
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Assignment-Driven Loop Pipeline Scheduling and

Its Application to Data-Path Synthesis

Author(s) YOROZUYA, Toshiyuki; OHASHI, Koji; KANEKO, Mineo

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E85-A(4): 819-826

Issue Date 2002-04-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4686

Rights

Copyright (C)2002 IEICE. Toshiyuki Yorozuya, Koji

Ohashi, Mineo Kaneko, IEICE TRANSACTIONS on

Fundamentals of Electronics, Communications and

Computer Sciences, E85-A(4), 2002, 819-826.

http://www.ieice.org/jpn/trans_online/

Description

IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.4 APRIL 2002
819

PAPER Special Section of Selected Papers from the 14th Workshop on Circuits and Systems in Karuizawa

Assignment-Driven Loop Pipeline Scheduling and Its

Application to Data-Path Synthesis

Toshiyuki YOROZUYA†a), Koji OHASHI†, Nonmembers,
and Mineo KANEKO†b), Regular Member

SUMMARY In this paper, we study loop pipeline schedul-
ing problem under given resource assignment (operation to func-
tional unit assignments and data to register assignments), which
is one of the key tasks in data-path synthesis based on the as-
signment solution space exploration. We show an approach using
a precedence constraint graph with parametric disjunctive arcs
generated from the specified assignment information, and derive
a scheduling method using branch-and-bound exploration of the
parameter space. As an application of the proposed scheduling
method, it is incorporated with Simulated-Annealing (SA) based
exploration of assignment solution space, and it is demonstrated
that data-paths of the fifth-order elliptic wave filter are success-
fully synthesized.
key words: data-path synthesis, resource assignment, loop

pipeline scheduling, dependence graph, disjunctive arc

1. Introduction

Data-path synthesis is the task to transform an algo-
rithm level description in behavioral domain to a regis-
ter transfer (RT) level descriptions in structural domain
and in behavioral domain [1]. RT level description in
structural domain consists of functional units, registers
and the other interconnection resources such as nets,
buses, and multiplexers.

Most of the conventional data-path synthesis aim
mainly to minimize the number of control steps and
the number of functional units, and they first decide
the schedule and the number of functional units by re-
source constraint scheduling or time constraint schedul-
ing, which are followed by resource assignments. How-
ever, the connectivity between components is also an
important metric for VLSIs for its connection with
routability, signal transmission delay, power consump-
tion, testability, etc. In the stepwise design; scheduling
and resource assignment in this order, it may be hard
to make decision on operation schedule with regarding
connectivity which shall be fixed only after resource
assignment, and some backtracking may be needed to
control or to optimize connectivity related metrics. As-
signment driven approach is also candidate method to

Manuscript received June 28, 2001.
Manuscript revised October 5, 2001.
Final manuscript received December 20, 2001.

†The authors are with the School of Information Sci-
ence, Japan Advanced Institute of Science and Technology,
Ishikawa-ken, 923–1292 Japan.
a) E-mail: t-yorozu@jaist.ac.jp
b)E-mail: mkaneko@jaist.ac.jp

control connectivity [2], [3]. In those design approaches,
we often encounter scheduling problems with specified
resource assignment [2]–[6].

In this paper, we propose an approach using para-
metric scheduling graph with disjunctive arcs generated
from the specified assignment information (operation to
functional unit assignments and data to register assign-
ments) in loop pipeline scheduling problem.

The disjunctive arc approach to scheduling prob-
lem is often used in “shop scheduling problems.” We
can see other disjunctive arc approaches in [3], [4] and
[6]. In [4], assignments are specified only for operations
and data transfers, and optimum scheduling method
is not discussed. In [6], the schedule analyzer trans-
forms register binding into precedence constraints (dis-
junctive arcs), however disjunctive arcs are introduced
only for unambiguous sequentialization of operation
and data lifetimes, and the final schedule relies on “off-
the-shelf (resource constraints, not binding constraints)
scheduler.” As the result in their approach, “the exis-
tence of a schedule is not strictly guaranteed.” The
method proposed in [3] does not treat loop pipeline
scheduling. Also, they proposed only a simple heuristic
algorithm.

In this paper, by contrast, (1) we treat both as-
signment of operations to functional units and assign-
ment of data to registers, (2) we introduce disjunctive
arcs with variable weights to scheduling graph for rep-
resenting constraints induced by assignment specifica-
tion, (3) we examine the range of available value for
each unknown variable, and construct a branch-and-
bound method incorporated with successive refinement
of those ranges to solve our problem.

The organization of this paper is as follows. First,
the problem treated in this paper and some related
matters are described in Sect. 2. Section 3 presents
the disjunctive arc approach to the problem and shows
a branch-and-bound method to decide loop pipeline
scheduling. Section 4 presents application of our pro-
posed scheduling method to data-path synthesis and
shows experimental results. Finally, Sect. 5 concludes
this paper with a brief summary and suggestions for
future work.

820
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.4 APRIL 2002

2. Preliminaries

2.1 Loop Pipeline Scheduling Problem

The input and output of a scheduling problem under
specified resource assignment (SRA) treated in this pa-
per is represented as follows,
Input;
• Dependence Graph

Target application algorithm to be implemented
is specified with a directed graph G = (VG, AG)
which is called “dependence graph.” VG is a union
of VO a set of operations and VD a set of data.
AG is a union of a set of arcs from operations to
data AO ⊂ VO × VD (source operation generates
destination data) and a set of arcs from data to
operations AI ⊆ VD × VO (source data is used by
destination operation as input). Moreover, AI has
a delay function D : AI → Z. An example of the
dependence graph is shown in Fig. 1(left).
We assume that each operation in a dependence
graph is executed repeatedly, where (oi, dj) ∈ AO

represents that mth execution of oi (sometime we
denote it as o

(m)
i) generates mth data of dj (some-

time we denote it as d
(m)
j), and (dj , ok) ∈ AI rep-

resents that mth execution of ok (i.e. o
(m)
k) uses

(m − D(dj , ok))th data of dj (i.e. d
(m−D(dj ,ok))
j)

(Fig. 2).
• Resource Assignment

We let F be a set of allocated functional units,
and functional unit assignment is a mapping ρ :
VO → F . Similarly, we let R be a set of allocated
registers, and register assignment is represented as
a mapping ξ : VD → R.

• Execution time
Execution time of operation is given by a mapping
e : VO → Z+.

Output;
• Scheduling

Scheduling is a mapping σ : VO → Z where σ de-
notes the control step of 0th execution of each oper-
ation, we assume that every operation is executed
repeatedly with a common period Tr. That is, the
execution of operation oi starts at σ(oi)+mTr con-
trol steps (m = . . . , 0, 1, 2, . . .). The following con-
straints must be satisfied.

1. Scheduling satisfies the precedence con-
straints specified by arcs and delay function
in G.

2. The lifetimes of operations assigned to the
same functional unit do not overlap, and also
the lifetimes of data assigned to the same reg-
ister do not overlap.

Fig. 1 Dependence graph and its initial scheduling graph.

Fig. 2 Lifetime chart for explaining delay function on an arc
in AI .

Now, we can consider two problems, one is the de-
cision problem whether a scheduling exists or not under
specified Tr, the other is the problem to find an opti-
mum scheduling with minimum Tr. It is trivial that
SRA (decision version) is in NP , also the “flow shop
scheduling problem” can be polynomially reduced to
SRA. Hence our SRA problem is in NP-complete.

The blocked scheduling and the chaining are not
considered in this paper.

2.2 Introduction of Scheduling Graph

When we treat the scheduling problem, we introduce
a graph called “scheduling graph” GS = (VS , AS) to
represent explicitly the start control step and the end
control step of each operation. Here, we let �oi
 and
�oi� be nodes corresponding to the start and the end of
operation oi ∈ VO, respectively, and VS = V� � ∪ V� �,
where V� � = {�oi
 | oi ∈ VO} and V� � = {�oi� | oi ∈
VO}. On the other hand, AS is a union of two sets of
different kind of arcs, one is named “constant constraint
arcs”(AC) and the other is named “bound constraint
arcs”(A≤) (the difference between constraint arc and
bound constraint arc will be explained in the following
paragraph).

YOROZUYA et al.: ASSIGNMENT-DRIVEN LOOP PIPELINE SCHEDULING AND ITS APPLICATION TO DATA-PATH SYNTHESIS
821

For AS , two weight functions W and DS are spec-
ified as follows.

W : AC ∪A≤ → N

DS : A≤ → Z

When we consider the scheduling σ : VS → Z on GS , it
is requested that σ(q) = σ(p) + W (p, q) for a constant
constraint arc (p, q) ∈ AC and σ(s) ≥ σ(r) + W (r, s) −
DS(r, s)Tr for a bound constraint arc (r, s) ∈ A≤.

A scheduling graph (VS, AC ∪ A≤) is first con-
structed from the dependence graph of the input in-
stance as Eqs. (1) through (5), which is called an “initial
scheduling graph” and is denoted by GS0, and after-
ward it will be modified in our scheduling procedure.

AC = {(�oi
, �oi�) | oi ∈ VO} (1)
W (�oi
, �oi�) = e(oi) − 1 (2)
A≤ = {(�oi�, �oj
) | ∃d s.t. oi = p(d),

(d, oj) ∈ AI} (3)
W (�oi�, �oj
) = 1 (4)
DS(�p(d)�, �oj
) = D(d, oj) (5)

Note that p(d) is an operation which generates data
d (in other words, an immediate predecessor of d in G).
Fig. 1(right) shows the initial scheduling graph for its
left dependence graph.

2.3 ASAP and ALAP Scheduling

Sometimes we consider a scheduling with a specified
reference node v ∈ VS , in which σ(v) = 0 is retained,
and we denote it as σv : VS → Z. Moreover, we de-
fine ASAP scheduling σASAPv and ALAP scheduling
σALAPv for a reference node v as follows,

σASAPv(p) = “the longest path length
from v to p on GS”

σALAPv(p) = −“the longest path length
from p to v on GS”

where we define the arc length as W (p, q) for (p, q) ∈
AC and W (r, s) − DS(r, s)Tr for (r, s) ∈ A≤. Assum-
ing that no positive cycle is contained in GS , for any
choice of reference node v, the following inequality can
be easily verified.

σASAPv(p) ≤ σv(p) ≤ σALAPv(p) (6)

3. Disjunctive Arc Approach

3.1 Resource Assignment Constraint

If two operations oa and ob in G are assigned to the
same functional unit, then the collision of those opera-
tions should be avoided, and it can be done if and only
if there exists an integer Kab such that,

Fig. 3 Collision-Free scheduling of oa and ob which are
assigned to the same functional unit.

Fig. 4 Disjunctive arcs induced by functional unit assignment.

(1) The lifetime of ith execution of the operation oa

precedes the lifetime of (i − Kab)th execution of
the operation ob (Fig. 3(1)).

(2) At the same time, the lifetime of (i−Kab)th exe-
cution of the operation ob precedes the lifetime of
(i + 1)th execution of the operation oa (Fig. 3(2)).

Since the lifetime of ith execution of operation oa begins
at σ(�oa
) + iTr and ends at σ(�oa�) + iTr, we obtain
following inequalities from above two constraints.

σ(�ob
) + (i−Kab)Tr > σ(�oa�) + iTr

⇒ σ(�ob
) > σ(�oa�) + KabTr (7)

σ(�oa
) + (i + 1)Tr > σ(�ob�) + (i−Kab)Tr

⇒ σ(�oa
) > σ(�ob�) − (1 + Kab)Tr (8)

On the scheduling graph GS , these two constraints
can be represented by a pair of bound constraint arcs
(�oa�, �ob
) and (�ob�, �oa
) (Fig. 4) whose weights
are given as follows.

DS(�oa�, �ob
) = −Kab

DS(�ob�, �oa
) = 1 + Kab

W (�oa�, �ob
) = W (�ob�, �oa
) = 1

On the other hand, two data da and df which are
generated by operations oa and of , respectively, in G
are assigned to the same register, then the collision of
those data lifetimes should be avoided, and it can be
done if and only if there exists an integer Raf such that,

822
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.4 APRIL 2002

(1) The lifetime of the data da generated by ith exe-
cution of the operation oa precedes the lifetime of
the data df generated by (i−Raf)th execution of
operation of .

(2) At the same time, the lifetime of the data df gen-
erated by (i − Raf)th execution of operation of

precedes the lifetime of the data oa generated by
(i + 1)th execution of operation oa.

When operations obx
(x = 1, 2, . . . ,m) use data da

and DS(�oa�, �obx
) = sx, then the lifetime of ith
data of da, which is generated by ith execution of op-
eration oa begins at σ(�oa�) + iTr + 1 and ends at
MAXx{σ(�obx

�) + (i + sx)Tr}. Hence, when operation
obx

(x = 1, 2, . . . ,m) use data da and DS(�oa�, �obx
) =
sx, and at the same time operation ogy

(y = 1, 2, . . . , n)
use data df and DS(�of�, �ogy

) = ty, the above two
constraints are described as follows.

MAX
x

[σ(�obx
�) + (i + sx)Tr]

< σ(�of�) + (i− Raf)Tr + 1
⇒ σ(�of�) ≥ MAX

x
[σ(�obx

�) + (Raf + sx)Tr]

MAX
y

[σ(�ogy
�) + (i−Raf + ty)Tr]

< σ(�oa�) + (i + 1)Tr + 1
⇒ σ(�oa�) ≥ MAX

y
[σ(�ogy

�)

+ (ty −Raf − 1)Tr]

Similar to the case of functional unit assign-
ment, those constraints are represented by a set of
bound constraint arcs (�obx

�, �of �) (x = 1, 2, . . . ,m),
(�ogy

�, �oa�) (y = 1, 2, . . . , n) in GS (Fig. 5), and their
arc weights are given as follows,

DS(�obx
�, �of�) = −DS(�oa�, �obx

) −Raf

DS(�ogy
�, �oa�) = −DS(�of�, �ogy

) + 1 + Raf

W (�obx
�, �of �) = W (�ogy

�, �oa�) = 0

On the other hand, on a functional unit (or regis-
ter) onto which only a single operation oh (or data dc)
is assigned, lifetime collision between different opera-
tions (data) does not occur, but lifetime collision be-
tween consecutive executions of the single operation oh

(data dc) may occur. To avoid the latter, we need to
add the following bound constraint arc(s);

• with respect to oh, arc (�oh�, �oh
) with,

DS(�oh�, �oh
) = 1

W (�oh�, �oh
) = 1.

• with respect to dc, which is generated by op-
eration oc and used by odz

(z = 1, 2, . . . , n)
and DS(�oc�, �odz

) = yz (z = 1, 2, . . . , n), arcs
(�odz

�, �oc�), z = 1, 2, . . . , n, with,

Fig. 5 Disjunctive arcs induced by register assignment.

DS(�odz
�, �oc�) = −DS(�oc�, �odz

) + 1

W (�odz
�, �oc�) = 0.

Note that a variable Kab is introduced into GS (ini-
tially GS = GS0) for every pair of operations oa and
ob which are assigned to the same functional unit, and
also a variable Raf is introduced into GS for every pair
of data da and df which are assigned to the same regis-
ter. In the following, we denote the set of all variables
Kabs as K and the set of all variables Raf s as R.

Now, our loop pipeline scheduling problem is con-
verted to the problem to find Σ,

Σ : K ∪ R → Z

so that the resultant scheduling graph contains no pos-
itive cycles.

3.2 Range of Unknown Variable

We investigate the range of unknown variables under a
given Tr. In the following, we assume that the initial
scheduling graph GS0 is strongly connected.

We consider the unknown variable Kab ∈ K on the
disjunctive arcs derived from operation resource assign-
ment ρ(oa) = ρ(ob).

When we consider a scheduling σ�ov� with a refer-
ence node �ov
, inequalities,

−σ�ov�(�oa
) + σ�ov�(�ob�)
Tr

− 1

< Kab

<
σ�ov�(�ob
) − σ�ov�(�oa�)

Tr
(9)

hold from inequalities (7) and (8). Further, from in-
equality (6),

YOROZUYA et al.: ASSIGNMENT-DRIVEN LOOP PIPELINE SCHEDULING AND ITS APPLICATION TO DATA-PATH SYNTHESIS
823

−σALAP �ov�(�oa
) + σASAP �ov�(�ob�)
Tr

− 1

≤
−σ�ov�(�oa
) + σ�ov�(�ob�)

Tr
− 1 (10)

and,

σ�ov�(�ob
) − σ�ov�(�oa�)
Tr

≤
σALAP �ov�(�ob
) − σASAP �ov�(�oa�)

Tr
(11)

hold.
Since inequalities (9), (10) and (11) hold for any

selection of the reference node, we can obtain,

MAX
ov∈VO

[
σASAP �ov�(�ob�) − σALAP �ov�(�oa
)

Tr
− 1

]

< Kab

< MIN
ov∈VO

[
σALAP �ov�(�ob
) − σASAP �ov�(�oa�)

Tr

]

(12)

Now we let L(a, b) be the longest path length from
node a to node b on scheduling graph GS . Then for
any selection of the reference node, we get,

σASAP �ov�(�ob�) − σALAP �ov�(�oa
)
= L(�oa
, �ov
) + L(�ov
, �ob�)
≤ L(�oa
, �ob�) = σASAP �oa�(�ob�)

σALAP �ov�(�ob
) − σASAP �ov�(�oa�)
= −(L(�ob
, �ov
) + L(�ov
, �oa�))
≥ −L(�ob
, �oa�) = −σASAP �ob�(�oa�).

Using those inequalities, inequality (12) can be simpli-
fied further, and finally the following theorem is ob-
tained.

Theorem 1: When we avoid lifetime collision be-
tween oa and ob, ρ(oa) = ρ(ob), by adding bound con-
straint arcs with

DS(�oa�, �ob
) = −Kab

DS(�ob�, �oa
) = 1 + Kab,

the range of Kab is given, without loss of optimality, as

σASAP �oa�(�ob�)
Tr

− 1 < Kab

<
−σASAP �ob�(�oa�)

Tr

On the other hand, for the data da which is gener-
ated by the operation oa and is used by the operation
obx

and the data df which is generated by the opera-
tion of and is used by the operation ogy

, the unknown

variable Raf on the disjunctive arcs is introduced when
ξ(da) = ξ(df). From the similar discussion with the
one for Kab, we can have the following,

MAX
ov∈VO

MAX
y


ty − 1 +

−σALAP �ov�(�oa�)
+σASAP �ov�(�ogy

�)
Tr




≤ Raf

≤ MIN
ov∈VO

MIN
x




σALAP �ov�(�of�)
−σASAP �ov�(�obx

�)
Tr

− sx




and finally following theorem is obtained.

Theorem 2: When we avoid lifetime collision be-
tween da and df , ξ(da) = ξ(df), by adding bound con-
straint arcs with

DS(�obx
�, �of�) = −DS(�oa�, �obx

) −Raf

DS(�ogy
�, �oa�) = −DS(�of�, �ogy

) + 1 + Raf

the range of Raf is given, without loss of optimality, as

MAX
y

[
ty − 1 +

σASAP �oa�(�ogy
�)

Tr

]

≤ Raf

≤ MIN
x

[−σASAP �of�(�obx
�)

Tr
− sx

]

3.3 Branch-and-Bound for Exact Solution

We show the scheduling (iteration period constraint
scheduling) algorithm based on branch-and-bound ex-
ploration of the solution space for Σ. The outline of
the algorithm is described in Fig. 6. An initial solution
space for Σ is formed from a set of feasible integers
(range), which are calculated by using Theorems 1 and
2, for every unknown variables (K ∪ R). Also these
ranges are updated using Theorems 1 and 2 to increase
bounding opportunities, whenever a branching is pro-
ceeded. Once a feasible Σ : K ∪ R → Z (i.e. the
corresponding scheduling graph GS contains no posi-
tive cycles) is found, the scheduling σ is obtained by
calculating the longest path lengths from a reference
node to all nodes on GS .

On the other hand, with respect to the scheduling
problem to find an optimum scheduling with minimum
Tr, we are going to execute SCHEDULING (G, ρ, ξ, Tr)
repeatedly with increasing (or decreasing) Tr.

4. Application to Data-Path Synthesis

4.1 SEAS: SA Based Exploration of Assignment
Space

As an application of the proposed loop pipeline schedul-

824
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.4 APRIL 2002

SCHEDULING(G, ρ, ξ, Tr)
1. Construct initial scheduling graph GS0 from G.
2. Construct variable list K ∪R from ρ and ξ.
3. if (BAB(GS0,K ∪R, Tr) == 1) “SUCCESS”

else “FAIL”

BAB(GS ,K ∪R, Tr)
1. Calculate the longest path length of every pair of nodes

on scheduling graph GS

(if a positive cycle is detected, return(0)).
2. Calculate the range of remained variables in K ∪R.
3. if (There exists no unknown variables)

print the longest path length from reference node to
all other nodes, and return(1)

else if (There exists an unknown variable whose range
contains no integer value)
return(0)

else if (There exists unknown variables each of whose
range contains exactly one integer value)

for(each unknown variable whose range
contains exactly one integer value)
fix the value of the unknown variable to the
integer value contained in its range, and add
the corresponding disjunctive arcs to GS .
back to Step 1.

else
Select one unknown variable
for(each integer contained in its range)

3-1. fix the value, add the corresponding dis-
junctive arcs to GS

3-2. if (BAB(GS ,K ∪ R, Tr) == 1) re-
turn(1)

3-3. delete disjunctive arcs added in step 3-1.
return(0)

Fig. 6 Assignment-driven scheduling.

ing under given assignment, we incorporate our sched-
uler into data-path synthesis based on assignment space
exploration which can respect connectivity between
modules explicitly throughout the synthesis process.

Now, we will treat multiplexer-type architecture
which consists of adders, non-pipelined multipliers, reg-
isters, multiplexers and interconnections between mod-
ules (or terminals). We will consider data-path synthe-
sis problem to find the data-path with minimum num-
ber of point-to-point interconnections under given set of
available modules (functional unit and registers) F ,R,
and iteration period Tr. For this end, we adopt the re-
source assignment space exploration using Simulated-
Annealing (SA). That is, each solution visited in SA is a
complete resource assignment (ρ, ξ), and each solution
is evaluated in its scheduling feasibility (“SUCCESS”
or “FAIL” by SCHEDULING (G, ρ, ξ, Tr)) under given
Tr and the number of point-to-point interconnections.

In SA, the accuracy of cost evaluation of each vis-
ited solution affects the decision of acceptance/rejection
of each visited solution, the reachability from one solu-
tion to another, and a chain of accepted solutions from
initial solution to a final solution. In the archetype of
SA, it is assumed that each solution is evaluated its
cost correctly. Also it has been proven, under the cor-

Fig. 7 Fifth-order elliptic wave filter.

rect evaluation of each solution, that SA can produce
eventually an optimum solution if the cooling schedule
is appropriate. Even if such appropriate cooling sched-
ule is unrealistic and the justification of SA method
with finite steps relies only on the expectation that it
will simulate SA with an appropriate cooling schedule
and will produce a solution not much different from an
optimum solution, the incorporation of a correct eval-
uation of each solution is thought as a basic configura-
tion of SA. Those are the reason why we incorporate
the branch-and-bound (exact) scheduling into SA based
exploration of assignment space.

From our design experiments, it is shown that
our branch-and-bound scheduling works acceptably fast
enough to be executed repeatedly in SA for problem in-
stances with the size of fifth–order elliptic wave filter. A
heuristic version of assignment–driven scheduling and
its incorporation into SA based exploration of assign-
ment solution space for larger problem instances are
left for a future problem.

4.2 Synthesis Examples

Fifth-order elliptic wave filter, which contains 26 addi-
tions, 8 multiplications, 35 variables and 8 constants
(Fig. 7), is used as an input instance of data-path syn-
thesis. We assume that an addition is performed on an
adder in one control step, and a multiplication is per-
formed on a (non-pipelined) multiplier in two control
steps.

The algorithm is implemented using C on PEN-
TIUM III (1GHz) personal computer. The total com-
putation time is about 1 hour (for details, see Table 1),
and the evaluation of each solution (mainly scheduling
feasibility and data assignment to input terminals of a
functional unit) takes 1.33 millisecond on average.

Table 1 shows the results of our proposed
method (from SEAS1 to SEAS4), together with results
of other methods for the same instance. The results of
SE, HAL, EMUCS and MABAL are quoted from [7],
and the result of SPLICER is quoted from [8]. In the
table, FU and R show the numbers of functional units
and registers, respectively. Mx and Mi shows the num-
bers of multiplexers and multiplexer’s inputs, respec-

YOROZUYA et al.: ASSIGNMENT-DRIVEN LOOP PIPELINE SCHEDULING AND ITS APPLICATION TO DATA-PATH SYNTHESIS
825

Table 1 Experimental results.

System Tr FU R Mx Mi ME # CT

SEAS1 21 2+, 1× 11 7 21 14 29 77
SE 21 2+, 1× 11 8 24 16 - -

SPLICER 21 2+, 1× - 9 43 34 - -
MABAL 21 2+, 2× 11 13 43 30 - -

SEAS2 19 2+, 2× 10 9 24 15 31 64
SE 19 2+, 2× 10 11 31 20 - -

HAL 19 2+, 2× 12 - 29 - - -
EMUCS 19 2+, 2× 12 12 34 22 - -

SEAS3 17 2+, 2× 11 8 23 15 31 60

SEAS4 16 3+, 2× 11 12 31 19 37 49

tively. ME shows the number of equivalent two-input
single-output multiplexers. # denotes the number of
point-to-point interconnections. Note that, in Mx, Mi,
ME and #, we eliminate the interconnections between
constant data (multiplier) and input terminals of func-
tional unit. CT shows the total computation time in
minutes.

In Table 1, results are grouped by iteration pe-
riod. SEAS1 and SEAS2 synthesized by our method
are solutions with 12.5–25% reduced numbers of multi-
plexers, multiplexer’s inputs and equivalent two-input
single-output multiplexers compared to best numbers
of them from other methods in each group. SEAS3
and SEAS4 are the best solutions, with respect to not
only the number of multiplexers but also the number of
FUs under given Tr, that ever appeared in literatures.

5. Conclusion

In this paper, we propose an approach using paramet-
ric scheduling graph with disjunctive arcs generated
from the specified assignment information (operation
to functional unit assignments and data to register as-
signments) in loop pipeline scheduling problem, and we
derive a branch-and-bound solution method with suc-
cessive refinement of parameter space.

As an application of the proposed scheduling
method, it is incorporated with Simulated-Annealing
based exploration of assignment solution space, and it
is demonstrated that data-paths of the fifth-order ellip-
tic wave filter are successfully synthesized.

The current version of our scheduler accepts a
strongly connected dependence graph as an input to
ensure the finiteness of the range of unknown variables
on disjunctive arcs. Treatment of input dependence
graph which is not strongly connected is left for a fu-
ture work. The development of an efficient heuristic
method is also an important future work.

References

[1] P. Michel, U. Lauther, and P. Duzy, The synthesis approach
to digital system design, Kluwer Academic, 1992.

[2] K. Ohashi, M. Kaneko, and S. Tayu, “Assignment-space ex-
ploration approach to concurrent data-path/floorplan syn-

thesis,” Proc. IEEE Int. Conf. On Computer Design (ICCD),
pp.370–375, 2000.

[3] T. Kim, K.-S. Chung, and C.L. Liu, “A stepwise refinement
synthesis of digital systems for testability enhancement,”
IEICE Trans. Fundamentals, vol.E82-A, no.6, pp.1070–1081,
June 1999.

[4] K. Ito and H. Kunieda, “VLSI system compiler for digital
signal processing: Modulation and synchronization,” IEEE
Trans. Circuits & Syst., vol.38, no.4, pp.422–433, 1991.

[5] T. Watanabe, N. Ishiura, and M. Yamaguchi, “A code gen-
eration method for datapath oriented codesign of application
specific DSPs,” The 13th Workshop on Circuit and Systems
in Karuizawa, pp.539–544, 2000.

[6] B. Mesman, M. Strik, A.H. Timmer, J.L. van Meerbergen,
and J.A.G. Jess, “A constraint driven approach to loop
pipelining and register binding,” Proc. IEEE DATE, pp.377–
383, 1998.

[7] Tai A. Ly and Jack T. Mowchenko, “Applying simulated evo-
lution to high level synthesis,” IEEE Trans. Comput. -Aided
Des. Integrated Circuits & Syst., vol.12, no.3, pp.389–408,
1993.

[8] B.M. Pangril, “Splicer: A heuristic approach to connectivity
binding,” Proc. 25th ACM/IEEE Design Automation Con-
ference, pp.536–541,1988.

Toshiyuki Yorozuya received the
M.E. degree in Information Science, from
Japan Advanced Institute of Science and
Technology, Hokuriku (JAIST) in 2001.
He is currently studying towards the
Ph.D. degree in School of Information Sci-
ence, JAIST. His research interests in-
clude scheduling theory and computer
aided design for VLSI circuits.

Koji Ohashi received the B.E.degree
in electronic engineering from Nagaoka
University of Technology in 1998. He
received the M.E. degree in Informa-
tion Science from Japan Advanced Insti-
tute of Science and Technology, Hokuriku
(JAIST) in 2000. Since 2000 he has been a
doctoral candidate in School of Informa-
tion Science, JAIST. His research inter-
ests include high level synthesis for VLSI.

826
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.4 APRIL 2002

Mineo Kaneko received the B.E.,
M.E. and Dr.E. degrees in Electrical and
Electronic Engineering from Tokyo Insti-
tute of Technology in 1981, 1983 and
1986, respectively. In 1986 he joined the
Department of Electrical and Electronic
Engineering from Tokyo Institute of Tech-
nology as a Research Associate. From
1992 to 1996, he was Associate Professor
in the same Department of Tokyo Insti-
tute of Technology. From 1996 to 2001,

he was Associate Professor in School of Information Science,
Japan Advanced Institute of Science and Technology, Hokuriku
(JAIST). He is now a Professor in School of Information Sci-
ence, JAIST. His research interests include high-speed and fault
tolerant VLSI signal processing, computer aided design of inte-
grated circuits and wafer scale integration. He received best pa-
per awards from IEEE APCCA’92 and APCCA’94 in 1992 and
1994, respectively. He is a member of IEEE.

