
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Petri-Net-Based Model for the Mathematical

Analysis of Multi-Agent Systems

Author(s) HIRAISHI, Kunihiko

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E84-A(11): 2829-2837

Issue Date 2001-11-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4688

Rights

Copyright (C)2001 IEICE. Kunihiko Hiraishi, IEICE

TRANSACTIONS on Fundamentals of Electronics,

Communications and Computer Sciences, E84-A(11),

2001, 2829-2837.

http://www.ieice.org/jpn/trans_online/

Description

IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.11 NOVEMBER 2001
2829

PAPER Special Section on Concurrent Systems Technology

A Petri-Net-Based Model for the Mathematical Analysis

of Multi-Agent Systems

Kunihiko HIRAISHI†a), Regular Member

SUMMARY Agent technology is widely recognized as a new
paradigm for the design of concurrent software and systems. The
aim of this paper is to give a mathematical foundation for the de-
sign and the analysis of multi-agent systems by means of a Petri-
net-based model. The proposed model, called PN2, is based on
place/transition nets (P/T nets), which is one of the simplest
classes of Petri nets. The main difference of PN2’s from P/T
nets is that each token, representing an agent, is also a P/T net.
PN2’s are sufficiently simple for the mathematical analysis, such
as invariant analysis, but have enough modeling power.
key words: Petri nets, multi-agent systems, object orientation,

agent orientation, mobile agents

1. Introduction

Agent technology is widely recognized as a new
paradigm for the design of concurrent software and sys-
tems. The aim of this paper is to give a mathematical
foundation for the design and the analysis of multi-
agent systems by means of a Petri-net-based model.

Petri nets are a well-known model for concurrent
and distributed systems, and there have been many re-
sults on the theory, and also on practical applications.
To represent an agent as a token in Petri nets, it is
necessary to introduce notion of objects, i.e., a collec-
tion of data types with methods that give access to the
data, into attributes of tokens. There have been various
Petri-net-based models introducing this concept [1]–[8].
Since most of these classes of object Petri nets are based
on high-level Petri nets, i.e., they allow arbitrary trans-
formation functions on tokens, they are too complex to
be analyzed. These high-level object Petri nets aim to
describe real applications in an object-oriented manner,
and their research direction is different from that of this
paper. We aim to propose a model that is sufficiently
simple for the mathematical analysis, but has enough
modeling power.

Recently, an elementary class of object Petri nets,
called elementary object systems (EOS), has been pro-
posed [9] to model systems in an object oriented manner
keeping the model as simple as possible. The approach
of this paper is similar to that of EOS. The proposed
model, called PN2 (“Petri Nets in a Petri Net”), is

Manuscript received March 19, 2001.
Manuscript revised June 4, 2001.

†The author is with School of Information Science,
Japan Advanced Institute of Science and Technology,
Ishikawa-ken, 923-1292 Japan.
a) E-mail: hira@jaist.ac.jp

based on place/transition nets. Intuitively, a PN2 is a
Petri net such that each token, representing an agent,
is also a place/transition net. This feature is essen-
tial to represent autonomous agents, i.e., an agent is a
single process that can make decisions by itself. Each
token describing an agent is available for transitions in
the upper-level net when the corresponding transition
of the token is enabled, and changes its state by oc-
currences of its own transitions. Each token can move
between places, and can make its copy.

Main features of PN2’s are summarized as follows:

(i) A class of PN2’s, called infinite-sort PN2’s, has
the same modeling power as Turing machines.

(ii) PN2’s allow dynamic bindings of transitions. This
may cause a combinatorial number of transition
bindings, but it is avoidable in the invariant anal-
ysis. In addition, more than two agents can syn-
chronize.

(iii) PN2’s are based on the value semantics [10],
whereas many of object Petri nets are based on
the reference semantics. In the reference seman-
tics, each net as a token is a reference to the object.
Therefore, copying tokens does not mean copying
objects. In the value semantics, each net as a to-
ken represents an independent instance of objects,
and therefore duplication and vanishing of objects
are allowed.

2. Preliminaries

A multi-set over a non-empty set S is a function M :
S → IN, i.e., for each s ∈ S, M(s) denotes the num-
ber of occurrences of s in M . Let MS denote the
family of all multi-sets over S. For M ∈ MS , let
|M | =

∑
s∈S M(s). We usually denote a multi-set M

by a formal sum
∑

s∈S M(s)#s. For two multi-sets
M1, M2 ∈ MS , we write M1 ⊆ M2 if M1(s) ≤ M2(s)
for every s ∈ S. Moreover, the difference M2 − M1

is defined only when M1 ⊆ M2, and is a multi-set∑
s∈S(M2(s) − M1(s))#s. We simply write s to de-

note 1#s, and write ∅ to denote the empty multi-set.
A place/transition net (P/T net) is a triple π =

(P, T,A), where P is a finite set of places, T is a finite
set of transitions, and A : (P × T) ∪ (T × P) → IN is a
function representing arcs. A marking of π is a multi-
set over P . Let Σ be a finite set of symbols. A P/T

2830
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.11 NOVEMBER 2001

net π = (P, T,A) with a labeling function
 : T → Σ
is called a labeled-P/T net (
–P/T net, for short), and
is denoted by π�. As usual, the domain of the labeling
function
 is extended to T ∗. We can identify an
-
P/T net with a P/T net if the labeling function
 is an
injection. A pair µ = (π�,m) of an
-P/T net and a
marking is called a marked
-P/T net.

Let µ = (π� = (P, T,A)�,m) be a marked
-P/T
net. A transition t is enabled in a marking m if for every
p ∈ P : A(p, t) ≤ m(p). An enabled transition can oc-
cur. An occurrence of a transition t changes the mark-
ing to m′ such that m′(p) = m(p)+A(t, p)−A(p, t) (p ∈
P). We write m t→ m′ to denote this situation. More-
over, this notation is extended to finite sequences of
transitions, i.e., we write m

σ→ m′ to denote that an
occurrence of a sequence of transitions σ ∈ T ∗ changes
the marking from m to m′. We say that a marking
m′ is reachable from a marking m if m σ→ m′ for some
σ ∈ T ∗. Let R(µ) denote the set of all markings reach-
able from m. Since marked
-P/T nets will be treated
as tokens in the proposed model, we introduce a state
transition function δ on the set of all marked
-P/T
nets by δ(µ, t) = µ′, where µ′ = (π�,m′). Let PTΣ
denote the class of all marked
-P/T nets with labeling
functions to Σ.

3. PN2’s

In this section, we show the definition of the model with
some examples.

3.1 Definition

A PN2 is a 9-tuple PN2 = (P,Σ, T, E, •·, ·•, ·Σ, ·T , s0),
where

1. P is a finite set of places;
2. Σ is a finite set of symbols;
3. T is a finite set of transitions;
4. E is a finite set of transition components;
5. •· : E → MP \{∅};
6. ·• : E → MP ;
7. ·Σ : E → Σ;
8. ·T : E → T ;
9. s0 is the initial configuration, where a configuration

is a mapping s : P → MPTΣ .

Example 1: Figure 1 is a graphical representation of
a PN2 = (P,Σ, T, E, •·, ·•, ·Σ, ·T , s0) defined as follows:

1. P = {p1, p2, p3};
2. Σ = {a, b, c, d};
3. T = {t1, t2, t3};
4. E = {e1, e2, e3, e4, e5};
5. •e1 = p1, •e2 = p3, •e3 = p2 + p3, •e4 = p2,

•e5 = p2;
6. e•1 = p2, e•2 = p2+p3, e•3 = p2+p3, e•4 = p1, e•5 = ∅;
7. e1Σ = a, e2Σ = c, e3Σ = d, e4Σ = b, e5Σ = c;

Fig. 1 An example of PN2’s.

8. e1T = t1, e2T = t1, e3T = t2, e4T = t3; e5T = t3;
9. s0 : p1 �→ µ1; p2 �→ ∅; p3 �→ µ2, where µ1 and µ2

are the marked
-P/T nets shown in the figure.

Each transition t ∈ T consists of a set of transition
components Et := {e ∈ E | eT = t}. In the graphical
representation of PN2’s, we associate labels x, y, z, · · ·
with each arc to distinguish transition components, and
write x : a, y : b, · · · to indicate that xΣ = a, yΣ =
b, · · · for transition components x, y, · · · .

In the definition of PN2, the 6-tuple (P, T,E, •·, ·•,
·T) defines a P/T net. We call this the upper-level net.
On the other hand, marked
-P/T nets in the configu-
ration is called lower-level nets.

We also define a subclass of PN2’s, called finite
state agent nets (FSAN’s), which will be useful in de-
scribing real applications. An FSAN is a PN2 such
that each marked
-P/T net in the lower-level is a de-
terministic finite automaton (DFA), or a one-safe state
machine in Petri net terminology.

3.2 State Transition Rule

Let TΣ denote the set of all transitions of marked
-P/T
nets in PTΣ. A transition binding for a transition t ∈ T
is a pair of functions b : Et → PTΣ and w : Et → TΣ
such that for each e ∈ Et:

(i) w(e) is a transition of b(e);
(ii) w(e) has a label eΣ;
(iii) w(e) is enabled in b(e).

A transition binding (b, w) is enabled in a configuration
s if for each p ∈ P ,∑

e∈Et

•e(p)#b(e) ⊆ s(p).

A transition binding can occur if it is enabled. An oc-
currence of a transition binding (b, w) changes the con-
figuration to s′ such that for each p ∈ P ,

HIRAISHI: A PETRI-NET-BASED MODEL FOR THE MATHEMATICAL ANALYSIS OF MULTI-AGENT SYSTEMS
2831

s′(p) = s(p) −
∑

e∈Et

•e(p)#b(e)

+
∑

e∈Et
e•(p)#δ(b(e), w(e)).

Since •e �= ∅ for every transition component e (see 5.
in the definition of PN2), no new
-P/T nets are intro-
duced by any occuring of transition bindings. Let Bt

denote the set of all transition bindings for a transition
t and let B = ∪t∈TBt.

We write s
(b,w)→ s′ to denote that an occurrence of a

transition binding (b, w) changes the configuration from
s to s′, and this notation is extended to finite sequences
of transition bindings. We say that a configuration s′ is
reachable from a configuration s if s σ→ s′ for some σ ∈
B∗. Let R(PN2) denote the set of all configurations
reachable from the initial configuration.

Example 2: We consider a PN2 in Fig. 1. Denoting
each configuration s by a vector [s(p1), s(p2), s(p3)], the
configuration changes as follows.

[µ1, ∅, µ2]
(b1,w1)→ [∅, µ′

1 + µ′
2, µ

′
2]
(b2,w2)→

[∅, µ′
1 + µ2, µ2]

(b3,w3)→ [µ1, ∅, µ2] ,

where µ′
1 = δ(µ1, τ1), µ′

2 = δ(µ2, τ3), µ1 =
δ(µ′

1, τ2), µ2 = δ(µ′
2, τ4), and (bi, wi) (i = 1, 2, 3) are

unique transition bindings for transition ti such that

b1 : e1 �→ µ1, e2 �→ µ2; w1 : e1 �→ τ1, e2 �→ τ3,
b2 : e3 �→ µ′

2; w2 : e3 �→ τ4,
b3 : e4 �→ µ′

1, e5 �→ µ2; w3 : e4 �→ τ2, e5 �→ τ3.

Example 3: We consider an AGV (Automated
Guided Vehicle) system consisting of a graph repre-
senting tracks on which two AGV’s are moving (Fig. 2).
AGV1 visits A and D alternately, and AGV2 visits C
and F alternately. The track graph is partitioned into
three zones in which at most one AGV is allowed to
exists at any moment.

We model this system by an FSAN. Figure 3 is
the upper-level net representing the track. AGV1 and
AGV2 are modeled by DFA’s shown in Fig. 4, which
are initially put on place A and C, respectively. Each
controller that supervises a zone is modeled by a DFA in

Fig. 2 Track graph and zones.

Fig. 5, which is put on place Zi (i = 1, · · · , 4). When an
AGV moves from one zone to another, it communicates
with zone controllers of both zones. The state of each
zone controller is changed by this movement.

Behavior of each AGV is determined by interaction
with the environment consisting of the track graph and
other agents. In this system, AGV1 and AGV2 will
behave as follows:

AGV1 : A → B → (C or E) → D → C → B
→ (A or E → F → A) → · · · ,

AGV2 : C → B → (A or E) → F → A → B
→ (C or E → D → C) → · · · .

Reduction of states in lower-level nets is an inter-
esting problem, and is also practically important. Be-

Fig. 3 The upper-level net.

Fig. 4 DFA’s representing AGV1 and AGV2.

Fig. 5 A DFA for zone control.

2832
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.11 NOVEMBER 2001

Fig. 6 Another representation of AGV1.

havior of AGV in Fig. 6 is the same as that in Fig. 4,
but it has more states. This problem is closely related
to decentralized supervisory control problem of discrete
event systems [12].

4. Modeling Power of PN2’s

In this section, we show some results on the modeling
power of PN2’s.

4.1 Simulating Marked P/T Nets

Marked P/T nets can be considered as a special class
of PN2’s by treating each token as a marked
-P/T
net having one transition and no places, i.e., it takes
only one state and the transition is always enabled. As
usual, we draw “•” to denote such a token (e.g., Fig. 9).

4.2 Bounded/Finite-Sort PN2’s

A PN2 is called bounded if there exists a nonnegative
integer k such that for every s ∈ R(PN2) and ev-
ery p ∈ P : |s(p)| ≤ k, and is called unbounded oth-
erwise. A PN2 is called finite-sort if all marked
-
P/T nets contained in the initial configuration s0 are
bounded†, and is called infinite-sort otherwise. When
a PN2 is finite-sort, there exists a marked P/T net

P̃N
2

= (P̃ , T̃ , Ã, m̃0) that simulates the behavior of
the PN2. We show the construction.

First we define the following sets.

• PTΣ is the set of all marked
-P/T net (π�,m)
such that m ∈ R(µ0) for some µ0 = (π�,m0) in
the intial configuration.

• Bt is the set of all transition binding (b, w) for
transition t that is valid, i.e., for all e ∈ Et:
b(e) ⊆ PTΣ. Let B = Bt.

By the assumption, both PTΣ and B are finite and
effectively computable. Note that in general not all
marked
-P/T nets in PTΣ appear in reachable config-
urations.

For each place p ∈ P and each marked
-P/T net

Fig. 7 Construction of a PN2 representing the register
machine (1).

µ ∈ PTΣ, we prepare a place pµ, and for each transi-
tion t ∈ T and each transition binding (b, w) ∈ Bt, we
prepare a transition t(b,w), where arcs are connected as
follows:

• Ã(pb(e), t(b,w)) = •e(p) and Ã(t(b,w), pδ(b(e),w(e))) =
e•(p) (e ∈ Et);

• Otherwise, Ã(·, t(b,w)) = Ã(t(b,w), ·) = 0.

The initial marking m̃0 is defined by m̃0(pµ) =
s0(p)(µ). Then the state transition diagrams of PN2

and P̃N
2

are isomorphic to each other.
Note that even if a PN2 is bounded, it is not al-

ways possible to construct a marked P/T net that sim-
ulates the behavior of the PN2. An example will be
shown in the next subsection.

4.3 Infinite-Sort PN2’s

We show that the class of infinite-sort PN2’s has the
same level of modeling power as Turing machines. To
prove this, register machines are used. A register ma-
chine is a computer-like machine with a number of reg-
isters which are used to store arbitrarily large numbers.
A program is written to manipulate the registers. It was
proved that a register machine with the following set of
instructions is equivalent to Turing machines [11].

1. P (n): increase register n by 1.
2. D(n): decrease register n by 1 (only if register n

is nonzero).
3. j(n)[s]: jump to statement s if register n is zero.

We now show that the register machine can be
converted to an infinite-sort PN2. We represents n
registers used in a program by n places r1, · · · , rn. We
also use m + 1 places p0, · · · , pm to represent the pro-
gram counter, where m is the number of statements
in the program. In the initial configuration, we put a
marked
-P/T net shown in Fig. 7 on p0 and also on
each ri, i = 1, · · · , n. Each instruction in the program
is represented by a transition shown in Fig. 8.

The most important part of this construction is
the transition from pi and rn to ps. Occurring of this
transition are possible only when both nets in pi and
rn are identical. Transition zero in the lower-level net

†A marked �-P/T net µ is bounded if there exists a non-
negative integer k such that for every m ∈ R(µ) and every
p ∈ P : m(p) ≤ k.

HIRAISHI: A PETRI-NET-BASED MODEL FOR THE MATHEMATICAL ANALYSIS OF MULTI-AGENT SYSTEMS
2833

Fig. 8 Construction of a PN2 representing the register
machine (2).

is always enabled because it has no input places, how-
ever its firing is restricted by the upper-level net. The
marked
-P/T net in place pi has no tokens, and the
marked
-P/T net in place rn has tokens correspond-
ing to the value of the register. If the value is 0, then
both nets are identical and only the left transition is en-
abled. Otherwise, only the right transition is enabled.
This enables zero testing.

4.4 Accepting Languages

PN2’s can represent arbitrary large numbers with zero-
testing ability. Given a marked
-P/T net µ = (π�,m0),
L(µ) = {
(σ) | σ ∈ T ∗, ∃m ∈ F : m0

σ→ m} is called
the language accepted by µ, where F is a finite set of
accepting markings.

It was shown that LwwR = {wwR | w ∈ Σ∗} can-
not be accepted by any marked
-P/T nets [11]. It is
a non-regular, context-free language. The reason is de-
scribed as follows. Any marked
-P/T net cannot have
kr possible markings after firing r transitions, where k
is a constant. This implies that any marked
-P/T net
cannot simulate a pushdown stack.

We can show a PN2 that accepts LwwR (Fig. 9).
Let µ(i) denote the marked
-P/T net initially put on
p3 with i tokens. The set of accepting markings is F =
{[∅, ∅, µ(0), ∅, 1]}. By an input 0010, the configuration
changes to

p2 �→ µ(1) + µ(2) + µ(4); p3 �→ µ(4); p4 �→ µ(3).

It realizes a pushdown stack.
There exists a coloured Petri nets [13] equivalent

to the above PN2 (Fig. 10). Procedures for incre-
ment/decrement of the stack pointer are described as
arc expressions in the coloured Petri net, while they are
represented by transitions of the lower-level nets in the
PN2.

Fig. 9 A PN2 accepting LwwR .

Fig. 10 A CPN accepting LwwR .

5. State Equation and Invariant Analysis of
PN2’s

In this section, we first define state equations of PN2’s,
and after that discuss invariant analysis using incidence
matrices.

5.1 Injective-PN2’s

A PN2 is called injective if every marked
-P/T net in
the intial configuration has an injective labeling func-
tion. For any PN2, we can construct an equivalent
injective-PN2 by

(i) Relabeling of transitions in the lower level nets if
more than one transitions have the same label;

2834
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.11 NOVEMBER 2001

(ii) Duplication of transitions in the upper level net
corresponding to the relabeling.

Therefore, there are no differences in the modeling
power between PN2’s and injective-PN2’s.

In injective-PN2’s, we can omit the second part of
transition bindings, therefore a transition binding for
a transition t is defined by a function b : Et → PTΣ
such that for each e ∈ Et, the unique transition having
label eΣ is enabled in b(e). In what follows, we consider
injective-PN2’s only to simplify the discussion. More-
over, we identify a label with the transition having the
label.

5.2 State Equation

We show how the state equation of an injective-PN2 is
defined. We first define firing count vectors. Suppose
that T = {t1, · · · , tn} and P = {p1, · · · , pm}. In what
follows, we will use an index i to denote transitions,
and j to denote places. In addition, we will write just i
(j) in subscripts to indicate the transition ti (place pj),
e.g., we will write Ei instead of Eti

, and Bi instead of
Bti

.
A firing count vector is a |T |-dimensional column

vector x = [x1, · · · , xn]t, where each xi is a multi-set
over Bi, and it indicates how many times each transi-
tion binding to occur. In this formulation, it is neces-
sary to consider all elements in B, and |B| may increase
exponentially in the size of the net. We show this prob-
lem is avoidable by introducing a different representa-
tion of firing count vectors.

Let Ei = {e1i , · · · , e
|Ei|
i }. We represent each xi by

a |Ei| dimensional vector x̂i = [x1i , · · · , x
|Ei|
i] such that

(i) for each k = 1, · · · , |Ei|:

xk
i =

∑
b∈Bi

xi(b)#b(ek
i)

(ii) for every k, k′ ∈ {1, · · · , |Ei|}, |xk
i | = |xk′

i |.

The second requirement is necessary for the vector to be
decomposed into a multi-set over Bi. The reason why
this compact representation of firing count vectors is
possible is that there is no interference among transition
components of each transition.

The following example shows how we can avoid to
deal with the combinatorial number of transition bind-
ings.

Example 4: Suppose that Ei = {e1i , · · · , eh
i }, ek

iΣ =
a (k = 1, · · · , h), and the input place of ti contains r
marked
-P/T nets having an enabled transition with
label a (Fig. 11). Then the number of possible transi-
tion bindings for ti is O(rh). In the above represen-
tation, however, the space necessary to represent xi is
O(rh).

Fig. 11 Combinatorial number of transition bindings.

For a sequence of transition bindings σ ∈ B∗,
let ψ(σ) = [x1, · · · , xn]t denotes a firing count vec-
tor such that for each transition ti, xi is the sum
of transition bindings for ti occurring in σ, and let
ψ̂(σ) = [x̂1, · · · , x̂n]t denotes the different representa-
tion of ψ(σ) decribed above. The vector ψ̂(σ) keeps
sufficient information to determine the final marking.

Lemma 1: Suppose that s
σ1→ s′, s

σ2→ s′′, and
ψ̂(σ1) = ψ̂(σ2), then s′ = s′′.

We now define two matrices I− and I+, called the
input incidence matrix and the output incidence ma-
trix. Each of these contains a row for each place and a
column for each transition. Each component I−(pj , ti)
(I+(pj , ti)) corresponds to •ek

i (ek•
i) of ek

i ∈ Ei, and is
defined as follows:

• I−(pj , ti) is a row vector

[w−
j,i,1#Id, · · · , w−

j,i,|Ei|#Id],

where w−
j,i,k ∈ IN, and Id is the identity function.

• I+(pj , ti) is a row vector

[w+j,i,1#δe1
iΣ
, · · · , w+j,i,|Ei|#δ

e
|Ei|
iΣ

],

where w+j,i,k ∈ IN, and δτ is a function on MPTΣ

such that δτ (M) =
∑

µ∈PTΣ
M(µ)#δ(µ, τ).

Multiplication between incidence matrices and a
firing count vector is defined as follows.

I−(pj , ti)·x̂i =
|Ei|∑
k=1

w−
j,i,k#Id(xk

i)=
|Ei|∑
k=1

w−
j,i,k#xk

i ,

I+(pj , ti) · x̂i =
|Ei|∑
k=1

w+j,i,k#δek
iΣ

(xk
i).

A configuration s is represented by a column vector
[s1, · · · , sm]t such that each si is a multi-set over PTΣ.
Hence, we obtain the following state equation.

Proposition 2: if s σ→ s′, then s′ = s + I+ψ̂(σ) −
I−ψ̂(σ).

HIRAISHI: A PETRI-NET-BASED MODEL FOR THE MATHEMATICAL ANALYSIS OF MULTI-AGENT SYSTEMS
2835

Example 5: The incidence matrices of the PN2 in
Fig. 1 are

I− =


 [Id, ∅] [∅] [∅, ∅]

[∅, ∅] [Id] [Id, Id]
[∅, Id] [Id] [∅, ∅]


 ,

I+ =


 [∅, ∅] [∅] [δb, ∅]

[δa, δc] [δd] [∅, ∅]
[∅, δc] [δd] [∅, ∅]


 .

The firing count vector of the sequence of transition
bindings in Example 2 is

x̂ = [[µ1, µ2], [µ′
2], [µ

′
1, µ2]]

t.

Firing count vectors and incidence matrices can be
represented by integer vectors/matrices. To denote the
size of matrices, we use the following numbers:

#all = |PTΣ|, #sum =
n∑

i=1

|Ei|∑
k=1

#i,k,

where #i,k = |PTΣ(ek
iΣ)| and PTΣ(a), a ∈ Σ denotes

the set of all marked
-P/T nets of PTΣ in which a
transition with label a is enabled.

Remark 1: For FSAN’s, the above values are com-
puted as follows. Suppose that the initial configuration
contains DFAl with the set of states Ql (l = 1, · · · , r).
For DFAl and a label a ∈ Σ, let Ql[a] denote the set
of states in Ql at which a is enabled. Then

#all =
r∑

l=1

|Ql|, #i,k =
r∑

l=1

|Ql[ek
iΣ]|.

Now we show integer representation of firing count
vectors and incidence matrices. Each xk

i is rep-
resented by a #i,k-dimensional nonnegative integer
vector each components of which corresponds to a
marked
-P/T net in PTΣ(ek

iΣ). Suppose PTΣ(ek
iΣ) =

{µ1i,k, · · · , µ
#i,k

i,k }. Then the vector is

[xk
i (µk,1

i), · · · , xk
i (µk,#i,k

i)].

Each w−
j,i,k#Id (w+j,i,k#δek

iΣ
) in I−(pj , ti) (I+(pj , ti))

is represented by a nonnegative integer matrix having
rows corresponding to PTΣ, and columns correspond-
ing to PTΣ(ek

iΣ). Suppose PTΣ = {µ1, · · · , µ#all
} and

PTΣ(ek
iΣ) = {µ1i,k, · · · , µ

#i,k

i,k }. Then the matrix for
w−

j,i,k#Id is [v−rl], where

v−rl =
{

w−
j,i,k (µl

i,k = µr)
0 (otherwise)

The matrix for w+j,i,k#δek
iΣ

is [v+rl], where

v+rl =
{

w+j,i,k (δek
iΣ

(µl
i,k) = µr)

0 (otherwise)

The size of the incidence matrices is m · #all × #sum.

Example 6: I = I+ − I+ of the PN2 in Fig. 1 is
represented by the following integer matrices.

I =

µ1 µ2 µ′
2 µ′

1 µ2
µ1
µ′
1

µ2
µ′
2

µ1
µ′
1

µ2
µ′
2

µ1
µ′
1

µ2
µ′
2




−1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 −1 0
0 0 1 0 −1
0 1 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 1 0 0
0 1 −1 0 0




.

Then the state equation for the occurrences of transi-
tion bindings in Example 2 is s = s + I · x, where s =
[1, 0, 0, 0 | 0, 0, 0, 0 | 0, 0, 1, 0]t and x = [1, 1 | 1 | 1, 1]t.
Note that the occurrences of transition bindings in x
does not change the configuration. The vector x is a
T -invariant, which will be formally defined in the next
subsection.

5.3 Invariants

Computing invariants is one of important and effective
procedures in the analysis of marked P/T nets, because
the existence of invariants is necessary for the system
to be stable. Moreover, invariants are obtained by solv-
ing systems of linear homogeneous equations. This im-
plies that no calculation on integers is necessary. Using
the integer matrix representation, an invariant of an
injective-PN2 are obtained by solving a system of linear
homogeneous equations, and therefore various methods
developed for P/T nets can be used.

A T -invariant of an injective-PN2 is a firing count
vector x such that any sequence σ ∈ B

∗
, ψ(σ) =

x does not change the configuration. In the differ-
ent representation, it is a firing count vector x̂ =
[[x11, · · · , x

|E1|
1], · · · , [x1n, · · · , x

|En|
n]]t such that

(i) I+x̂ = I−x̂;
(ii) For each i ∈ {1, · · · , n}, |x1i | = |x2i | = · · · = |x|Ei|

i |.
In the integer matrix representation, each xk

i is a
nonnegative integer matrix

[xk,1
i , · · · , xk,#i,k

i]t, xk,l
i ∈ IN.

Then the condition (ii) is written as follows.

∑#i,1
l=1 x1,li =

∑#i,2
l=1 x2,li = · · · =

∑#i,|Eti
|

l=1 x
|Eti

|,l
i

(i = 1, · · · , n).

We can easily construct an integer matrix ITinv such
that ITinv ·x = 0 is equivalent to the conditions (i) and
(ii). The size of ITinv is (m·#all+

∑n
i=1 |Ei|−n)×#sum.

2836
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.11 NOVEMBER 2001

Example 7: A T -invariant of the PN2 in Fig. 1 is

x̂ = [x11 = µ1, x
2
1 = µ2, x

1
2 = µ′

2, x
1
2 = µ′

1, x
2
2 = µ2]t.

In the nonnegative integer matrix representation,

x̂ = [1, 1 | 1 | 1, 1]t.

In P/T nets, a P -invariant is a vector of weights
so that the weighted sum of the number of tokens in
each place is constant by any occurrence of transitions.
P -invariants of an injective-PN2 are similarly defined.
Let xb denotes the firing count vector of a single occur-
rence of transition binding b. A weight function w is a
function on MPTΣ such that

w


 ∑

µ∈PTΣ

nµ#µ


 :=

∑
µ∈PTΣ

cµ · nµ#µ, (cµ ∈ IN).

A P -invariant is a row vector y = [y1, · · · , ym] of weight
functions such that for every b ∈ B:

y · (I+ · xb − I− · xb) = ∅.

In the integer matrix representation, each yi is repre-
sented by an integer vector [y1i , · · · , y

#all

i], and xb by a
nonnegative integer vector

[[x11, · · · , x
|Ei|
1], · · · , [x1n, · · · , x|Ei|

n]]t

such that each xk
i is an #i,k-dimensional unit vector,

i.e., it has value 1 for one component and 0 for others.
The number of transition bindings in B is∑n

i=1

∏|Ei|
k=1 #i,k. However, it is not necessary to solve

the equation for all of the transition bindings. Let Ik
i

denote the #all × #i,k submatrix of I corresponding
to ek

i , and let Ik,l
i denote the l-th column vector of Ik

i .
Then a vector y of weights is a P -invariant if and only
if:

(i) y ·
∑|Ei|

k=1 I
k,1
i = 0 (i = 1, · · · , n);

(ii) y ·Ik,l
i = y ·Ik,l+1

i (i = 1, · · · , n, k = 1, · · · , |Ei|, l =
1, · · · ,#i,k − 1).

We can easily construct an integer matrix IPinv such
that y ·IPinv = 0 is equivalent to the conditions (i) and
(ii). The size of IPinv is m·#all×(n+#sum−

∑n
i=1 |Ei|).

Example 8: A P -invariant of the PN2 in Fig. 1 is

y = [1, 0, 0, 0 | 0, 1, 0, 0 | 0, 0, 1, 1],

because

y · (I1,11 + I2,11) = y · I1,12 = y · (I1,13 + I2,13) = 0.

Note that the condition (ii) is not necessary since
#i,k = 1 for all i, k.

6. Discussion

As written in the introduction, the simplest way to
represent agents in Petri-net-based models is to intro-
duce notion of objects, i.e., a collection of data types
with methods that give access to the data, into at-
tributes of tokens. Representation of an agent as an
object is necessary to describe the agent independently
of other agents and environments where agents inter-
act. Since most of classes of object Petri nets are based
on high-level Petri nets, they are too complex to be an-
alyzed. There exists a trade-off between expressiveness
and analysis. The aim of proposing PN2 is to give a
model that is sufficiently simple for the mathematical
analysis, but has enough modeling power.

The purpose of elementary object systems (EOS)
[9] is similar to that of PN2’s, i.e., to model systems in
an object oriented manner keeping the model as simple
as possible. We make a comparison between PN2’s and
EOS.
Modeling power: Infinite-sort PN2’s can have in-
finitely many states, and has the same modeling power
as Turing machines, while EOS do not allow to have in-
finitely many states. Each lower-level nets in EOS is an
elementary net system, i.e., it has finitely many reach-
able markings, and duplication of agents is not allowed
in the upper-level net.
Agent communication: In PN2’s, communication
links are defined by the function ·Σ, which defines links
by specifying labels of lower-level nets. In EOS, it is
necessary to specify the interaction relation, which is
a binary relation between the set of transitions in the
upper-level net and the set of transitions in lower-level
nets. Both representations are equivalent except that
communication links in EOS are restricted to those be-
tween two agents. PN2’s allow links in which more
than two agents participate.

EOS also provide another type of interaction
between two objects in the same place, called ob-
ject/object interaction. Communication links for this
interaction is defined by a symmetric relation on the
set of transitions in lower-level nets. In PN2’s, the
same type of interaction can be represented by adding
transitions with self-loops to the place.

In EOS, the object/object interaction relation is
universal in all places of the upper-level net, while
PN2’s can describe different interaction relation in each
place.
Semantics: PN2’s are based on the value semantics,
whereas EOS are basically based on the reference se-
mantics†. As a result, enabling of transitions in EOS is
restrictive. It does not allow duplication of agents, but
PN2 can do.

†Relationship between value semantics and reference se-
mantics in EOS is discussed in [10]

HIRAISHI: A PETRI-NET-BASED MODEL FOR THE MATHEMATICAL ANALYSIS OF MULTI-AGENT SYSTEMS
2837

Mathematical analysis: The main purpose of
proposing EOS is to give formal semantics of object sys-
tems, and the research direction is different from that
of PN2’s. Therefore, no work has been done on the
mathematical analysis. On the other hands, PN2’s are
designed to enable mathematical analysis on numeri-
cal matrices such as invariant analysis. In addition,
allowing dynamic bindings of transitions may cause a
combinatorial number of transition bindings, but it is
avoidable in the invariant analysis.

Process algebra is an alternative approach to
model concurrent systems. Several models based on
process algebra have been proposed to represent mobil-
ity of agents, such as π-calculus [14], CHOCS (Calculus
of Higher Order Communicating Systems) [15], and am-
bient calculus [16]. π-calculus realizes the mobility of
agents by movement of links between processes. Each
process can send link names to other processes, and
communication links between agents are dynamically
constructed. CHOCS is a higher order process algebra.
In CHOCS, each process can send and receive processes.
This feature enables to represent mobile codes in a dis-
tributed environment. An ambient is a bounded place
where agents interact. In ambient calculus, each agent
can enter into or exit from an ambient, and can also
dissolve an ambient. Communication between agents
are described as the movement of messenger agents.

These models are oriented to expressiveness of
agent-based systems. In contrast to these models,
PN2’s represent the mobility by movement of agents
(lower-level nets) in a virtual environment (the upper-
level net), and are oriented to mathematical analysis
such as the state equation and invariant analysis. Ex-
istence of invariants are necessary for the system to be
stable. Such system-theoretic view is important in the
design of large and complex systems.

7. Conclusion

The proposed model PN2’s are one of simplest Petri-
net-based models for representing the following features
of multi-agent systems: internal states of an agent, dy-
namic interaction between agents, and multiple envi-
ronments in which agents act.

This paper is just a proposal. In the future, we
will study theoretical analysis on the model and appli-
cations such as JAVA based software.

References

[1] M. Baldassari, “An environment for object-oriented concep-
tual programming based on PROT Nets,” Lecture Notes in
Computer Science, vol.340, pp.1–19, 1988.

[2] E. Battiston, F. De Cindio, and G. Mauri, “OBJSA nets: A
class of high-level nets having objects as domains,” Lecture
Notes in Computer Science, vol.340, pp.20–43, 1988.

[3] O. Biberstein, D. Buchs, and N. Cuelfi, “CO-OPN/2—A
specification language for distributed system engineering,”

Technical Report 96/167, Software Engineering Laboratory,
Swiss Federal Institute of Technology, 1996.

[4] O. Kummar and F. Wienberg, “Renew—The reference net
workshop,” Petri Net Newsletter, no.56, pp.12–16, 1999.

[5] C. Lakos, “From coloured Petri nets to object Petri nets,”
Lecture Notes in Computer Science, vol.935, pp.278–297,
1995.

[6] T. Miyamoto and S. Kumagai, “A multi agent net model
of autonomous distributed systems,” Proc. CESA’96, Sym-
posium of Discrete Events and Manufacturing Systems,
pp.619–623, 1996.

[7] S. Philippi, “System modeling using object-oriented Pr/T-
nets,” Research Report no.25/97, Institute for Computer
Science, University Koblenz-Landau, 1997.

[8] C. Sibertin-Blanc, “Cooperative nets,” Lecture Notes in
Computer Science, vol.815, pp.471–490, 1994.

[9] R. Valk, “Petri nets as token objects—An introduction to
elementary object nets,” Lecture Notes in Computer Sci-
ence, vol.1420, pp.1–25, 1998.

[10] R. Valk, “Relating different semantics for object Petri
nets,” Research Report FBI-HH-B-226/00, Faculty of In-
formatics, University of Hamburg, 2000.

[11] J.L. Peterson, Petri net theory and the modeling of systems,
Prentice-Hall, 1981.

[12] P. Ramadge and W.M. Wonham, “The control of discrete
event systems,” Proc. IEEE, vol.77, no.1, pp.81–98, 1989.

[13] K. Jensen, Coloured Petri nets: basic concepts, analysis
methods and practical use, Volume I, II, III, Springer-
Verlag, 1992, 1995, 1997.

[14] R. Milner, Communicating and mobile systems: The π-
calculus, Cambridge University Press, 1999.

[15] B. Thomsen, “A theory of higher order communicating sys-
tems,” Information and Computation, vol.116, pp.38–57,
1995.

[16] L. Cardelli and A.D. Gordon, “Mobile ambients,” Lecture
Notes in Computer Science, vol.1378, pp.140–155, 1998.

Kunihiko Hiraishi received from the
Tokyo Institute of Technology the B.E.
degree in 1983, the M.E. degree in 1985,
and D.E. degree in 1990. In 1985 he joined
the IIAS-SIS, Fujitsu Limited. Since 1993
he has been an Associate Professor at
Japan Advanced Institute of Science and
Technology. His current interests include
discrete event systems and computational
models for concurrent systems. He is a
member of the IEEE, IPSJ, and SICE.

