
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Effective Use of Geometric Information for

Clustering and Related Topics

Author(s) ASANO, Tetsuo

Citation
IEICE TRANSACTIONS on Information and Systems,

E83-D(3): 418-427

Issue Date 2000-03-20

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4685

Rights

Copyright (C)2000 IEICE. T. Asano, IEICE

TRANSACTIONS on Information and Systems, E83-

D(3), 2000, 418-427.

http://www.ieice.org/jpn/trans_online/

Description

418
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

INVITED SURVEY PAPER Special Issue on Algorithm Engineering: Surveys

Effective Use of Geometric Information for Clustering

and Related Topics∗

Tetsuo ASANO†, Member

SUMMARY This paper surveys how geometric information
can be effectively used for efficient algorithms with focus on clus-
tering problems. Given a complete weighted graph G of n ver-
tices, is there a partition of the vertex set into k disjoint subsets
so that the maximum weight of an innercluster edge (whose two
endpoints both belong to the same subset) is minimized? This
problem is known to be NP-complete even for k = 3. The case
of k = 2, that is, bipartition problem is solvable in polynomial
time. On the other hand, in geometric setting where vertices
are points in the plane and weights of edges equal the distances
between corresponding points, the same problem is solvable in
polynomial time even for k ≥ 3 as far as k is a fixed constant.
For the case k = 2, effective use of geometric property of an
optimal solution leads to considerable improvement on the com-
putational complexity. Other related topics are also discussed.
key words: bipartite graph, coloring, computational geome-
try, diameter, duality transform, geometric clustering, interclus-
ter distance, maximum spanning tree, separability, Voronoi dia-
gram

1. Introduction

Clustering is one of the central problems in pattern
recognition. A great number of algorithms have been
proposed so far, for information retrieval [10], spatial
data bases [30], facility location [12], [35] and computer
vision [24], [34]. This paper surveys how geometric in-
formation can be effectively used for designing efficient
algorithms with focus on clustering problems. A sim-
ple, but general form of a clustering problem is to find
a partition of a set of given objects into k parts so that
the maximum dissimilarity between objects in the same
part does not exceed some predefined threshold [19].
Dissimilarity relations among objects are usually rep-
resented by a weighted graph. Then, the problem is
to partition a vertex set into k disjoint subsets (called
clusters) so that the maximum weight of an innerclus-
ter edge (whose two endpoints both belong to the same
subset) is minimized. This problem is known to be NP-
complete even for k = 3 [15], [37]. The case of k = 2,
that is, bipartition problem is solvable in polynomial
time [6]. On the other hand, its geometric version in
which vertices are points in the plane and weights of

Manuscript received June 22, 1999.
Manuscript revised September 11, 1999.

†The author is with the School of Information Sci-
ence, Japan Advanced Institute of Science and Technology,
Ishikawa-ken, 923–1292 Japan.

∗A part of this paper was presented at Japan Conference
on Discrete and Computational Geometry, Tokyo, Japan,
1998.

edges equal the distances between corresponding points
can be solved in polynomial time even for any fixed
k ≥ 3 [9]. Section 2 first describes variants of the clus-
tering problem in two different settings: graph and ge-
ometry models. Then, inherent difference of their com-
putational complexities is revealed. Section 3 suggests
a scheme for transforming input data as dissimilarity
measures between objects into a set of points in the
plane based on the principal coordinate analysis. Sec-
tion 4 deals with the case k = 2 in the geometric set-
ting and describes how geometric property is used to
improve the computational complexity of algorithms.
Section 5 deals with the extension of the result in Sect. 3
to the general k-way partition problem in the geometric
setting. Section 6 includes other related topics.

2. Variants of Clustering Problems

Clustering is of course one of the most fundamental
problems in pattern recognition. Although there are
a number of variations of the problem definition de-
pending on applications, a natural notion of clustering
is the grouping of similar objects. Mathematically it
means a partition of objects into disjoint subsets (clus-
ters) to optimize some mathematical measure of sim-
ilarity among objects so that objects in each cluster
are similar to each other and no two objects belonging
to different clusters are similar to each other. Similar-
ity or dissimilarity relations among objects are usually
represented by a weighted graph. Then, the problem
is to partition a vertex set of the graph into k disjoint
subsets (clusters) so that the maximum weight of an
innercluster edge (whose two endpoints both belong to
the same subset) is minimized. We call this problem
k-way graph partition problem.

The same problem can be considered in geomet-
ric setting in which vertices are points in the plane
and weights of edges equal the distances between cor-
responding points. Then, the maximum weight of an
innercluster edge is the maximum distance between two
points in a cluster, which equals the diameter of the
cluster (as a point set). We call this modified problem
k-way point set partition problem.

3. Graph to Geometry Model

In the graph model we are given a graph which rep-

ASANO: EFFECTIVE USE OF GEOMETRIC INFORMATION FOR CLUSTERING AND RELATED TOPICS
419

resents dissimilarity between objects, where arbitrary
values are allowed for dissimilarity measures as far as
they are positive. On the other hand, in the geometry
model given objects are located in a space so that the
distance between two points coincides with the dissimi-
larity measure between their corresponding objects. So,
if one insists on using the geometry model when input
is given as a dissimilarity graph, then it is required to
map vertices of the dissimilarity graph into points in a
space of appropriate dimensions, say in the plane. One
way to do this is to rely on the principal coordinate
analysis (see also [5], [31]). The principal coordinate
analysis is a method for computing the coordinates of
points to be mapped from a matrix representing the
squared distances among points. Starting with a dis-
similarity graph, we extend it to a transitive dissim-
ilarity graph by defining an edge weight by the total
weight of the minimum-weight (dissimilarity as weight)
between pairs of vertices (objects). The resulting graph
is represented in a matrix form: W = (wij). Then, we
define a matrix A = (aij) by

aij = −1
2
(wij − wi∗ − w∗j + w∗∗),

where w∗j =
∑n

i=1wij , wi∗ =
∑n

j=1 wij , and w∗∗ =∑n
i=1

∑n
j=1 wij . Since A is a symmetric matrix, it can

be diagonalized:

A = V ΛV ′,

where Λ is a diagonal matrix with eigenvalues on the
diagonal and V = (v1, v2, . . . , vn) is a matrix whose
columns are the corresponding eigenvectors. Choose
two largest eigenvalues λ1 and λ2 and let v1 and v2 be
their corresponding eigenvectors, respectively. Then,
the vector X representing x- and y-coordinates of the
corresponding points in the plane are obtained by

X =
[√

λ1v1,
√
λ2v2

]
.

4. Geometric Bipartition Problem

4.1 Definition of Problem

The first problem we consider is to partition a set of
n points in the plane into k subsets (clusters) so that
their maximum diameter is minimized [8]. Here the di-
ameter of a point set S, denoted by D(S), is defined
by the maximum distance between any points in the
set. For the case k = 2 there is a polynomial-time solu-
tion [A86]. In this section, starting with a brute-force
algorithm for the problem, we describe how algorithms
are improved using graph properties and further geo-
metric properties of optimal solutions.

4.2 Brute-Force Algorithm

Let S be a set of n given points in the plane. A brute-
force algorithm listed below can find an optimal bipar-
tition of the set:

Algorithm 1: Brute-Force Algorithm
d = ∞;
for each subset S1 of S

Compute S2 = S − S1;
Compute the diameters D(S1) and D(S2);
if max{D(S1),D(S2)} < d then
d = max{D(S1),D(S2)};
Keep (S1, S2) as the current optimum (S∗

1 , S
∗
2);

Output the bipartition (S∗
1 , S

∗
2) as a solution;

end of Algorithm

This algorithm takes time proportional to the num-
ber of different subsets of S, which grows exponentially
in n. Thus, the running time is also exponential.

4.3 Heuristic Algorithm

One way to improve the above brute-force algorithm is
to rely on a general heuristic strategy called iterative
improvement, as follows:

Algorithm 2: Iterative-Improvement Heuristic
Let (S1, S2) be any bipartition of a point set S;
do{

Compute the diameters D(S1) and D(S2);
Let d = max{D(S1),D(S2)};
if D(S1) > D(S2) then

Find a pair (p, q) of points in S1 which defines
the diameter of S1;
if moving p or q from S1 to S2 improves

the current bipartition
then update the current optimal bipartition by

the move;
if D(S2) > D(S1) then

Find a pair (r, s) of points in S2 which defines
the diameter of S2;
if moving r or s from S2 to S1 improves

the current bipartition
then update the current optimal bipartition by

the move;
} while(any improvement is obtained);
Output the current optimal bipartition (S1, S2);
end of Algorithm

The operation of moving a point from one cluster
to another is usually referred to as a flip. Then, is it
possible to have infinite number of flips? The answer
is NO, since any flip properly decreases the larger di-
ameter and we have only O(n2) different diameters in
total. This implies O(n2) iterations of the loop.

420
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

Another question is whether this heuristic always
leads to an optimal solution? The answer is again NO.
Consider four points p, q, r and s such that they are
vertices of a rectangle in this order and that p, q and
r, s are equally distant while p, s and q, r are equally
close to each other. See Fig. 1 (a). If S1 = {p, q} and
S2 = {r, s}, then any single flip cannot improves the
bipartition. To have an optimal solution, we need a
double flip which moves two points simultaneously be-
tween two clusters.

It is also easy to construct a simple example in
which no double flip leads to any optimal solution in a
similar manner. See Fig. 1 (b). This means that such
iterative improvement heuristic does not always lead to
an optimal solution.

In the following subsections we will describe two
different approaches toward a polynomial-time algo-
rithm for the bipartition problem. One is an approach
based on graph model, and the other is based on geo-
metric properties of optimal solutions.

4.4 Graph-Theoretic Approach

Given a set S of n points in the plane, we can build a
graph G with those points as vertices and edges for all
pairs of points. Each edge is associated with a weight
that equals the Euclidean distance between two corre-
sponding points.

Two different strategies may be possible: Delete
edges iteratively in the increasing order of their weights
starting from a complete graph or add edges iteratively
in the decreasing order of their weights starting from
a graph with n isolated vertices. The problem is when
we stop the iteration. For the deletion-based strategy
edges are deleted while a graph is non-bipartite. On the
other hand, for the addition-based strategy the itera-
tion terminates when a graph becomes non-bipartite.
Figure 2 shows a simple example. The graph on the
left side joins every pair of points with distance ≥ 5.5,
which is bipartite or colorable by two colors. The graph
on the right defined by edges with distance ≥ 5.1, how-
ever, is not bipartite any more. More concretely, the
algorithm is described as follows.

Algorithm 3:
for each pair (p, q) of points, compute their distance;
Sort those point pairs in the decreasing order;
Let G be the graph with no edge;
do{

Add en edge associated with a point pair (p, q)
in the above order to G;

} while (graph G is bipartite);
Remove the last edge from G;
Output the bipartition of vertices of G;
end of Algorithm

Lemma 1: Algorithm 3 computes an optimal bipar-

(a) (b)

Fig. 1 Simple examples: (a) no single flip leads to
improvement, and (b) no double flip gives any im-
provement.

(a) (b)

Fig. 2 Graphs associated with mimimum distances. (a) G5.5:
bipartite, and (b) G5.1: non-bipartite.

tition in O(n4) time and O(n2) space.

Proof: Correctness of the algorithm is rather easy to
be verified. Let (d0, d1, . . . , dm),m = n(n− 1)/2− 1 be
the sorted sequence of edge weights in the decreasing
order, i.e., d0 ≥ d1 ≥ . . . ≥ dm. In the algorithm
we add an edge one by one in the sorted order to a
graph starting from an empty graph. By Gi we denote
the graph after adding the edge of weight di. Suppose
that the iteration terminated when we added an edge
of weight di. Then, due to the loop condition, Gi is
not bipartite while Gi−1 is. Since Gi is not bipartite,
there must be an odd cycle. Therefore, whatever we
partition the vertex set into two clusters, at least one
of the edges in the odd cycle must be included in one
of the subgraphs associated with the bipartition. This
means that the larger diameter must be greater than or
equal to di. Or for any bipartition, the larger diameter
must be greater than or equal to di.

On the other hand, since the graph Gi−1 is bi-
partite, the corresponding sets of vertices form biparti-
tion of the point set so that no edge of weight greater
than di−1 is included in either of the resulting sub-
graphs. This means that there is a bipartition whose
larger diameter is less than or equal to di−1. Therefore,
the larger diameter of an optimal bipartition is di and
its corresponding bipartition is given by a point set of
Gi−1.

Next, we consider the computational complexities.
The space required is obvious, since we needO(n2) stor-
age is required for sorting a given edge set. The loop is
iterated O(n2) times and each iteration is done in O(n2)
time for the check of bipartiteness. Thus, it takes O(n4)

ASANO: EFFECTIVE USE OF GEOMETRIC INFORMATION FOR CLUSTERING AND RELATED TOPICS
421

time in total. ✷

The running time could be drastically reduced.
The basic idea is binary search on the sorted list of
edges. Once the distances are sorted, then in O(log n)
iterations we can find largest di such that Gi is not
bipartite but Gi−1 is. The basic idea is presented in
[6].

Lemma 2: Using binary search on the sorted list of
point pairs in the order or their distances, an optimal
bipartition can be computed in O(n2 logn) time and
O(n2) space.

Now the highest barrier against practical use is the
space complexity. It is easy to see that O(n2) space is
required as far as we rely on the sorted list of edge
weights. In the next subsection we will see linear space
is sufficient without any sacrifice of the order of the
running time.

4.5 Improvement Using Geometric Properties

A key property for the geometric approach is the fol-
lowing theorem.

Theorem 1: Given two sets S1 and S2 of points in
the plane, one can find two separable sets S′

1 and S′
2

such that S′
1 ∪ S′

2 = S1 ∪ S2 and

max{D(S′
1),D(S′

2)} ≤ max{D(S1),D(S2)}.
Here, two sets of points are said to be separable if

they can be separated by a line. It is well known that
two sets are separable if and only if their convex hulls
are disjoint. A bipartition (S1, S2) is called a separable
partition if S1 and S2 are separable. In this case, we
also say that the bipartition (S1, S2) is induced by line
� if � is a separating line for S1 and S2 [33].

The above theorem shows that the separability re-
striction can indeed be imposed without affecting op-
timality. In other words, we have only to check all of
separable bipartitions. Then, how many separable bi-
partitions are there in total? A simple observation is
enough. Suppose that we have a separable bipartition
(S1, S2). Then, by the definition there is a line separat-
ing their convex hulls. Then, by appropriate rotation
and translation the separating line touches one point
from S1 and another point from S2. In this way, any
separating line can be characterized by a pair of points
from different sets. On the other hand, given such a
pair, the bipartition is uniquely determined except for
the points in the pair. Thus, we can conclude that there
are O(n2) separable bipartitions. Furthermore, there is
an algorithm for enumerating all separable bipartitions
in O(n2 logn) time while maintaining the diameters of
two convex hulls. This suggests an O(n2 logn)-time and
O(n)-space algorithm, which is superior in the space
complexity to the graph-theoretic approach.

The theorem above looks straightforward, but the

proof is in fact rather complicated. First imagine a
situation depicted in Fig. 3 in which two convex hulls
for S1 and S2 intersect twice. Then, moving all these
points of S1 to S2 that are properly included in the
convex hull of S2 and doing the same thing from S2

to S1, each of the diameters never increases since all
the new points lie inside each of the convex hulls. The
case in which one convex hull is totally included in the
other is easier. Partition the whole set roughly in the
middle, and the larger diameter never increases since
the convex hulls of the resulting sets are included in
the original larger convex hull.

There still remains one case in which two convex
hulls intersect many times. The proof for the case is
rather complicated. So, we shall only sketch it.

Let us start with some key facts which often play
important roles in similar proofs based on geometric
properties. Before giving facts, we need some notations:
For two points a and b, ab denote the line segment
joining a and b, and ab denotes the Euclidean distance
between a and b. For two point sets A and B, let AB
denote the maximum distance between A and B; that
is, AB = max{ab|a ∈ A, b ∈ B}.
Fact 1: If a, b, c and d are the cyclically ordered
vertices of a convex quadrilateral, then ac + bd ≥
max{ab+ cd, ad+ bc}.

Fact 2: In a triangle with an obtuse angle, the side
lying opposite the obtuse angle is the longest side in
the triangle.

Let us denote by CH(S) the convex hull of a
point set S. We assume that CH(S1) ∩ CH(S2) �=
∅, CH(S1) �⊂ CH(S2) and CH(S2) �⊂ CH(S1). Let
< u1, u2, . . . , u2k > be the sequence of points in clock-
wise order where CH(S1) and CH(S2) intersect. Write
CH(S1)−CH(S2) and CH(S2)−CH(S1) as two inter-
lacing sequences of polygons < A1, A2, . . . , Ak > and
< B1, B2, . . . , Bk >, respectively, where Ai intersects
Bi at u2i, and Ai intersects Bi−1 at u2i−1. See Fig. 4.
The boundaries of CH(S1) and CH(S2) may touch
without crossing each other, or they may even coincide
on a small piece. However, those details are neglected
here for simplicity of arguments.

We will separate the set S1 ∪ S2 into S′
1 and S′

2

by a line L through two points ui and uj , whose choice

Fig. 3 A simple case in which two convex hulls share one
connected regions.

422
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

Fig. 4 Regions created by two intersecting convex polygons.

will be desired.
Without loss of generality, we may assume that

D(S1) ≥ D(S2). We call a pair (Ai, Bj) bad, if
D(Ai ∪ Bj) > D(S1). The bad pairs are those pairs
of polygons which must be separated by the line L in
order to make both diameters ≤ D(S1). Call a polygon
Ai or Bj bad, if it appears in some bad pair. The follow-
ing lemma holds for the relative positions of two bad
pairs. We say that two pairs (Ai, Bj) and (Ai′ , Bj′)
with Ai �= Ai′ and Bj �= Bj′ cross if their cyclic se-
quence is Ai, Ai′ , Bj , Bj′ or Ai, Bj′ , Bj , Ai′ . In other
words, they cross if and only if the two segments con-
necting a point in Ai to a point in Bj and a point in Ai′

to a point in Bj′ intersect, independently of the choice
of these points. Such segments are called bad segments.

Lemma 3: Any two disjoint bad pairs cross.

To prove the lemma, let us assume that there are
two bad pairs (Ai, Bj) and (Ai′ , Bj′) with Ai �= Ai′

and Bj �= Bj′ that do not cross. For each bad pair, we
choose a bad line segment connecting two points at dis-
tance > D(S1) that lie in the polygons belonging to the
pair. Let us call these points ai, bj, ai′ and bj′ , respec-
tively. The two possibilities for the relative positions
of these points (disregarding symmetric variations) are
depicted in Fig. 5. The bad segments are represented
by double lines. Their endpoints are shown as black
circles (points in S1) and white circles (points in S2).

(a) The case shown on the left side of Fig. 5 im-
mediately leads to a contradiction: By Fact 1, the sum
of the diagonals in the convex quadrilateral aibjai′bj′
is larger than the sum of two opposite sides. Hence,

D(S1) +D(S2) ≥ aiai′ + bjbj′ > aibj + bj′ai′

> 2D(S1)

must hold, a contradiction to the assumption
D(S1) ≥ D(S2).

(b) In the case shown on the right side of Fig. 5,
we observe that the convex quadrilateral aibjbj′ai′ must
have an angle larger or equal to π/2. Without loss of
generality, let this be the angle at bj . Between the
half-moons Bj and Bj′ , there lies at least one (not nec-

Fig. 5 Two impossible configurations of bad pairs.

essarily bad) polygon Am. Select an arbitrary point
am ∈ Am. Then the angle � aibjam is obtuse, and
hence, by Fact 2,

aiam > aibj > D(S1)

This is again a contradiction. ✷

In this manner we can show that the bad pairs
give rise to a complete matching. Based on the fact
that bad pairs must cross, we can guarantee the exis-
tence of a line which separates all bad pairs. Clearly,
the resulting subsets S′

1 and S′
2 are separable and have

diameter bounded by max{D(S1),D(S2)} as required.
This completes the rough sketch for the proof of The-
orem 1. The detail of the proof is found in [9]. The
proof in [4] is incomplete, which was completed in [9].

4.6 Efficient Algorithm Based on Geometric Proper-
ties

We have known that there are O(n2) different biparti-
tions of a set of n points in the plane. This fact leads to
a polynomial-time algorithm. In fact we can enumerate
all possible bipartitions as follows:

Naive Enumeration of Bipartitions:
Let S be a given set of points;
for each pair (u, v) of points of S

Let A be the set of points lying above the line
through u and v;
S1 = A ∪ {u}, S2 = S − S1;
Compute diameters of S1 and S2;
Compare the bipartition with the optimal solution
found so far;

end of Algorithm

The computational complexities are easily ana-
lyzed. For each of O(n2) different pairs of points, the
corresponding bipartition is computed in linear time.
Once a point set is given the diameter of the set can be
computed as the distance between the farthest points,
and thus there is no need for pairwise distances. Given
a point set, its diameter can be computed in O(n log n)
time. Note that if points are sorted the running time
is further reduced to O(n). Thus, the running time
of the algorithm above is O(n log n+ n× n2) = O(n3).
The space complexity is obviously O(n), which is an im-
provement from O(n2) in the graph-theoretic approach.

The inefficiency comes from the fact that convex
hulls are computed each time from the scratch. If we
could enumerate bipartitions so that next bipartitions

ASANO: EFFECTIVE USE OF GEOMETRIC INFORMATION FOR CLUSTERING AND RELATED TOPICS
423

are obtained by constant number of changes, i.e., by
exchanging at most two points each time, we would
improve the time complexity. An idea is to fix one
point u and rotate the separating line counterclock-
wisely around u like a circular plane sweep. The fol-
lowing is the algorithm based on this idea.

Efficient Enumeration of Bipartitions:
Let S be a given set of points;
Let (S, ∅, d=∞) be a candidate of an optimal solution;
for each point u in S do
Sort the remaining points vi by the angle of the line
passing through u and vi;
Let < v1, v2, . . . , vn−1 > be the sorted list;
Let A be the set of points above the line uv1;
Define S1 = A ∪ {u}, S2 = S − S1;
Compute D(S1) and D(S2);
d′ = max{D(S1),D(S2)};
if d′ < d then
update the current optimum to (S1, S2, d = d′);

for i = 2 to n− 1 do
Rotate the sweep line from uvi−1 to uvi;
if vi lies above uvi−1 (see Fig. 6 (a)) then

move vi from S1 to S2;
if vi−1 lies above uvi (see Fig. 6 (b)) then

move vi−1 from S2 to S1;
Update D(S1) and D(S2) if any move;
if d > d′ = max{D(S1),D(S2)} then

update the current optimum to (S1, S2, d = d′);
Output (S1, S2, d) as an optimal bipartition together
with the larger diameter;
end of Algorithm

Let us analyze the running time of the above al-
gorithm. In each iteration we sort n − 1 points in
O(n logn) time, compute diameters of the initial sets
in O(n logn) time. Then, in the inner loop which is
iterated n− 2 times, we update the sets S1 and S2 by
moving at most two points between S1 and S2. More
precisely, at most one point moves from S1 to S2 and
at most one point moves from S2 to S1. Thus, we need
an appropriate data structure for efficient implementa-
tion of dynamic set operations “insertion” and “dele-
tion” while maintaining the diameter of a point set.
Such a data structure is known. In fact, if we rely
on the dynamic data structure proposed by Overmars

(a) (b)

Fig. 6 Enumeration of all possible bipartitions by plane sweep
around each point u.

and van Leeuwen [32], operations of insertion and dele-
tion are implemented in O(log2 n) time. If we could
also answer the diameter of a convex hull, or the far-
thest point pair in O(log2 n) time, the overall running
time would be O(n2 log2 n). Fortunately, there is such a
data structure [11] although O(log2 n) time is achieved
by amortized analysis and it holds for a semi-online
model. Refer to [11] for details.

4.7 Further Improvement Based on Geometric Prop-
erties

In view of Theorem 1, a set S has a bipartition with
diameter less than t if and only if some line � intersects
every line segment in the set {(a, b) ∈ S × S|ab ≥ t}.
In Edelsbrunner et al. [13], a line which intersects each
segment (in its interior) of a collection of line segments
L is called a stabbing line for L.

Definition 1: Let L be a set of line segments. Order
the line segments of L in non-increasing order by length
as |e1| ≥ |e2| ≥ · · · ≥ |ep|. For any i ≤ p, let L(i) denote
the list < e1, e2, . . . , ei >. The maximum index i such
that L(i) admits a stabbing line while L(i+1) does not
is called the threshold index for L, and a stabbing line
for L(i) is called a threshold stabbing line for L.

The algorithm in [6] finds a min-diameter separable
bipartition for S in O(n2 log2 n) time and O(n2) space
by computing a threshold stabbing line for E = S × S.
Theorem 1 implies that the bipartition so obtained is
a true optimum. Furthermore, we can significantly re-
duce the space and time requirements of the algorithm
by replacing E with a subset of size only O(n), namely,
the edge set of a maximum spanning tree on S (A max-
imum spanning tree is a spanning tree whose total edge
length is as large as possible). An example is shown in
Fig. 7.

Theorem 2: A threshold stabbing line for a maxi-
mum spanning tree of S induces a min-diameter bipar-
tition of S.

This theorem leads to the following algorithm:

Efficient Min-Diameter Bipartition:
Input: a set S of n points in the plane.
Output: a min-diameter bipartition (S1, S2) of S.

Fig. 7 Maximum spanning tree for a point set.

424
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

Algorithm:
1. Compute a maximum spanning tree M for S.
2. Find a threshold stabbing line � for M .
3. Output the partition (S1, S2) induced by �.
end of Algorithm

The correctness of this algorithm follows from The-
orem 2. We now analyze its complexity. In step
1, a maximum spanning tree can be constructed in
O(n logn) time and O(n) space by employing the al-
gorithm in [28]. The partition (S1, S2) in step 3 can
be obtained in O(n) time easily once � is known. It
thus remains to show that step 2 can be carried out in
O(n logn) time and O(n) space.

To find a threshold stabbing line for a set L of n
line segments, we can first sort the line segments in
L by length, and then perform a binary search using
the algorithm from [13] as a subroutine, which has the
following performance.

Fact 3: Given a set L of n line segments, there is an
algorithm which decides in O(n logn) time and O(n)
space whether there exists a stabbing line for L, and
finds one if there does.

However, the binary search can introduce an ad-
ditional logn factor in the running time if care is not
taken. We thus take a closer look at the algorithm men-
tioned the fact above. The algorithm is based on the
observations that the point-line duality transforms line
segments into ‘double wedges’ (see, for example, [3],
[7]), and that L has a stabbing line if and only if the
corresponding set of double wedges has non-empty in-
tersection. We will make use of the following two facts
established in [13], where the stabbing region for a set
of line segments refers to the intersection of the corre-
sponding double wedges.

Fact 4: The stabbing regions for n line segments in
the plane can be computed in O(n log n) time.

Fact 5: Given two stabbing regions for n1 and n2 line
segments respectively, their intersection can be com-
puted in O(n1 + n2) time.

Now, in the binary search for a threshold stabbing
line, we assume at the beginning of the j-th iteration
that the first m segments of L are known to have a
nonempty stabbing region R. (Initially, m = 0 and R
is the entire plane.) We then use Fact 4 to compute
the stabbing region R′ for the subset consisting of the
m + 1-st through the m + n/2j-th segments of L. If
R′ is non-empty, we let m := m + n/2j and compute
R := R ∩R′ by Fact 5. The loop is then repeated with
j := j + 1.

We analyze the complexity of the above procedure.
The j-th iteration of the loop uses O(n/2j log(n/2j))
time for computing the stabbing region R′, and O(n)
time for finding the intersection R∩R′. Summing over

j = 1, . . . , logn, we obtain an O(n log n) bound for the
total time. The space required is linear. This com-
pletes the analysis of our algorithm for min-diameter
bipartition.

Theorem 3: Amin-diameter bipartition for a set of n
points in the plane can be computed in time O(n log n)
and space O(n).

5. Generalizations of the Result

The result stated in Theorem 3 was extended to more
than two clusters by Capoyleas, Rote and Woeginger [9]
in the following manner.

Theorem 4: Consider the optimal k-clustering prob-
lem for the diameter with monotone increasing function
F . For every point set S in the plane, there is an op-
timal k-clustering such that each pair of clusters is lin-
early separable.

Proof: [9] Consider the optimal k-clustering for which
the sum of perimeters of all clusters becomes minimal.
Assume that there are two clusters which are not lin-
early separable. Applying Theorem 1 to the above
two clusters, we get a k-clustering with smaller sum
of perimeters. As both affected diameters do not in-
crease, the value of F does not increase, too. ✷

So far, we have only dealt with the diameter as the
quality measure of a cluster. For the radius, an analog
of Theorem 4 can be shown directly [9].

Theorem 5: Consider the optimal k-clustering prob-
lem for the radius with a monotone increasing function
F . For every point set S in the plane, there is an op-
timal k-clustering such that each pair of clusters is lin-
early separable.

Based on the discussions so far, we reach the fol-
lowing generalized theorem [9].

Theorem 6: For any fixed k, the geometric k-
clustering problem for the diameter or for the radius
with respect to some monotone increasing function F
is solvable in O(n6k) time.

For the case k = 3 the current best known al-
gorithm runs in O(n2 log2 n) time (see Hagauer and
Rote [17]).

Another generalization is established by Hersh-
berger and Suri [21]. The problem they considered is
the following: given a planar set of points S, a measure
µ acting on S, and a pair of values µ1 and µ2, does
there exist a bipartition (S1, S2) satisfying µ(Si) ≤ µi

for i = 1, 2? O(n logn)-time algorithms are presented
for several natural measures, including the diameter,
the area, perimeter or diagonal of the smallest enclos-
ing axes-parallel rectangles, and so on. Even for geo-
metric setting, the k-way partition problem is known
to be NP-complete for many of these measures.

ASANO: EFFECTIVE USE OF GEOMETRIC INFORMATION FOR CLUSTERING AND RELATED TOPICS
425

6. Related Topics

6.1 Minimum-Diameter Balanced Bipartition

So far we have been interested in the criterion of min-
imizing the largest diameter. There are a number
of studies under similar but slightly different criteria.
Avis [6] dealt with balanced bipartition. That is, given
a set of points in the plane, the problem is to find the
smallest t such that the set can be partitioned into two
equal-sized subsets each of which has diameter at most
t. With this additional constraint, the separability con-
dition of an optimal solution does not hold. The graph-
theoretic approach described in the previous section is
the basic idea in [6]. We consider the following predi-
cate Q0(t):

S can be partitioned into subsets S1 and S2

so that max(D(S1),D(S2)) ≤ t.

By the observation in Sect. 2, Q0(t) is true if and
only if the graph Gt defined by edges interconnecting
points with mutual distances greater than t is bipartite.
The problem is to find the smallest value of t such that
Q0(t) is true. Difficulty is how to take the size con-
straint into accounts. If Gt is connected then there is a
unique bipartition. But if it is not connected, it seems
that there may be exponentially many different biparti-
tions. In this case, fortunately, the total size is bounded
by the number of points and so it can be checked in
O(n2) time by a so-called pseudo-polynomial time al-
gorithm whether there is a balanced bipartition, i.e., a
representation of a disconnected bipartite graph with
two vertex sets of equal size in the two sides. Based on
the results an O(n2 log n) time algorithm is derived for
the problem.

6.2 Maximizing the Intercluster Distances

As an analogue to the minimum-diameter clustering de-
scribed in the previous sections, we can define a far-
thest k-partition: Given a set S of points in the plane,
a k-partition of S is a decomposition of S into k dis-
joint subsets (clusters) P = {C1, C2, . . . , Ck}. We call
P a farthest k-partition if the minimum intercluster
distance mini,j min{ab|a ∈ Ci, b ∈ Cj} is maximized
aong all k-partitions of S. Compared with a minimum-
diameter partition, it is easy to construct a farthest
k-partition of a set by observing the following property
of a minimum spanning tree.

Let the edges of S×S be sorted in non-decreasing
order by length as |e1| ≤ |e2| ≤ · · · ≤ |em|, where m =
n(n− 1)/2. Let MST be a minimum spanning tree on
S, with edges |eM(1)| ≤ |eM(2)| ≤ · · · ≤ |eM(n−1)|.
Theorem 7: The collection Q of connected compo-
nents formed by the edges {eM(1), eM(2), . . . , eM(n−k)}

gives a farthest k-partition of S.

This theorem [4] immediately leads to an
O(n log n)-time and O(n)-space algorithm for comput-
ing a farthest k-partition for a set of n points in the
plane. The algorithm first computes a minimum span-
ning tree, sorts its edges, and then constructs the k
components by a Union-Find algorithm [2].

6.3 Minimizing the Sum of Diameters

Another natural optimization criterion is to minimize
the sum of diameters. Monma and Suri discussed
the problem in [29]. They discussed the problem in
two different settings. For a set of n points in the
plane, their algorithm runs in O(n2) time and O(n)
space. For a weighted graph with n vertices and m
edges they improved the previously known time bound
O(n3 logn) [18] into O(mn logn) time. Basic ideas be-
hind their algorithms are a maximum spanning tree and
a notion of (r1, r2)-partition, which is a bipartition such
that two subsets are bounded by r1 and r2, respectively.
One important subroutine is the O(m) algorithm for
deciding whether a (r1, r2)-partition exists. The result
for the geometric setting was further improved by Her-
shberger [20] into O(n log n/ log logn) time.

6.4 Variance-Based k-Clustering

Inaba, Katoh, and Imai [23] studied the problem of
variance-based k-clustering, i.e., one of partitioning n
points into k clusters so as to minimize the sum of
variances of clusters, and compared it with popular
algorithm based on iterative improvement called ‘k-
means algorithm’ [36] by computer experiments. The
basic tool is a general parametric technique by Katoh
and Ibaraki [26] for minimizing quasiconcave functions,
which leads to characterization of an optimal cluster-
ing by means of higher-order Varonoi diagram. They
showed that optimal solutions can be characterized by
weighted Voronoi diagram generated by k points, and
evaluated the primary shutter function of the k-Voronoi
space.

6.5 Euclidean p-Center Problem

The Euclidean p-center problem is to cover a set of
points by p congruent balls of the smallest possible ra-
dius. The simplest version of this problem, i.e., planar
p-center problem is known to be NP-hard [14]. The
latest result in this area is found in [1], where an
nO(k1−1/d) time algorithm for solving the k-center prob-
lem in the d-dimensional space, under L∞ and L2 met-
rics. This is an improvement of the previous result by
Hwang et al. [22] for the planar case. A simple (1+ ε)-
approximation algorithm for the k-center problem is
also presented. The running time of the algorithm is

426
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

O(n log k) + (k/ε)O(k1−1/d). Some extended version of
the problem is also considered in [1]. It is named L-
capacitated p-center problem for some integer L. In
this version we are given an integer L and asked to solve
the p-center problem with an additional constraint that
each cluster has at most L points.

6.6 Circuit Partition

A number of methods have been proposed for deter-
mining placement of modules in VLSI chips. One of
the most popular methods is “Mincut Placement Al-
gorithm” proposed by Lauther in 1980 [27]. The ba-
sic strategy of this algorithm is so-called divide-and-
conquer. That is, a set of modules is divided into two
parts so that the number of interconnections between
different sides is minimized under the constraint that
the total areas are compatible in the two resulting sides.
Then, an optimal placement of modules is determined
in each side in a recursive manner. Finally, the inter-
connections between the two sides are completed.

This Mincut Algorithm seems to be very promis-
ing if we find an optimal partition of modules. Unfor-
tunately the problem seems to be intractable [16]. This
is mainly because of exponentially many different par-
titions. Two different approaches may be considered.
One of them is to rely on heuristic search toward an
approximated goal, such as maximizing the minimum
connectivity among modules in the same part. The
other approach is to find a partition that is best in
a restricted search space. In the latter approach we
map modules into points in the plane so that the dis-
tance between any two points is anti-proportional to
the connectivity between the corresponding modules as
much as possible. Thus, two tightly connected modules
should be placed close to each other. Furthermore, we
put a restriction on partitions, that is, we only consider
partitions by straight lines (called linear partitions). A
combinatorial observation tells us the fact that there
are only O(n2) different linear partitions, which allows
us to examine all possible linear partitions in polyno-
mial time. An efficient algorithm for this purpose is
presented in [5], which is based on duality transform
and Topological Walk.

7. Concluding Remarks

I believe that the greatest contribution of the Algorithm
theory is discovery of efficient or polynomial-time algo-
rithms for those problems which look intractable. Most
of the problems considered in this survey paper are such
ones. Dynamic programming has been a common algo-
rithmic paradigm for polynomial-time solvability. This
paper suggests several other approaches for the same
goal, I hope.

Acknowledgment

This work was partially supported by Grant in Aid for
Scientific Research of the Ministry of Education, Sci-
ence and Cultures of Japan. The author would like to
express his sincere thanks to Dr. Takeshi Tokuyama of
IBM Tokyo Research Laboratory for his valuable com-
ments based on careful reading of the draft.

References

[1] P.K. Agarwal and C.M. Procopiuc, “Exact and approxi-
mation algorithms for clustering,” Proc. 9th ACM-SIAM
Sympos. Discrete Algorithms, pp.658–667, 1998.

[2] A. Aho, J. Hopcroft, and J. Ullman, The Design and Anal-
ysis of Computer Algorithms, Addison-Wesley, Reading,
Mass., 1974.

[3] T. Asano, Computational Geometry, Asakura-Shoten,
1990.

[4] T. Asano, B. Bhattacharya, J.M. Keil, and F.F. Yao, “Clus-
tering algorithms based on minimum and maximum span-
ning trees,” Proc. 4th Annual ACM Symp. on Computa-
tional Geometry, pp.252–257, 1988.

[5] T. Asano and T. Tokuyama, “Circuit partitioning al-
gorithms: Graph model versus geometry model,” Proc.
2nd International Symposium on Algorithms, pp.94–103,
Taipei, 1991.

[6] D. Avis, “Diameter partitioning,” Discrete and Computa-
tional Geometry, vol.1, pp.265–276, 1986.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf, Computational Geometry: Algorithms and
Applications, Springer, 1997.

[8] P. Brucker, “On the complexity of clustering problems,” in
Optimization and Operations Research, Lecture Notes in
Economics and Mathematical Systems, eds. R. Henn, B.
Korte, and W. Oletti, pp.45–54, Springer, Berlin, 1978.

[9] V. Capoyleas, G. Rote, and G. Woeginger, “Geometric clus-
terings,” J. Algorithms, vol.12, pp.341–356, 1991.

[10] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, “Incre-
mental clustering and dynamic information retrieval,” Proc.
29th Annu. ACM Sympos. Theory of Computing, pp.626–
634, 1997.

[11] D. Dobkin and S. Suri, “Maintenance of geometric ex-
trema,” J. ACM, vol.38, no.2, pp.275–298, 1991.

[12] Z. Drezner, ed., Facility Location, Springer-Verlag, New
York, 1995.

[13] H. Edelsbrunner, H.A. Mauer, F.P. Preparata, A.L. Rosen-
berg, E. Welzl, and D. Wood, “Stabbing line segments,”
BIT, vol.22, pp.274–281, 1982.

[14] R.J. Fowler, M.S. Paterson, and S.L. Tanimoto, “Optimal
packing and covering in the plane are NP-complete,” In-
form. Process. Lett., vol.12, pp.133–137, 1981.

[15] M.R. Garey and D.S. Johnson, Computers and Intractabil-
ity, Freeman, New York, 1979.

[16] M.R. Garey, D.S. Johnson, and L. Stockmeyer, “Some sim-
plified NP-complete graph problems,” Theor. Comput. Sci.,
vol.1, pp.237–267, 1976.

[17] J. Hagauer and G. Rote, “Three-clustering of points in the
plane,” Proc. 1st Annual European Symp. on Algorithms
(ESA’93), Lecture Notes in Computer Science, vol.726,
pp.192–199, 1993.

[18] P. Hansen and B. Jaumard, “Minimum sum of diameters
clustering,” J. Classification, pp.215–226, 1987.

[19] J.A. Hartigan, Clustering Algorithms, John-Wiley, New

ASANO: EFFECTIVE USE OF GEOMETRIC INFORMATION FOR CLUSTERING AND RELATED TOPICS
427

York, 1975.
[20] J. Hershberger, “Minimizing the sum of diameters effi-

ciently,” Computational Geometry: Theory and Applica-
tions, vol.12, pp.111–118, 1992.

[21] J. Hershberger and S. Suri, “Finding tailored partitions,”
Proc. 5th Annual ACM Symp. Computational Geometry,
pp.255–265, 1989.

[22] R.Z. Hwang, R.C.T. Lee, and R.C. Chang, “The slab di-
viding approach to solve the euclidean p-center problem,”
Algorithmica, vol.9, pp.1–22, 1993.

[23] M. Inaba, N. Katoh, and H. Imai, “Applications of weighted
voronoi diagrams and randomization to variance-based k-
clustering,” Proc. 10th ACM Symp. Computational Geom-
etry, pp.332–339, 1994.

[24] J. Jolion, P. Meer, and S. Batauche, “Robust clustering
with applications in computer vision,” IEEE Trans. Pattern
Anal. & Mach. Intell., vol.13, pp.791–802, 1991.

[25] D.S. Johnson, “The NP-completeness column: Ongoing
guide,” J. Algorithms, vol.3, pp.182–195, 1982.

[26] N. Katoh and T. Ibaraki, “A parametric characterization
and an ε-approximation scheme for the minimization of
a quasiconcave program,” Discrete Applied Mathematics,
vol.17, pp.39–66, 1987.

[27] U. Lauther, “A min-cut placement algorithm for general
cells assemblies based on a graph representation,” J. Digital
Systems, vol.4, pp.21–34, 1980.

[28] C. Monma, M. Paterson, S. Suri, and F. Yao, “Comput-
ing Euclidean maximum spanning trees,” Proc. 4th Annual
ACM Symp. Computational Geometry, pp.241–251, 1988.

[29] C. Monma and S. Suri, “Partitioning points and graphs to
minimize the maximize or the sum of diameters,” Proc. 6th
International Conf. on Theory and Applications of Graphs,
1988.

[30] R.T. Ng and J. Han, “Efficient and effective clustering
methods for spatial data mining,” Proc. 20th International
Conf. on Very Large Databases, pp.144–155, 1994.

[31] R.H.J.M. Otten, “Automatic floorplan design,” Proc. 19th
Design Automation Conf., pp.261–267, 1982.

[32] M. Overmars and J. van Leeuwen, “Maintenance of configu-
rations in the plane,” J. Comput. Syst. Sci., vol.23, pp.166–
204, 1981.

[33] F.P. Preparata and M.I. Shamos, Computational Geometry
— An Introduction, Springer Verlag, New York, 1985.

[34] P. Schroeter and J. Bigün, “Hierachical image segmen-
tation by multi-dimensional clustering and orientation-
adaptive boundary refinement,” Pattern Recognition,
vol.28, pp.695–709, 1995.

[35] D. Shmoys, E. Tardos, and K. Aardal, “Approximation al-
gorithms for facility location problems,” Proc. 29th ACM
Sympos. Theory Comput., pp.265–274, 1997.

[36] S.Z. Selim and M.A. Ismail, “K-means-type algorithms: A
generalized convergence theorem and characterization of lo-
cal optimality,” IEEE Trans. Pattern Anal. & Mach. Intell.,
pp.81–87, 1984.

[37] K.J. Supowit, “Topics in computational geometry,” Ph.D.
thesis, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, Report UIUCDCS-R-81-1062, 1981.

Tetsuo Asano received the B.E.,
and M.E., and Ph.D. degrees in Engineer-
ing from Osaka University in 1972, 1974,
and 1977, respectively. He is currently a
professor of JAIST (Japan Advanced In-
stitute of Science and Technology). His
research interest includes Computational
Geometry, Discrete Algorithms, Combi-
natorial Optimization and their applica-
tions. Dr. Asano is a member of IEEE,
ACM, SIAM, IPSJ, and ORS. He is a

member of the editorial boards of Discrete and Computational
Geometry, International Journal of Computational Geometry
and Applications, Computational Geometry: Theory and Ap-
plications, etc.

