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PAPER Special Section on VLSI Design and CAD Algorithms

Characterization and Computation of Steiner Routing

Based on Elmore’s Delay Model

Satoshi TAYU†a) and Mineo KANEKO†b), Regular Members

SUMMARY As a remarkable development of VLSI technol-
ogy, a gate switching delay is reduced and a signal delay of a net
comes to have a considerable effect on the clock period. There-
fore, it is required to minimize signal delays in digital VLSIs.
There are a number of ways to evaluate a signal delay of a net,
such as cost, radius, and Elmore’s delay. Delays of those models
can be computed in linear time. Elmore’s delay model takes both
capacitance and resistance into account and it is often regarded
as a reasonable model. So, it is important to investigate the
properties of this model. In this paper, we investigate the prop-
erties of the model and construct a heuristic algorithm based on
these properties for computing a wiring of a net to minimize the
interconnection delay. We show the effectiveness of our proposed
algorithm by comparing ERT algorithm which is proposed in [2]
for minimizing the maximum Elmore’s delay of a sink. Our pro-
posed algorithm decreases the average of the maximum Elmore’s
delay by 10–20% for ERT algorithm. We also compare our al-
gorithm with an O(n4) algorithm proposed in [15] and confirm
the effectiveness of our algorithm though its time complexity is
O(n3).
key words: Elmore’s delay, Steiner tree, net, binary tree, Man-
hattan distance

1. Introduction

For the design of high-performance VLSIs, minimiz-
ing interconnection delay becomes one of most signif-
icant issues since clock period is limited partly by in-
terconnection delays of nets [2]. Interconnection delay
can be approximately evaluated in linear time by com-
puting cost (total wire length), radius (maximum wire
length), or some objective function considering both
capacitance and resistance.

The problem of minimizing cost is called Steiner
minimal tree (SMT) problem. The problem is known
to be NP-hard even if the host graph is restricted to
being a grid [8]. This restricted version of the prob-
lem is called Steiner rectilinear minimal tree (SRMT)
problem. Some papers, e.g., [9], [10], give theoretical
analyses for the SMT problem. [10], [14] give linear
time heuristic algorithms for SRMT and some other
heuristics are also proposed in [12], [13], [16].

Since both capacitance and resistance have a sig-
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nificant effect on the signal delay, some research studies
have considered these parameters. The problem of min-
imizing both radius and cost is studied [1], [4], [17] and
some tradeoffs between them are reported. [3] and [18]
report on the SMT problem under the radius-preserved
constraint or radius minimization problem under the
cost constraint.

Elmore’s delay model considers both wire capac-
itance and resistance [7]. Also, it is known that the
delay for the model can be computed in linear time
[19]. Some other research works also report on stud-
ies for Elmore’s delay model [1], [2]. The problem of
minimizing the Elmore’s delay of a net is formulated as
follows: The instance of the problem consists of

• sinks t located on (xt, yt) on a Manhattan plane
together with its capacitance Ct,

• a source s located on (xs, ys) on the plane together
with the driver resistance Rd, and

• unit length capacitance c and unit length resis-
tance r of a wire.

The solution of the problem is a rectilinear Steiner
wiring S connecting the source and sinks, and its objec-
tive is to minimize the maximum Elmore’s delay tED(S)
over all sinks.

In this paper, we investigate the problem of mini-
mizing the maximum signal delay of wirings of a given
net under Elmore’s delay model. We give some proper-
ties on a Steiner vertex location, and show the relation-
ships between these properties and the optimality of El-
more’s delay theoretically. Then, we propose an O(n3)
heuristic algorithm for computing Steiner wirings of a
given net N based on Elmore’s delay model, where n
is the number of sinks of N . We also compare our pro-
posed algorithm with the ERT algorithm proposed in
[2] which is also an O(n3) heuristic algorithm for min-
imizing tED(S). Our algorithm improves 10% of max-
imum Elmore’s delay for the ERT algorithm in 0.5µm
technology, and 16–20% in our estimated 0.1µm tech-
nologies. We also compared our proposed algorithm
with an O(n4) heuristic algorithm proposed in [15] and
confirm the effectiveness of our algorithm.

2. Definition

A net N is the set of terminals {t0, t1, · · · , tk}, where
t0 = s is the source of N corresponding to the output of
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a gate and ti’s (i ≥ 1) are sinks corresponding to inputs
of gates. Each terminal t ∈ N allocated on a Manhat-
tan plane has x-y coordinates (xt, yt) and t ∈ N \ {s}
has its capacitance Ct, where xt, yt ∈ Z or xt, yt ∈ R.
A Steiner wiring of N consists of some rectilinear wire
segments on the plane which connect all terminals with
the source. Our objective is to compute a wiring of
N for minimizing interconnection delay under Elmore’s
delay model.

While, in a practical VLSI layout design, a number
of modules and wires exist, and they become obstacles
for a connection requirement of other nets, their ap-
pearances might depend deeply on the technology and
design style. The major emphasis on this paper is on
investigations of essential properties and the computa-
tion algorithm for Steiner routing based on Elmore’s
delay model without depending on specific technology
or design style. Thus, we assume that two arbitrary
points (x, y) and (x′, y′) on the plane can be connected
by a wire segment with length MH((x, y), (x′, y′)) �
|x−x′|+|y−y′|, the Manhattan distance between (x, y)
and (x′, y′).

In order to characterize a Steiner tree, we employ
a binary tree representation (BTR) of a net N which
helps us to represent the topology of a Steiner wiring
of N . A BTR T of N is a (rooted) binary tree whose
root is s and the outdegree of s is one, while all of the
sinks t ∈ N \ {s} appear as leaves. The indegree and
outdegree of s are 0 and 1, each internal vertex 1 and 2,
and each sink 1 and 0, respectively (see Fig. 1). Thus,
the number of internal vertices is |N | − 2. Let V (T ) be
the vertex set of T . For each vertex v ∈ V (T ) \ {s} of
T except for the source, we denote the parent of v by
p(v). In Fig. 1, v = p(w) = p(t3), w = p(t1) = p(t2),
and s = p(u).

We represent a Steiner wiring S of BTR T as a
mapping φS (or simply denote by φ) of internal vertices
of T to Z

2 (or R
2), where we assume φ(v) = (xv, yv)

for v ∈ V (T ). We show an example of N , BTR T of
N having internal vertices u and v, and Steiner wiring
of T in Figs. 2(a), (b), and (c), respectively. In this
Steiner wiring, v is located on the same point as t3 by
φ. When there are several possible ways to connect
v and t2 with minimum length rectilinear wiring, we
represent such a wiring by a diagonal segment. For

Fig. 1 BRT T of net N .

example, the segment connecting v and t2 in Fig. 2(c)
is represented as that in Fig. 2(d).

Let r and c be resistance and capacitance coeffi-
cients per unit length. For a vertex v except for s, let
lv be the length of the wire connecting v with its parent
p(v) in S. In Fig. 2(d), lt1 = 2, lt2 = 3, lt3 = 0, lv = 2,
and lu = 1. The capacitance Cv of v in a Steiner wiring
S will be defined recursively as follows. If v is a sink,
i.e., v ∈ N \{s}, then Cv is given in the description of a
problem instance. If v is an internal vertex, v has two
children, say c1 and c2. For such v, Cv is given as

Cv = Cc1 + Cc2 + c(lc1 + lc2). (1)

For the source s, it has exactly one child c1 and Cs =
Cc1 + clc1 . As a result, the capacitance of the source s
is represented as

Cs = c
∑

v∈V (T )\{s}
lv +

∑
t∈N

Ct.

For example in Fig. 2(d), Cv = c(lt2 + lt3) + Ct2 + Ct3 ,
Cu = c(lv + lt1) + Cv, and Cs = clu + Cu. If we need
to specify the Steiner wiring S explicitly, we denote lv
and Cv by lSv and CS

v , respectively.
Using the driver resistance Rd, Elmore’s delay at

the source s is denoted by del(s) = RdCs. Elmore’s
delay del(v) of a vertex v ∈ V (T ) of Steiner wiring S is
denoted by

del(v) = RdCs +
∑

u∈V (Pv)\{s}
rlu

(
clu
2

+ Cu

)
, (2)

where Pv is the path connecting s and v on T . If
we need to specify S explicitly, we also denote it by
delS(v). In this paper, we focus our attention on the
maximum sink delay maxv∈V (T ) del(v), and we denote
it by tED(S). A path Pv is called a critical path of S if
del(v) = tED(S). A Steiner wiring S of N is said to be
optimal if its Elmore’s delay is no greater than that of
any other wiring for N .

(a) net N . (b) BTR of N .

(c) Steiner wiring S of N . (d) S with a diagonal segment.

Fig. 2 N and its Steiner wirings.
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(a) (b)

Fig. 3 Locations of v and its adjacent vertices.

For locations (x1, y1), (x2, y2), . . . , (xk, yk), let

RC((x1, y1), (x2, y2), · · · , (xk, yk))

be the rectangle spanned by those locations, i.e., the
rectangle area specified by{

(x, y)
∣∣∣∣ min1≤i≤k xi ≤ x ≤ max1≤i≤k xi,

min1≤i≤k yi ≤ y ≤ max1≤i≤k yi

}
.

Consider a vertex v, its children c1 and c2 and its par-
ent p. Let Re(v) be the rectangle area induced by
c1 and c2, i.e., Re(v) = RC(φ(c1), φ(c2)). Also, we
let f(v) be the position in Re(v) nearest to p and let
Seg(v) be the line segment connecting f(v) and the lo-
cation of p (see Fig. 3). In particular, f(v) = φ(p) if
φ(p) ∈ Re(v). Note that Re(v), f(v), and Seg(v) are
independent of the location of v. We sometimes de-
note them by RCS(φ(c1), φ(c2)), ReS(v), fS(v), and
SegS(v), respectively, if we need to specify the Steiner
wiring S explicitly.

3. Characterization of Elmore’s Delay Model

In this section, we give some characterizations of El-
more’s delay model, where we assume φ : V (T ) → R

2.

Lemma 1: For v ∈ V (T ) of BTR T , Elmore’s delay
del(v) at v is monotonically increasing for the length of
each wire lw with w ∈ V (T ) \ {s}.

Proof. Let v be a vertex of BTR T . Let us consider
two Steiner wirings S and S′ of T , where lSv > lS

′
v and

lSu = lS
′

u for u with u = v nor s. Then, CS
u ≥ CS′

u for
all u ∈ V (T ) and CS

s > CS′
s

†. Thus, from (2), we have
the lemma. ✷

In the following, we assume that the length of a
connection wire between u and v is given by the Man-
hattan distance between their locations. We now give
some properties for a Steiner wiring.

Single vertex property (SVP): For a BTR T , v ∈
V (T ), and a wiring S of T , if location of v is in Seg(v),
v is said to satisfy Single vertex property.
Quasi-SVP (QSVP): For a BTR T , v ∈ V (T ), and a
wiring S of T , if location of v is in RC(φ(p(v)), f(v)),
v is said to satisfy Quasi-single vertex property.
f-property for v: For v ∈ N , if φS(v) = fS(v) then
v is said to satisfy f-property.
f-property for S: S is said to satisfy f-property if all
vertices v ∈ V (T ) \N satisfy f -property.

(a) RC(φ(p), f(v)) �= Seg(v). (b) RC(φ(p), f(v)) = Seg(v).

(c) RC(φ(p), f(v)) �= Seg(v). (d) RC(φ(p), f(v)) = Seg(v).

Fig. 4 Rectangles and the location of v.

3.1 Theorems with Respect to QSVP

The following lemma based on QSVP guarantees
the existence of an optimal location of a vertex in
RC(φ(p(v)), f(v)):

Lemma 2: Let N be a net, T be its BTR, and S
be an arbitrary Steiner wiring of T where at least one
vertex v ∈ V (T ) does not satisfy SVP. Then, there
exists a location ϕ ∈ Seg(v) of v such that the wiring
S0 obtained from S by locating v on ϕ = φS0(v) satisfies
delS0(u) ≤ delS(u) for all u ∈ V (T ). Also, if v does not
satisfy QSVP in S, i.e., φS(v) ∈ RC(φ(p(v))), f(v)),
then delS0(u) < delS(u) for all u ∈ V (T ).

Proof. Let c1 and c2 be the children of v and
p be the parent of v. Consider the rectangle area
A induced by φS(c1), φS(c2), and φS(p), i.e., A =
RC(φS(p), φS(c1), φS(c2)). Then, there are two cases
depending on whether the location of v is in A or not.
Case 1 φS(v) ∈ A (see Fig. 4).

Let Eql(v) be the equi-distance line from p includ-
ing v (broken line with narrow pitch in Fig. 4).
Case 1-1. Eql(v) intersects with Seg(v) (there are two
cases that the area of RC(φ(p), f(v)) is greater than 0
as shown in Fig. 4(a) and is 0, i.e., RC(φ(p), f(v)) =
Seg(v) as shown in Fig. 4(b)).
If v satisfies QSVP in S, lS0

u = lSu for all u ∈ V (T ) \ {s}
(see Fig. 4(a)). Therefore, delS0(u) = delS(u). We now
assume that v does not satisfy QSVP. We locate v at
the intersection of Seg(v) and Eql(v), i.e., φS0(v) as
shown in Fig. 4(a) or (b)†. In this case, lS0

ci
< lSci

and
†If u has descendant v, CS

u > CS′
u . Otherwise, CS

u =

CS′
u .



TAYU and KANEKO: STEINER ROUTING BASED ON ELMORE’S DELAY MODEL
2767

(a) Lengths in S. (b) Lengths in S0.

Fig. 5 Relation of lengths of lv, lc1 , and lc2 .

lS0
cj

= lScj
for i = 1 and j = 2 or i = 2 and j = 1,

where i = 1 and j = 2 in the figures. For other vertices
u ∈ V (T ) \ {v, c1, c2, s}, lS0

u = lSu . Thus, by Lemma 1,
we have the lemma.
Case 1-2. Eql(v) does not intersect with Seg(v) (see
Figs. 4(c) and (d)).
Let w be the location in Re(v)∩Eql(v) nearest to φS(v)
(see Figs. 4(c) and (d)). (If φS(v) ∈ Re(v) then w =
φS(v) as shown in Fig. 4(d)). For i = 1, 2,

MH(φ(ci), w) ≤ MH(φ(ci), φS(v)). (3)

For every location w′ ∈ Re(v), MH(φ(c1), w′) +
MH(φ(c2), w′) = MH(φ(c1), φ(c2)). Since f(v), w ∈
Re(v), we have

MH(φ(c1), f(v)) = MH(φ(c1), w) + δ and (4)
MH(φ(c2), f(v)) = MH(φ(c2), w) − δ (5)

for some δ with |δ| ≤ MH(f(v), w). Without loss of
generality, we can assume that δ > 0. Let S0 be the
wiring obtained from S by locating v on f(v). For S
and S0, the length lu with u ∈ {v, c1, c2} is shown in
Figs. 5(a) and (b), respectively. Since φS0(v) = f(v),
from (3), (4), and (5),

lS0
c1

≤ lSc1
+ δ, (6)

lS0
c2

≤ lSc2
− δ, and (7)

lS0
v ≤ lSv − δ. (8)

From (6), (7), and (8), we have

lS0
c1

+ lS0
v ≤ lSc1

+ lSv and (9)

lS0
v lS0

c2
≤ lSv l

S
c2
. (10)

From (1) and CS0
ci

= CS
ci

for i = 1, 2,

CS0
v = CS

c1
+ CS

c2
+ c(lS0

c1
+ lS0

c2
). (11)

Then, from (9), CS0
v ≤ CS

v . Hence,

CS0
u ≤ CS

u ∀u ∈ V (T ). (12)

From (6), (7), and (8) CS0
s < CS

s since δ > 0 and
lS0
u = lSu for all u ∈ V (T ) \ {s, v, c1, c2}. Therefore, we

have

RdC
S0
s < RdC

S
s . (13)

We now consider Elmore’s delay for each u ∈ V (T ).
If path Pu does not include c1, for all z ∈ V (Pu), lS0

z ≤

lSz . Thus, from (2), (12), and (13), delS0(u) < delS(u).
From (2), if we have delS0(c1) < delS(c1), we also

have delS0(u) < delS(u) for all proper descendants u of
c1 since, for each proper descendant d of c1, lS0

d = lSd .
The rest of the proof is to show delS0(c1) < delS(c1).
Note that, for all u ∈ V (Pc1) \ {v, c1, s} ⊆ V (T ) \
{v, c1, c2, s}, lS0

u = lSu . Therefore, from Lemma 1, (2),
(12), and (13), we have

(delS(c1) − delS0(c1))/cr

>
∑

z∈{v,c1}

(
lSz

(
lSz
2

+
CS

z

c

)
− lS0

z

(
lS0
z

2
+

CS0
z

c

))

≥ (lSv )2

2
+ lSv

(
CS

c1

c
+

CS
c2

c
+ lSc1

+ lSc2

)

− (lS0
v )2

2
− lS0

v

(
CS

c1

c
+

CS
c2

c
+ lS0

c1
+ lS0

c2

)

+
(lSc1

)2

2
+

lSc1
CS

c1

c
− (lS0

c1
)2

2
− lS0

c1
CS

c1

c
(14)

= CS
c1

(
(lSv + lSc1

) − (lS0
v + lS0

c1
)
)
/c

+
(
(lSv + lSc1

)2 − (lS0
v + lS0

c1
)2

)
/2

+CS
c2

(lSv − lS0
v )/c + (lSv l

S
c2

− lS0
v lS0

c2
)

≥ 0. (15)

Inequality (14) follows from (11) and Inequality (15)
follows from (8), (9), and (10). Thus, we have
delS0(c1) < delS(c1).
Case 2 φS(v) ∈ A.
Let w be the location in A nearest to φS(v) and S′

0

be the Steiner wiring obtained from S0 by changing
the location of v to w = φS′

0(v). Then, l
S′

0
u < lSu for

u ∈ {v, c1, c2} and l
S′

0
u = lSu for u ∈ V (T ) \ {s, v, c1, c2}.

Hence, from Lemma 1, delS
′
0(u) < delS(u) ∀u ∈ V (T ).

Since φS′
0 ∈ A, by similar arguments to Case 1, we have

delS0(u) ≤ delS
′
0(u) ∀u ∈ V (T ).

Thus, we have delS0(u) < delS(u) for all u ∈ V (T ). ✷

From Lemma 2, we have the following:

Theorem 1: Given a net N and its BTR T , there
exists an optimal Steiner wiring S of T such that all
internal vertices v satisfy QSVP. ✷

Corollary 1: Given a net N , its BTR T , and a spec-
ified internal vertex v ∈ V (T ), there exists an optimal
Steiner wiring S of T such that v satisfies SVP and all
other internal vertices u satisfy QSVP.

Proof. Let S0 be a minimum Elmore’s delay wiring
such that all internal vertices satisfy QSVP. From The-
orem 1, such wiring S0 exists. Let S be the new wiring
obtained from S0 by relocating v on the intersection of

†In the example of Fig. 4(a), v satisfies QSVP since
φS(v) ∈ RC(φ(p), f(v)).
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Seg(v) and Eql(v). Then, v comes to satisfy SVP in
S. If all adjacent vertices to v satisfy QSVP, we have
the corollary. If not, let u ∈ {p, c1, c2} be the vertex
which does not satisfy QSVP. In the new wiring S, for
all vertices v, lSv = lS0

v . So, tED(S) = tED(S0), that is,
S is also the minimum Elmore’s delay wiring. However,
this contradicts Lemma 2. ✷

3.2 Steiner Wiring under f -Property

Intuitively, locating v on f(v) makes Elmore’s delay
smaller. In fact, from Lemma 1, we have the following:

Theorem 2: † If S is optimal and v ∈ V (T ) is not
included in any critical path, then φS(v) = fS(v), i.e.,
v satisfies f -property. ✷

In this subsection, we consider Steiner wirings un-
der f -property, i.e., Steiner wiring each of whose ver-
tices satisfies f -property.

For v ∈ V (T ), we let p be the parent of v and let
cα and cβ be the children of v. Also, we let xu and yu

be the x- and y-coordinates of vertex u, respectively,
i.e., φ(u) = (xu, yu), for each u = p, v, cα, cβ. Then, for
a Steiner wiring satisfying f -property,

xv =




min{xcα
, xcβ

} if xp ≤ min{xcα
, xcβ

}
max{xcα

, xcβ
} if xp ≥ max{xcα

, xcβ
}

xp if otherwise, and
(16)

yv =




min{ycα
, ycβ

} if yp ≤ min{ycα
, ycβ

}
max{ycα

, ycβ
} if yp ≥ max{ycα

, ycβ
}

yp if otherwise.
(17)

These equations imply that xv is the middle value
among xp, xcα

, and xcβ
and yv is that among yp, ycα

,
and ycβ

.

Two adjacent vertices property (TAVP): Con-
sider BTR T of N , vertices v1, v2, p, c1, c2, and
c3 ∈ V (T ) as shown in Fig. 6. The pair of vertices v1

and v2 is said to satisfy two adjacent vertices property
if v1 is located on the point in RC(φ(c1), φ(c2), φ(c3))
nearest to φ(p) and v2 satisfies the f -property. (v2 is
located on the point in RC(φ(c2), φ(c3)) nearest to v1.)

Theorem 3: For a BTR T of N , consider two ver-
tices v1 and v2 such that vertex v1 has a parent p and
children v2 and c1, and vertex v2 has children c2 and
c3 (see Fig. 6). Let S† be an arbitrary Steiner wiring
of T . Consider the set S of Steiner wirings obtained

Fig. 6 vi, p, and cj in T .

from S† by relocating only v1 and v2 such that both v1

and v2 satisfy f -property. Then, there exists a Steiner
wiring S ∈ S in which the pair of v1 and v2 satisfies
TAVP and, for each S′ ∈ S, delS(v) ≤ delS

′
(v) for all

v ∈ V (T ).

Proof. As we can see in (16) and (17), x- and
y-coordinates of v under f -property are independent
of y- and x-coordinates of v, respectively. Hence,it is
sufficient to show only one of x- or y-coordinates and we
choose x-coordinates here. Without loss of generality,
we can assume that xc2 ≤ xc3 . Let S be the resultant
wiring obtained from S† by changing only x-coordinates
of v1 and v2. We now divide the plane into nine regions
from A to I separated by the bounding lines of E =
RC(φS†

(c2), φS†
(c3)) (see Fig. 7(a)), where we assume

that a vertex on a bounding line is included in both
regions separated by the line and each intersection (a,
b, c, and d in Fig. 7(a)) is included in four regions. We
only consider two cases xp ≤ xc2 or xc2 ≤ xp ≤ xc3

since, for xp ≥ xc3 , the similar arguments to xp ≤ xc2

hold.

Case 1 xp ≤ xc2 , i.e., p is located in A, D, or G.
Furthermore, we decompose the case into the following
two sub-cases:
Case 1-1 xc1 ≤ xc2 , i.e., c1 is located in A, D, or
G. We illustrate one example in the case of yc1 >
yp > max{yc2 , yc3} in Fig. 7(b). Since v2 satisfies f -
property, v2 is located in E = RC(φS†

(c2), φS†
(c3)),

i.e., xv2 ≥ xc2 ≥ max{xc1 , xp}. So from (16), substi-
tuting v = v1, xv1 is the middle value among xp, xc1 ,
and xv2 , and thus, xv1 = max{xc1 , xp} and xv1 ≤ xv2 .
Therefore, again from (16) with v = v2, xv2 = xc2 since
xv1 ≤ xc2 ≤ xc3 . So, under f -property, xv1 and xv2 are
determined uniquely.
Case 1-2 xc1 ≥ xc2 .
Since φ(v2) ∈ Re(v2) = E, xv2 ≥ xc2 . Hence, xp ≤

(a) Partition of the plane. (b) Vertex locations.

Fig. 7 Manhattan plane.

†Theorem 2 does not refer to a vertex v ∈ V (T ) which
is included in some critical path. In fact, we can construct
a problem instance whose optimum Steiner wiring includes
a vertex placed at a non-Hannan location, but on Seg(v)
from Lemma 2. A similar remark is mentioned in [11].
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(a) wiring S.

⇒

(b) wiring S0.

Fig. 8 Wirings S0 and S.

min{xv2 , xc1}. So, from (16) with v = v1,

xv1 = min{xv2 , xc1} (18)

and then xv1 ≥ xc2 . So, from (16) with v = v2,

xv2 = min{xv1 , xc3}
= min{xv2 , xc1 , xc3}.

This implies that xv2 ≤ min{xc1 , xc2} ≤ xc1 . Thus,
from (18), xv1 = xv2 . As a result, we have

max{xp, xc2} ≤ xv1 = xv2 ≤ min{xc1 , xc3}. (19)

Let δ = xv1 − xc2 (see Fig. 7(b)). We now show
that, in this case, the resultant wiring S has minimum
Elmore’s delay for every vertex only if δ = 0. Let S0 be
such a wiring with δ = 0. (Note that v1 and v2 in S0

satisfy TAVP for their x-coordinates.) From (19), for
the wiring S,

lSv1
= lS0

v1
+ δ, (20)

lSv2
= lS0

v2
, (21)

lSc1
= lS0

c1
− δ, (22)

lSc2
= lS0

c2
+ δ, and (23)

lSc3
= lS0

c3
− δ (24)

(see Fig. 8). Then, CS
v1

= CS0
v1

− cδ, and CS
u = CS0

u for
all other vertices u. For a vertex v and its parent pv,
we let EDS∗

(v) = delS
∗
(v)−delS

∗
(pv), i.e., EDS∗

(v) =

rlS
∗

v ( clS
∗

v

2 + CS∗
v ), where S∗ ∈ {S, S0}. Also, we let

Diff(v) = EDS(v) − EDS0(v). Then, from (20) and
CS

v1
= CS0

v1
− cδ, we have

Diff(v1) = rδCS0
v1

− rcδ2

2
. (25)

Similarly, noting CS
u = CS0

u for u = v1 and (21) to (24),
we have

Diff(v2) ≥ 0, (26)

Diff(c1) ≥ −rδ(CS0
c1

+ clS0
c1

) +
rcδ2

2
, (27)

Diff(c2) ≥ rδ(CS0
c2

+ clS0
c2

) +
rcδ2

2
, and (28)

Diff(c3) ≥ −rδ(CS0
c3

+ clS0
c3

) +
rcδ2

2
. (29)

(a) wiring S.

⇒

(b) wiring S0.

Fig. 9 Wirings S0 and S in Case 2-1.

In addition,

CS0
v1

= CS0
c1

+ CS0
v2

+ c(lS0
c1

+ lS0
v2

) (30)

> CS0
c2

+ CS0
c3

+ c(lS0
c2

+ lS0
c3

). (31)

From (25), (27), and (30),

delS(c1) − delS0(c1) = Diff(v1) + Diff(c1)
≥ rδ(Cv2 + clv2)
> 0.

Similarly, from (25), (26), (28), and (31), we have
delS0(c2) < delS(c2) and, from (25), (26), (29), and
(31), we have delS0(c3) < delS(c3). For other vertices
v, clearly, delS0(v) ≤ delS(v). Thus, the x-coordinates
of v1 and v2 of S are determined uniquely.
Case 2 xc2 ≤ xp ≤ xc3 .
We only need to consider the following two cases since,
if xc1 ≥ xc3 , similar arguments to Case 2-1 (xc1 ≤ xc2)
hold:
Case 2-1 xc1 ≤ xc2 .
From (16) with v = v2, xv2 ≥ xc2 and then xc1 ≤ xv2 .
If xv2 > xp then from (16) with v = v1, xv1 = xp.
However, from (16) with v = v2, xv1 = xv2 and this
contradicts xv1 = xp < xv2 . Therefore, xv2 ≤ xp.

From (16) with v = v1, xv1 = xv2 since xc1 ≤
xv2 ≤ xp. Thus, xc1 ≤ xc2 ≤ xv1 = xv2 ≤ xp ≤ xc3 (cf.,
(19) and see Fig. 9). Put δ = xp − xv1 . Then, changing
the situations of c2 and c3, we have the same equations
from (20) to (24). Thus, by similar arguments to Case
1-2, we have the theorem for x-coordinates.
Case 2-2 xc2 ≤ xc1 ≤ xc3 .
Without loss of generality we can assume that xc1 ≤
xp. By similar arguments to Case 1-2, xc2 ≤ xc1 ≤
xv1 = xv2 ≤ xp ≤ xc3 (cf., (19)) and thus we have the
theorem for x-coordinates. As mentioned above, the
same arguments hold for y-coordinates. Thus, we have
the theorem. ✷

4. Proposed Algorithm

In this section, we describe our proposed algorithm
which consists of two parts: the first one (Init-
algorithm) computes an initial Steiner wiring of a given
net and constructs corresponding initial BTR, the sec-
ond one (RC-algorithm) reconfigures the BTR and
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(a) instance (b) A-tree algorithm (c) our algorithm

Fig. 10 Disadvantage of A-tree algorithm.

Steiner wiring. The time complexity of our proposed al-
gorithm is O(|N |3). The Init-algorithm is quite similar
to the A-tree algorithm proposed in [5] (and [6]), where
Init-algorithm combines the nearest subtrees first but
A-tree algorithm combines the subtree farthest from
the source first. Since the farther sinks from the source
tend to become a critical sink in A-tree algorithm, un-
der Elmore’s delay model, it has the following disad-
vantage for a three-sink net as shown in Fig. 10. For
the instance in Fig. 10(a), A-tree algorithm outputs the
wiring shown in Fig. 10(b) and our algorithm outputs
that in Fig. 10(c). If each sink has the same capac-
itance, Fig. 10(c) has a smaller delay than does (b).
Init-algorithm also has a similar objective to the al-
gorithm proposed in [18], while the algorithm in [18]
considers the problem for only one-quadrant sinks.

4.1 Initial Steiner Wiring

In this subsection, we give an algorithm, called Init-
algorithm, for computing BTR T from a given net N
and a Steiner wiring S of T (that is, φ of S). Init-
algorithm generates a wiring satisfying the following
two conditions:

(a) each internal vertex satisfies SVP, f -property, and
TAVP, and

(b) each terminal t is connected along one of the short-
est routings connecting the source and t.

The first condition (a) is based on Theorem 3 and the
second (b) is based on radius-preserved wiring, one of
the traditional well-known objectives.

We assume that the root s of T (the source of N)
is located on (0, 0). We construct the initial wiring
by combining two subtrees recursively. Leaves of each
subtree are sinks. Initially, each subtree is trivial, i.e.,
consisting of a sink in N \ {s}.

The body of Init-algorithm is as follows: We choose
the pair of subtrees having minimum distance and then
combine them. While the number of subtrees is not one,
repeat this operation. After combining all subtrees, we
then add the source s to the resultant tree T ′ with root
s′ and add an arc (s, s′).

The distance and “combining operation” are de-
fined as follows, where we consider two sub-wirings
whose BTRs are T1 and T2, and let si be the root of Ti

for i = 1, 2:

Fig. 11 Combining subtrees in the same quadrant.

Fig. 12 Combining subtrees in the same quadrant.

Case 1 s1 and s2 are located in the same quadrant,
i.e., xs1xs2 ≥ 0 and ys1ys2 ≥ 0.

As an example, we consider the case that xs1 , xs2 ,
ys1 , ys2 ≥ 0. Without loss of generality, we can assume
that |xs1 | ≥ |xs2 |.

If |ys1 | ≤ |ys2 |, distM (T1, T2) = |xs2 − xs1 |+ |ys1 −
ys2 |. If we combine T1 and T2 in this situation, the new
subtree T ′ is constructed as follows: add a new vertex s′

and two arcs (s′, s1) and (s′, s2) to T1∪T2 (see Fig. 11),
and then locate s′ on (xs2 , ys1), i.e., s′ is located on
the point in RC(φ(s1), φ(s2)) nearest to (0, 0). s′ is the
root of the new subtree.

If |ys1 | > |ys2 |, we choose a vertex v ∈ V (T2)
which minimizes minϕ∈RC(φ(v),φ(p(v))) MH(ϕ, φ(s1))
(see Fig. 12). Note that if T2 consists of one vertex
v then ϕ = φ(v). Using such v, the distance between
T1 and T2 is defined as

distM (T1, T2) = min
ϕ∈RC(φ(v),φ(p(v)))

v ∈ V (T1)

MH(ϕ, φ(s1)).

We construct a new subtree T ′ from T1 and T2 in this
situation as follows: delete an arc (p(v), v) and add a
new vertex u and three arcs (p(v), u), (u, v), and (u, s1),
where u is located on ϕ (see Fig. 12). s2 is the root of
the resultant subtree T ′.
Case 2 s1 and s2 are located in the adjacent quadrants,
i.e., xs1xs2 < 0 and ys1ys2 ≥ 0 or ys1ys2 < 0 and
xs1xs2 ≥ 0.

The distance is defined as

distM (T1, T2) = MH(φ(s1), φ(s2))
= |xs1 − xs2 | + |ys1 − ys2 |.

We can assume without loss of generality that xs1 > 0,
xs2 < 0, and |ys1 | ≥ |ys2 | (see Fig. 13, where we assume
ys1 , ys2 ≥ 0 in this figure). We construct T ′ from T1 and
T2 in this situation by adding a new vertex s′ located
on (0,min{ys1 , ys2}) and two arcs (s′, s1) and (s′, s2).
s′ is the root of the resultant subtree T ′.
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Case 3 Otherwise, i.e., xs1xs2 < 0 and ys1ys2 < 0.
The distance is defined as

distM (T1, T2) = MH(φ(s1), φ(s2)).

We construct T ′ from T1 and T2 in this situation by
adding a new vertex s′ located on (0, 0) and arcs (s′, s1)
and (s′, s2). s′ is the root of the resultant subtree T ′.

4.2 Reconstruction of the BTR

We now describe an algorithm for reconfiguring BTR
T , say RC-algorithm. The algorithm is applied to T ob-
tained by Init-algorithm. In this algorithm, each vertex
is located to satisfy f -property.

Single reconfiguring operation for a vertex A ver-
tex v ∈ V (T ), except the root and its child, is given as
the input. Let pv and w be the parent and brother of
v, respectively.

(a) Remove the subtree rooted at v together with pv

from the tree T (see Fig. 14(a)).
(b) Find the vertex u and its parent q with φ(q) ∈

RC(φ(v), φ(s))† such that the shortest connection
with v can be accomplished, i.e., the distance be-
tween the location of v and the nearest location to
v in the rectilinear area spanned by u and q.

(c) If such u exists, insert pv into the arc (q, u) (see
Fig. 14(b)) and locate pv to satisfy f -property.

If the maximum Elmore’s delay of the resultant Steiner
wiring T ′ becomes smaller, we update the Steiner tree
T to T ′. If otherwise, we reject T ′ and restore T .
Reconfiguring algorithm (RC-algorithm) We ap-
ply the Single reconfiguring operation to the vertices v
whose Manhattan distance MH(φ(v), (0, 0)) from φ(s)
is greater than 0 such that the vertex having the small-
est Manhattan distance from s is first.

Since the new location of pv in Single reconfigur-
ing algorithm operation for v has no greater Manhattan

Fig. 13 Combining subtrees in adjacent quadrants.

(a) (b)

Fig. 14 Reconfiguration of binary tree.

distance than that of v (and other vertex locations are
not changed), all Steiner points and terminals are sub-
jected to this operation at most once. As a result, each
pv is located on the point satisfying the f -property. The
resultant wiring satisfies SVP and TAVP.

5. Experimental Result

We compare our proposed algorithm with the ERT al-
gorithm described in [2] by comparing the Elmore’s de-
lay for randomly generated nets. The time complexity
of both algorithms is O(|N |3).

5.1 0.5µm Technology

We apply our algorithm and the ERT algorithm to
10-, 20-, and 30-sink nets under the following tech-
nology: λ = 0.5µm (the unit length of x-y coordi-
nate is 2λ = 1.0µm), Rd = 270.0 Ω, r = 0.112 Ω/µm,
c = 0.039 fF/µm, Ct = 1.0 fF (identical sink load ca-
pacitance), and the chip size is 10 mm × 10 mm. (We
refer to the parameters in [1].)

For each number of sinks, we randomly generate
104 nets N . We will compare ERT and our proposed al-
gorithms by computing R(N) = tED(TN

o )/tED(TN
ERT),

where TN
o is the Steiner wiring obtained by our algo-

rithm and TN
ERT is obtained by the ERT algorithm. Fig-

ures 15 (a), (b), and (c) show the distributions of the

(a) for 10-sink nets.

(b) for 20-sink nets.

(c) for 30-sink nets.

Fig. 15 Distributions of R(N).

†This condition guarantees the radius-preserved wiring.
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Table 1 Experimental results for 10- and 20-sink nets.

# of R(N)
sinks best avg worst

10 0.3947 0.8968 1.1594
20 0.4560 0.8952 1.1702
30 0.5643 0.8955 1.1482

number of wires with respect to R(N) for 10-, 20-, and
30-sink nets respectively. Each column shows the num-
ber of nets N satisfying 0.01i ≤ R(N) < 0.01(i + 1)
for each integer i. Table 1 gives the maximum, aver-
age, and minimum ratios R(N) over 104 nets. Based
on the average ratios, our algorithm yields a 10% im-
provement over the ERT algorithm under the Elmore’s
delay model. Thus, we can conclude that our proposed
algorithm is much better than the ERT algorithm in
the case of 0.5µm technology. The average runtimes of
our proposed algorithm (measured by averaging run-
times of 105 runs) for |N | − 1 = 10, 20, and 30 are
22 × 10−5 sec, 113 × 10−5 sec, and 307 × 10−5 sec, re-
spectively, when the algorithm is implemented on a
Pentium-II 266 processor with 128 MB RAM using C-
language on the Linux OS.

5.2 Our Estimated 0.1µm Technologies

We also compare those algorithms under the our es-
timated 0.1µm technologies. It should be noted that
those parameters may be different from the practical
ones. Since we evaluate the Elmore delay for randomly
generated nets, only the ratios between Rd/r : Ct/c : W
(and λ) are important, where W is the length of the
chip boundary.

We estimate the parameters of 1/5 scaled technol-
ogy as follows: R′

d = αRd/5, C ′
t = Ct/5, r′ = 25r,

c′ = βc, and λ′ = 0.2λ, where we set 2 ≤ α ≤ 4 and
1 ≤ β ≤ 2. The width and height of the chip are also
set to 1/5 times. We apply both algorithms with some
α’s and β’s to 104 randomly generated nets. We sum-
marize the result in Table 2. As examples, we show the
distributions of the case that α = 3 and β = 1.5 for 10-,
20-, and 30-sink nets in Figs. 16(a), (b), and (c), respec-
tively. In this technology, our algorithm improves the
average Elmore’s delay by 16.5–20%. From the view-
point of the average ratios, our proposed algorithm is
also much better than the ERT algorithm. From the
viewpoint of the distribution of R(N) in Fig. 16, R(N)
is greater than 1 for only a few nets N though there
exists a 30-sink net N whose ratio R(N) is more than
139% in the estimated 0.1µm technologies. Therefore,
we can conclude that our proposed algorithm is much
better than the ERT algorithm in the estimated 0.1µm
technologies.

One of the disadvantages of our algorithm is that
our algorithm outputs only radius-preserved wirings
and does not always minimize the total wire length.
Therefore, our algorithm outputs worse solutions than

Table 2 R(N) for estimated 0.1µm technologies.

# of 0.1µm R(N)
sinks α β best avg worst

1.0 0.2611 0.8210 1.3345
2 1.5 0.1946 0.8230 1.3058

2.0 0.2777 0.8216 1.2686
1.0 0.2670 0.8315 1.2982

10 3 1.5 0.2872 0.8296 1.3473
2.0 0.2928 0.8294 1.2880
1.0 0.2869 0.8341 1.3561

4 1.5 0.2995 0.8343 1.3214
2.0 0.2790 0.8339 1.2618

1.0 0.3098 0.8018 1.3591
2 1.5 0.3257 0.8055 1.3466

2.0 0.3616 0.8014 1.3067
1.0 0.3203 0.8108 1.2621

20 3 1.5 0.3132 0.8123 1.2999
2.0 0.2736 0.8145 1.2537
1.0 0.3441 0.8221 1.2639

4 1.5 0.3261 0.8207 1.2779
2.0 0.3409 0.8226 1.2744

1.0 0.3284 0.8044 1.2682
2 1.5 0.3386 0.7995 1.3920

2.0 0.3506 0.8286 1.3203
1.0 0.3813 0.8122 1.2507

30 3 1.5 0.3997 0.8110 1.3009
2.0 0.3755 0.8114 1.2847
1.0 0.4173 0.8221 1.2086

4 1.5 0.3829 0.8199 1.2523
2.0 0.3213 0.8206 1.3303

(a) For 10-sink nets.

(b) For 20-sink nets.

(c) For 30-sink nets.

Fig. 16 Distributions of R(N).
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Table 3 R(N) of 20-sink nets for the algorithm proposed in
[15].

Tech. α β best avg worst

0.5 µm — — 0.9010 0.9842 1.0310

1.0 0.7877 1.0055 1.2014
2 1.5 0.7534 0.9955 1.1670

2.0 0.7136 0.9868 1.1514
1.0 0.8246 0.9957 1.1339

0.1 µm 3 1.5 0.7982 0.9869 1.1014
2.0 0.7764 0.9775 1.0897
1.0 0.8526 0.9907 1.0766

4 1.5 0.8043 0.9828 1.0921
2.0 0.8083 0.9767 1.0717

the ERT algorithm for some nets as seen in Tables 1
and 2.

5.3 Comparison with an O(n4) Algorithm

We also compare our proposed algorithm with the al-
gorithm proposed in [15], which we call TBT, for 105

20-sink nets in 0.5µm technology and our estimated
0.1µm technologies. TBT uses an algorithm for find-
ing an SRMT as a subprocedure and the time com-
plexity of TBT is O(n4 + nτ (n)), where τ (n) is the
time complexity of a subprocedure algorithm for find-
ing an SRMT. Hence, we use an O(n3) algorithm for
finding an SRMT, and construct a TBT with its time
complexity O(n4). An advantage of our algorithm over
TBT may be that, subtrees are moved in our algorithm
though only one sink is moved in TBT. The results are
shown in Table 3. As evident from Table 3, if α and β
become larger (resp. smaller), the results of our algo-
rithm become better (resp. worse) than those of TBT.
The detailed analysis of the results is left for future
work.

6. Conclusion

In this paper, we investigate the maximum delays
of wirings of a net under the Elmore’s delay model.
We propose two main characterizations of the model;
QSVP and f -property. As a theoretical result, we show
the relationship between QSVP and optimal wirings,
that is, there exists an optimal wiring satisfying QSVP.
We also propose an algorithm based on our theoretical
results, and the experimental result reveals that the
algorithm displays better performance than the O(n3)
ERT algorithm and almost the same performance as
the O(n4) TBT algorithm in the cases of 0.5µm tech-
nology and our estimated 0.1µm technologies under the
Elmore’s delay model.
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