network. The algorithms rank
as follows.

(best) privilege > fixed seq.
> moving seq. > dest. agr. (worst)

The two sequencer algorithms (moving and fixed) per-
form similarly, especially when n grows (see Fig. 6;

lower left). The throughput of the fixed sequencer de-
creases when n increases, because of the first message
sent by the algorithm. Indeed, in the fixed sequencer al-
gorithm, the algorithm does not send the first message
when the sender happens to be the sequencer. This
situation reduces resource usage, but occurs less fre-
quently as n increases. This explains why the fixed
sequencer algorithm asymptotically (in terms of n) be-
haves like the moving sequencer algorithm.

Figure 6 (lower left) leads to a second observa-
tion. Unlike the other three algorithms, the destina-
tions agreement algorithm asymptotically tends to a
null throughput as n grows, despite the broadcast net-
work. This lack of scalability is due to the local times-
tamps that the sender has to gather from all destination
processes. Broadcast network or not, this generates
O(n) messages.

On the positive side, the destinations agreement
algorithm is less sensitive to large values of λ than the
other algorithms. This is visible in Fig. 6 (lower right),
where the throughput starts to drop when λ is larger
than 3 (instead of λ > 1 for the other algorithms).

6. Evaluation of Uniform Algorithms

We analyze the latency of the uniform algorithms:
communication history, uniform privilege-based, uni-
form moving sequencer, and uniform fixed sequencer.
We first consider these algorithms in a point-to-
point network, and illustrate the results of both
Latencypp(A)(n, λ) and Thputpp(A)(n, λ) in Figs. 7
and 8, respectively. Then, we analyze the same algo-
rithms in a broadcast network using Latencybr(A)(n, λ)
(Fig. 9) and Thputbr(A)(n, λ) (Fig. 10). The exact for-
mulas are given in the appendix.

6.1 Point-to-Point Networks

6.1.1 Latencypp(Uniform Atomic Broadcast)(n, λ)

Figure 7 represents the latency of the four uniform algo-
rithms according to the two parameters: n and λ. Ac-
cording to conventional complexity metrics, the fixed
sequencer and the communication history algorithms
have the best latency (latency degree of 2). Then, the
moving sequencer and privilege-based algorithms both
have a worse latency. This conclusion seems simplistic
when compared to the results obtained on Fig. 7.

As a first observation, Fig. 7 (lower left) shows
that the quadratic number of messages generated by
the communication history algorithm causes a lot of
network contention, and has a strong influence on the
latency. For instance, because of this contention, the
communication history algorithm has the worst latency
in a system with more than 10 processes. In contrast,
this algorithm has the best latency in a system with
less than five processes. This is easily explained by the
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Fig. 7 Graphical representation of Latencypp(A)(n, λ) for
uniform algorithms.

Fig. 8 Graphical representation of Thputpp(A)(n, λ) for
uniform algorithms.

fact that, despite the quadratic number of messages,
the algorithm generates only little network contention
with such a small number of processes.

As a second observation, Fig. 7 (lower right) shows
something unexpected: the communication history al-
gorithm has the best latency of all four algorithms, for
large values of λ (larger than 4 for n = 10). A plausi-
ble explanation is that the communication history algo-
rithm has a decentralized communication pattern. This
increases the parallelism between processes and thus re-
duces potential waiting delays. Also, a large value of λ
reduces the importance of the network on the overall
performance. The network contention is thus the weak

Fig. 9 Graphical representation of Latencybr(A)(n,λ) for
uniform algorithms.

Fig. 10 Graphical representation of Thputbr(A)(n, λ) for
uniform algorithms.

point of the communication history algorithm.
The third observation is less obvious, and con-

cerns the privilege-based and the moving sequencer al-
gorithms. The two algorithms have a similar latency.
In general, the moving sequencer algorithm seems to
slightly outperform the privilege-based algorithm; un-
like what time complexity suggests. Nevertheless, Fig. 7
(top; lower right) shows that, for small values of λ,
this is reversed and the privilege-based algorithm has
a slightly better latency than the moving sequencer al-
gorithm. Figure 7 (lower left) shows that the privilege-
based algorithm has a better latency also when the
number of processes becomes large (n > 20 with λ = 1).
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6.1.2 Thputpp(Uniform Atomic Broadcast)(n, λ)

Figure 8 shows the throughput of the uniform algo-
rithms. The communication history and the privilege-
based algorithms can achieve the best throughput
among the uniform algorithms. The communication
history algorithms does not generate empty messages
under a high and evenly distributed load. Conse-
quently, the algorithm effectively generates only one
single “send to all” for each application message. Simi-
larly, the privilege-based algorithm generates the same
amount of traffic because the high load makes it possi-
ble to piggy-back all token messages.

(best) history
= privilege > moving seq. > fixed seq. (worst)

Figure 8 also shows that the two sequencer algorithms
have a bad throughput. It is interesting to note that the
moving sequencer algorithm always performs slightly
better than the fixed sequencer one. This is easily ex-
plained by the fact that the moving sequencer uses a
token-passing mechanism for the stabilization of mes-
sages. It turns out that token messages can easily ben-
efit from the moving sequencer and be piggy-backed on
other messages. In contrast, the centralized acknowl-
edgment scheme used by the fixed sequencer makes it
more difficult to reduce its overhead in this way.

Figure 8 (lower right) shows that the throughput
of all uniform algorithms drops when λ increases over
a certain threshold. This threshold depends however
on the algorithm: when n = 10, the throughput of
the fixed sequencer algorithm starts to drop when λ is
greater than 1, while the throughput begins to decrease
when λ is greater than 5 for the three other algorithms.
This shows that the fixed sequencer is more sensitive
to a lack of CPU resources than the other algorithms.

Although based on a similar approach, it is inter-
esting to note that the moving sequencer and the fixed
sequencer algorithm do not behave in the same way
when λ increases. Indeed, as the parameter λ increases,
the throughput of the moving sequencer algorithm be-
gins to drop at a later point than for the fixed sequencer
algorithm (see Fig. 8; lower right). This is due to the
fact that the moving sequencer algorithm distributes
the load of sequencing messages evenly among all pro-
cesses. Conversely, the fixed sequencer algorithm con-
centrates this load on a single process (the sequencer).
It follows that the CPU of the sequencer becomes a
bottleneck when the value of λ increases beyond 1.

6.2 Broadcast Networks

6.2.1 Latencybr(Uniform Atomic Broadcast)(n, λ)

Figure 9 shows the latency of the uniform algorithms

in a broadcast network. The evaluations obtained with
Latencybr(A)(n, λ) are close to those obtained with
time complexity. The reason is that the algorithms gen-
erate much less traffic than in a point-to-point network,
and thus cause only little network contention.

(best) history < fixed seq.
< moving seq. < privilege (worst)

It is interesting to note that, in a broadcast network,
the communication history algorithm has a better la-
tency than even the fixed sequencer algorithm. Fixed
sequencer are normally considered to have the best la-
tency, but this is mostly because one usually consider
the non-uniform algorithm. Here, we see that the cost
of uniformity is penalizing for fixed sequencer algo-
rithms. Figure 9 (lower left) shows that the communi-
cation history and the fixed sequencer algorithms have
a better scalability than the two other algorithms.

A comparison between Fig. 9 and Fig. 7 confirms
that the communication history algorithm benefits
most from a broadcast network. This is understand-
able as the algorithm generates a linear number of mes-
sages in a broadcast network, whereas its complexity is
quadratic in a point-to-point network.

6.2.2 Thputbr(Uniform Atomic Broadcast)(n, λ)

Figure 10 shows the throughput of the uniform algo-
rithms in a broadcast network.

(best) history
= privilege > moving seq. > fixed (worst)

The relative performance of the algorithms is the same
than in point-to-point networks (compare with Fig. 8).
The algorithms however behave differently. For in-
stance, except for the fixed sequencer algorithm, the
throughput does not depend on the number of processes
(see Fig. 10; lower left). This is a clear evidence that
the communication history, the privilege-based, and the
moving sequencer algorithms make a better use of the
broadcast medium than the fixed sequencer algorithm.
The latter is penalized by the positive acknowledgment
scheme used for the stabilization of messages.

A comparison between Fig. 10 (lower right) and
Fig. 8 (lower right) reveals that, in both cases, the
throughput of the algorithms decreases when λ in-
creases beyond a certain threshold. Interestingly, in
broadcast networks (Fig. 10), the throughput of every
algorithm drops when λ increases beyond 1. Among
other things, this indicates that the load balancing
of the moving sequencer algorithm is of little help in
a broadcast network. The weakness of the fixed se-
quencer algorithm is its stabilization mechanism which
leaves few opportunities for piggy-backing messages.
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7. Conclusion

We have analyzed four uniform algorithms and four
non-uniform Atomic Broadcast algorithms. Each algo-
rithm represents one of the classes of algorithms defined
in [8]. The analysis is based on the contention-aware
metrics [16], briefly described in Sect. 4. The results
obtained through these metrics are significantly more
relevant than those obtained with more conventional
metrics: time and message complexity. The contention-
aware metrics and the conventional metrics also some-
times give opposite predictions.

(1) Uniform algorithms

The analysis of the uniform algorithms gives interest-
ing results. First, the communication history algorithm
has the best throughput, but also the best latency in
a broadcast network. It also has the best latency in a
point-to-point network, if λ is big. On the other hand,
this algorithm is poorly scalable in a point-to-point net-
work, with a quadratic degradation of performance as
the number of processes increases. We should also point
out that the method used to evaluate the throughput
is particularly favorable for communication history and
privilege-based algorithms.† The privilege-based algo-
rithm has the best throughput (identical to communi-
cation history algorithm). However, this algorithm also
has the worst latency, except in a point-to-point net-
work and only if the network is more important than
the CPU (i.e., if λ is small). The moving sequencer al-
gorithm can be seen as a compromise between through-
put and latency. Indeed, the performance of the algo-
rithm is average in all cases. A positive thinking would
say that it is never the worst choice, but one could also
rightfully claim that it is never the best choice either!
Generally speaking, the fixed sequencer algorithm has
a good latency which, however, comes at the price of
a low throughput. This is already expected from the
results of the conventional metrics.

(2) Non-uniform algorithms

With non-uniform algorithms, the best overall results
are achieved by the fixed sequencer algorithm. Indeed,
this algorithm has the best latency and only comes in
second position for the throughput. This comes in
clear contrast with the results obtained for the uni-
form version of the algorithm. This reveals that uni-
formity comes at a very high price for this particular
algorithm. The privilege-based algorithm can achieve
a high throughput, but only at the price of latency, for
which the algorithm scores third. This algorithm even

†The method used to determine the throughput assumes
a high load, evenly distributed among all processes. Hence,
the communication history algorithm does not need to gen-
erate any empty message, and the privilege-based algorithm
can piggy-back all token messages on other messages.

takes the fourth position in a broadcast network, when
the number of processes is large and the importance
of the CPU and network resources is roughly equiva-
lent (i.e., λ close to 1). As for its uniform counterpart,
the performance of the moving sequencer algorithm is
generally average. It nevertheless has the best latency
in a broadcast network, identical to the latency of the
fixed sequencer algorithm. Finally, the destinations
agreement algorithm is the worst both in latency and
throughput. It should however be noted that the desti-
nations agreement algorithm can easily be transformed
into a uniform algorithm, with no significant perfor-
mance degradation. Inferring from the results obtained
in this chapter, the resulting uniform algorithm would
probably have a latency similar to the uniform fixed
sequencer algorithm, and a slightly better throughput.

(3) Tradeoffs

Putting the results together yields that the choice of an
appropriate algorithm depends on the requirements of
the system in which it is to be used. Indeed, if a good
throughput is more important than a good latency,
then either a communication history or a privilege-
based algorithm is probably a good choice. Conversely,
if latency is more important than throughput, then
a fixed sequencer is better. When both latency and
throughput are equally important, a moving sequencer
algorithm offers a good compromise.

Of course, there are many more aspects to consider
than only performance. The properties of algorithms,
or their behavior in the face of failures are indeed of-
ten more important than just the question of their raw
performance. For instance, if a system requires an open
group architecture, then a destinations agreement algo-
rithm may have a good potential in spite of the poor
results shown in this study.
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Appendix: Metric Formulas

Non-Uniform Fixed Sequencer

Latencypp(fixed seq.)(n, λ) = 2(2λ + 1) + (n − 2)max(1, λ)

Latencybr(fixed seq.)(n, λ) = 4λ + 2

Thputpp(fixed seq.)(n, λ) =
n

(n2 − 1)max(1, λ)

Thputbr(fixed seq.)(n, λ) =
n

(2n − 1)max(1, λ)

Non-Uniform Moving Sequencer

Latencypp(moving seq.)(n, λ)

= 2λ + 2 +

8>>>>>>><
>>>>>>>:

�
λ + 1 if n = 2
2n − 4 otherwise

�
if λ< 1

28>><
>>:

2λ + (n − 2)max(1, λ) if n<4
2 max(1, λ)

+

�
2n−6 if n> 6−2λ

2−λ

(n−2)λ otherwise

�
otherw.

9>>=
>>;

if 1
2 ≤λ < 2

nλ otherwise

Latencybr(moving seq.)(n, λ) = 4λ + 2

Thputpp(moving seq.)(n, λ) =
1

max
�

4n2−4n−1
n2 λ, 2n − 2

�

Thputbr(moving seq.)(n, λ) =
1

2 max(1, λ)

Non-Uniform Privilege-Based

Latencypp(privilege-based)(n, λ)

=
�

n
2 + 1

� · (2λ + 1) + (n − 2) · max(1, λ)

+

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

max (0, n − 3) if λ ≤ 1
2

max
�
0,
j

n−3
2

k�
if 1

2 < λ ≤ 18>>><
>>>:

max

�
0,

2 − λ
+((n−5) mod 3) (1−λ)

�

+ max
�
0,
j

n−5
3

k
(4 − 3λ)

� if n>4

0 otherw.

9>>>=
>>>;

if 1 < λ ≤ 2

8<
:

1+	λ
−λ
if n > 2 and

(n−2) mod (2�λ�+1)=0
0 otherwise

9=
; otherwise

Latencybr(privilege-based)(n, λ) =

�
n

2
+ 1

�
· (2λ + 1)

Thputpp(privilege-based)(n, λ) =
1

(n − 1) · max
�
1, 2λ

n

�
Thputbr(privilege-based)(n, λ) =

1

max(1, λ)

Non-Uniform Destinations Agreement

Latencypp(dest. agreement)(n, λ)

=

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

3(n − 1) + 4λ + 2λ ((n − 1) mod 2) if λ< 1
2

3(n − 1) + 4λ +

8<
:

2λ if n mod 3 = 2
2λ−1 if n mod 3 = 0
0 otherwise

9=
; if 1

2 ≤λ<1

(3n − 2)λ + 1

+

8>>>>><
>>>>>:

2 + (4 − n)λ if n<5
4 − 2λ if n=5

max

0
BB@0,

8<
:

λ+1 if n mod 4=0
2 if n mod 4=1
3 otherwise

9=
;

− (n − 4)(2λ − 2)

1
CCA otherw.

9>>>>>=
>>>>>;

if 1≤λ< 3
2

(3n − 2)λ + 1 +

8<
:

2 + (4 − n)λ if n < 5
max(0, 4 − 2λ) if n = 5
0 otherwise

9=
; otherwise

Latencybr(dest. agreement)(n, λ) = 6λ + 3 + (n − 2)max(1, λ)

Thputpp(dest. agreement)(n, λ) =
1

(3n − 3)max
�
1, 2λ

n

�
Thputbr(dest. agreement)(n, λ) =

1

max
�

n + 1, 4n−2
n λ

�

Uniform Fixed Sequencer

Latencypp(unif. fixed seq.)(n, λ)
= 2λ + 1 + Latencypp(dest. agreement)(n, λ)

Latencybr(unif. fixed seq.)(n, λ) = 8λ+4 + (n−2)max(1, λ)

Thputpp(unif. fixed seq.)(n, λ) =
n

(3n2 − 2n − 1)max(1, λ)

Thputbr(unif. fixed seq.)(n, λ) =
n

(n2 + 2n − 1)max(1, λ)
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Uniform Moving Sequencer
Latencypp(unif. moving seq.)(n, λ)
= 2(n − 1)(2λ + 1)

+

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

8>>><
>>>:

2(n − λ − 1) if n>48>><
>>:

max(2n−4, 4λ)+2 if λ ≥ 1
28<

:
6 − 2λ if n = 4
4 if n = 3
2 + 4λ if n = 2

9=
; otherw.

9>>=
>>;

otherw.

9>>>=
>>>;

if λ<1

8>>>>>>>>><
>>>>>>>>>:

2λ + max ((n − 2)λ, 2λ + 2)

+

8>>><
>>>:

2n − 6
− (n−2)λ

if n≥ 6−2λ
2−λ

2 − λ if n< 5−2λ
2−λ

2n − 5
− (n−2)λ

otherwise

9>>>=
>>>;

if n>5

2λ + 1 + max(2λ + 1, 2 + 	λ
) if n=5
4λ + 2 otherw.

9>>>>>>>>>=
>>>>>>>>>;

if 1≤λ<2

2λ + max ((n − 2)λ, 2λ + 2) otherwise

Latencybr(unif. moving seq.)(n, λ) = 4nλ + 2n

Thputpp(unif. moving seq.)(n, λ) =
1

max
�

4n2−4n−1
n2 λ, 2n−2

�

Thputbr(unif. moving seq.)(n, λ) =
1

2 max(1, λ)

Uniform Privilege-Based

Latencypp(unif. privilege-based)(n, λ)

= 5n
2 (2λ + 1) +

8>>>>>>><
>>>>>>>:

(n − 2)(1 − 2λ) if λ ≤ 1
2j

n−2
2

k
(2 − 2λ) if 1

2 < λ ≤ 1

(3 − 2λ)max
�
0,
j

n−4
3

k�
if 1 < λ ≤ 3

2

(λ − �λ�) max
�
0,
j

n−4
3

k�
if 3

2 < λ ≤ 2

(λ − �λ�) max
�
0,
j

n−3
5

k�
otherwise

Latencybr(unif. privilege-based)(n, λ) =

�
5n

2
− 1

�
· (2λ + 1)

Thputpp(unif. privilege-based)(n, λ) =
1

(n − 1) max
�
1, 2λ

n

�
Thputbr(unif. privilege-based)(n, λ) =

1

max(1, λ)

Uniform Communication History

Latencypp(unif. comm. history)(n, λ)

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

4λ + 2 if n=2
6λ+2 + max(0, 2−λ)

+ max(0, 1−λ) + max(0, 1−2λ)
if n=3

3(n − 1)λ + 1 if n≤λ+2
n2−3n

2 + 2nλ + �λ�λ − �λ+3�·�λ�
2

+

�
1 if �λ� = n − 3
0 otherwise

� if n≤2�λ�+3
and λ≥3

n2−n
2 +2nλ+�λ�λ− �λ+3�·�λ�

2 −�2λ�−3

+

8><
>:

�2λ − 1� if n = 5
2 if n = �2λ + 1�
1 if n = 7 and λ = 11

4
0 otherwise

9>=
>;

if n≤4λ−4

n2 − n

+

8>>><
>>>:

2λ if λ<1�
5λ − 3 if n = 4
4λ − 2 if n > 4

�
if 1≤λ<2

5λ − 4 if 2≤λ<3
2�λ�λ−�λ�−�λ�2+5 otherwise

9>>>=
>>>;

otherwise

Latencybr(unif. comm. history)(n, λ) = 4λ+2+(n−2)max(1, λ)

Thputpp(unif. comm. history)(n, λ) =
1

(n − 1) · max
�
1, 2λ

n

�
Thputbr(unif. comm. history)(n, λ) =

1

max(1, λ)
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