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PAPER Special Section on Discrete Mathematics and Its Applications

Inkdot versus Pebble over Two-Dimensional Languages

Atsuyuki INOUE†, Nonmember, Akira ITO†a), Kunihiko HIRAISHI††, and Katsushi INOUE†, Members

SUMMARY This paper investigates a relationship between inkdot and
one-pebble for two-dimensional finite automata (2-fa’s). Especially we
show that (1) alternating inkdot 2-fa’s are more powerful than nondeter-
ministic one-pebble 2-fa’s, and (2) there is a set accepted by an alternating
inkdot 2-fa, but not accepted by any alternating one-pebble 2-fa with only
universal states.
key words: inkdot, pebble, two-dimensional automata, nondeterminism,
alternation

1. Introduction

Related to the historical open problem of whether deter-
ministic and nondeterministic space (especially lower-level)
complexity classes are separated, Ranjan et al. [6] intro-
duced inkdot Turing machines. An inkdot Turing machine
is a conventional Turing machine capable of dropping an
inkdot on a given input tape for a landmark, but unable to
further pick it up. It was shown in [6] that nondetermin-
istic inkdot Turing machines are more powerful than non-
deterministic ordinary Turing machines for spaces between
log log n and o(log n), and deterministic inkdot Turing ma-
chines have the same accepting power as deterministic ordi-
nary Turing machines for any space bound. Ito et al. [5],
on the other hand, introduced inkdot two-dimensional fi-
nite automata, which are conventional two-dimensional fi-
nite automata (2-fa’s) [4] capable of dropping an inkdot on
a given two-dimensional input tape, and showed, for exam-
ple, that (i) alternating (resp., nondeterministic) inkdot 2-
fa’s are more powerful than ordinary alternating (resp., non-
deterministic) 2-fa’s, (ii) deterministic inkdot 2-fa’s have the
same accepting power as ordinary deterministic 2-fa’s, (iii)
nondeterministic (resp., deterministic) inkdot 2-fa’s are less
powerful than nondeterministic (resp., deterministic) one-
pebble 2-fa’s, which were introduced by Blum and Hewitt
[1]. See Sect. 3 below for more detailed known and related
results concerning inkdot and one-pebble 2-fa’s. (See [1],
[2], [6]–[8] for another results concerning inkdot and pebble
machines.)
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Let AIFA denote the class of sets of two-dimensional
tapes accepted by alternating inkdot 2-fa’s, and let APFA
(resp., NPFA, UPFA) denote the class of sets of two-
dimensional tapes accepted by alternating one-pebble 2-fa’s
(resp., nondeterministic one-pebble 2-fa’s, alternating one-
pebble 2-fa’s with only universal states). It is shown in [5]
that NPFA is a subset of AIFA, but it is unknown whether
NPFA is properly contained in AIFA. One main purpose
of this paper is to solve this problem, and show, in Sect. 4,
that NPFA is a proper subclass of AIFA. Another purpose
of this paper is to investigate a relationship between UPFA
and AIFA, and show, in Sect. 5, that there is a set in AIFA,
but not in UPFA. As a corollary of this result, we have a
new result that APFA propely contains UPFA. Section 6
concludes this paper by giving open problems.

2. Definitions and Notations

Let Σ be a finite set of symbols. A two-dimensional tape
over Σ is a two-dimensional rectangular array of elements
of Σ. The set of all two-dimensional tapes over Σ is denoted
by Σ(2). Given a tape x in Σ(2), we let l1(x) be the number of
rows of x, and l2(x) be the number of columns of x. For each
m, n ≥ 1, let Σ(m,n) = {x ∈ Σ(2) | l1(x) = m ∧ l2(x) = n}.
If 1 ≤ i ≤ l1(x) and 1 ≤ j ≤ l2(x), we let x(i, j) denote
the symbol in x with coordinates (i, j). Furthermore, we
define x[(i, j), (i′, j′)], only when 1 ≤ i ≤ i′ ≤ l1(x) and
1 ≤ j ≤ j′ ≤ l2(x), as the two-dimensional tape z satisfying
the following:

(1) l1(z) = i′ − i + 1 and l2(z) = j′ − j + 1;
(2) for each k, r(1 ≤ k ≤ l1(z), 1 ≤ r ≤ l2(z)), z(k, r) =

x(k + i − 1, r + j − 1).

For any two two-dimensional tapes x and y with l1(x) =
l1(y), we denote by xy the two-dimensional tape obtained
by concatenating y to the right of x. Below, We denote a
two-dimensional finite automaton by 2-fa.

An alternating 2-fa [4] is a sixtuple M =

(Q, q0,U, F,Σ, δ), where (1) Q is a finite set of states, (2)
q0 ∈ Q is the initial state, (3) U ⊆ Q is the set of universal
states, (4) F ⊆ Q is the set of accepting states, (5) Σ is a
finite input alphabet (� � Σ is the boundary symbol), and
(6) δ ⊆ (Q × (Σ ∪ {�})) × (Q × {left,right,up,down,no move})
is the next-move relation. A state q in Q-U is said to be
existential. As shown in Fig. 1, the machine M has a read-
only rectangular input tape with boundary symbols �, and a
finite control. A position is assigned to each cell of the input

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Two-dimensional finite automaton.

tape as shown in Fig. 1.
At each moment, the machine M is in one of the states.

A step of M consists of reading the symbol currently un-
der the input head, changing its state, and moving the input
head in specified direction (left, right, up, down, or no move)
which is determined by the next-move relation δ. If the in-
put head falls off the input tape, then M can make no further
move.

A con f iguration of an alternating 2-fa M on an input
x ∈ Σ(2) is of the form ((i, j), q), where (i, j), 0 ≤ i ≤ l1(x)+1
and 0 ≤ j ≤ l2(x) + 1, is a position of the input head,
and q is a state of the finite control. If q is the state asso-
ciated with configuration c, then c is said to be universal
(existential, accepting) configuration if q is a universal (ex-
istential, accepting) state. The initial configuration of M on
input x is IM(x) = ((1, 1), q0). For each input tape x, we
write c 	M,x c′, and say that c′ is an immediate successor of
c (of M on x), if configuration c′ is derived from configu-
ration c in one step of M on x according to the next-move
relation. A configuration with no immediate successor is
called a halting configuration. Below, we assume that every
accepting configuration is a halting configuration.

We can view the computation of M as a tree whose
nodes are labelled by configurations. A computation tree of
M on an input tape x is a tree whose nodes are labelled by
configurations of M on x. The root of the tree is labelled
by the initial configuration IM(x); the children of any node
labelled by a universal configuration are all the immediate
successors of that configuration on x; and any node labelled
by an existential configuration has one child, which is la-
belled by one of the immediate successors of that configu-
ration on x (provided there are any). An accepting compu-
tation tree of M on x is a computation tree of M on x whose
leaves are all labelled by accepting configurations. We say
that M accepts x if there is an acceptint computation tree of
M on input x. Define T (M) = {x ∈ Σ(2)|M accepts x}.

An alternating one-pebble 2-fa [5] is an alternating 2-
fa with the capability of using one-pebble which the finite
control can use as a marker on the input tape. During the
computation, the device can deposit (retrieve) a pebble on
(from) any cell of the tape. The action of the machine de-

pends on the current state of the finite control, the currently
scanned input tape symbol, and on the presence of the peb-
ble on the current input tape cell. The action consists of
moving the input head, changing the state of the finite con-
trol, and picking up or placing the pebble on the currently
scanned cell of the input tape. A configuration of an alter-
nating one-pebble 2-fa M on an input tape x is of the form
((i, j), pebble-position, q), where (i, j) is the input head po-
sition, pebble-position is the position of the pebble on x
(let pebble-position be “no” if the pebble is not placed on
the input tape x), and component q represents a state of
the finite control. The initial configuration of M on x is
((1, 1), no, q0), where q0 is the initial state of M. That is, the
machine M starts with the pebble in the finite control and
with the input head on the upper-leftmost corner of the in-
put tape. An accepting computation tree of M on an input
tape is defined as in the case of an alternating 2-fa. We say
that M accepts an input tape x if there is an accepting com-
putation tree of M on x. By T (M), we denote the set of all
the two-dimensional tapes accepted by M.

An alternating inkdot 2-fa [5] is an alternating 2-fa ca-
pable of dropping an inkdot on a given input tape for a land-
mark, but unable to further pick it up. That is, an alternating
inkdot 2-fa is an alternating one-pebble 2-fa which cannot
pick up the pebble again, once it has put down the pebble
on a given input tape. See [5] for the formal definitions of
alternating one-pebble and inkdot 2-fa’s.

A nondeterministic 2-fa is an alternating 2-fa which has
no universal states, and a deterministic 2-fa is an alternating
2-fa whose configurations each have at most one immediate
successor. Nondeterminism and determinism for one-pebble
and inkdot 2-fa’s are defined similarly.

By AFA (resp., NFA, DFA, APFA, NPFA, DPFA,
AIFA, NIFA, DIFA), we denote the class of sets of two-
dimensional tapes accepted by alternating (resp., nonde-
terministic, deterministic, alternating one-pebble, nonde-
terministic one-pebble, deterministic one-pebble, alternat-
ing inkdot, nondeterministic inkdot, deterministic inkdot)
2-fa’s. Furthermore, by UFA (resp., UPFA, UIFA), we de-
note the class of sets of two-dimensional tapes accepted by
alternating (resp. alternating one-pebble, alternating inkdot)
2-fa’s with only universal states.

Let M be an alternating one-pebble (inkdot) 2-fa,
and x be an input tape. A sequence of configurations
c1c2 . . . cm (m ≥ 1) is called a computation path of M on
x if c1 	M,x c2 	M,x . . . 	M,x cm. For simplicity, we below
call a computation path a computation. For any set S , |S |
denotes the cardinality of S .

3. Known Results and Related Results

This section surveys known results and related results in [3],
[5] concerning inkdot and pebble 2-fa’s.

The following result in [5] shows a relationship among
the accepting powers of 2-fa’s, inkdot 2-fa’s, and one-pebble
2-fa’s.
Theorem 3.1. [5].
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(1) DFA = DIFA ⊂� DPFA,
(2) NFA ⊂� NIFA ⊂� NPFA,
(3) UFA ⊂� UIFA ⊂� UPFA, and
(4) AFA ⊂� AIFA ⊆ APFA.

It is unknown whether AIFA ⊂� APFA. What are the re-
lationships between NIFA and DPFA, and between UIFA
and DPFA ? The following theorem answers this question:
Theorem 3.2.

(1) NIFA is incomparable with DPFA, and
(2) UIFA is incomparable with DPFA.

Proof. Let T1 = {x ∈ {0, 1}(2) | ∃n ≥
1 [l1(x) = l2(x) = 2n ∧ x[(1, 1), (n, 2n)] = x[(n +
1, 1), (2n, 2n)](i.e., the top half of x is the same as the bot-
tom half of x)]}, and T2 = {x ∈ {0, 1}(2) | ∃n ≥
2 [l1(x) = n ∧ ∃i (2 ≤ i ≤ n) [x[(1, 1), (1, l2(x))] =
x[(i, 1), (i, l2(x))](i.e., the first row of x s the same as the
i-th row of x]]}. It is shown in [5] that the complement of
T1 is in NIFA, T1 ∈ UIFA, and T2 � NIFA ∪ UIFA. Fur-
thermore, it is shown in [3] that T2 ∈ DPFA. By using
the same idea as in the proof of Theorem 4.1 in [3], we can
show that the complement of T1 is not in DPFA. From these
observations, the theorem follows.

In Sect. 4 (resp., Sect. 5), we investigate a relationship
between NPFA and AIFA (resp., UPFA and AIFA). It
is unknown what are the relationships between NIFA and
UPFA, and between UIFA and NPFA.

The following result in [5] shows a relationship among
the accepting powers of determinism, nondeterminism, al-
ternation, and alternation with only universal states for
inkdot 2-fa’s.
Theorem 3.3. [5].

(1) DIFA ⊂� NIFA ⊂� AIFA, and
(2) DIFA ⊂� UIFA ⊂� AIFA.

A relationship between NIFA and UIFA is shown in the
following theorem:
Theorem 3.4. NIFA is incomparable with UIFA.
Proof. Let T1 be the set described in the proof of Theorem
3.2. It is implicitely shown in [5] that T1 ∈ UIFA − NIFA,
and the complement of T1 is in NIFA, but not in UIFA.
From this fact, the theorem follows.
As shown in the following result in [3], also for one-pebble
2-fa’s, alternation is better than nondeterminism, which is
better than determinism.
Theorem 3.5. [3]. DPFA ⊂� NPFA ⊂� APFA.
As a corollary of the main result in Sect. 5, we have
“DPFA ⊂� UPFA ⊂� APFA.” We conjecture that NPFA
is incomparable with UPFA, but we have no proof of this
conjecture.

4. Alternating Inkdot Versus Nondeterministic One-
Pebble

This section shows that alternating inkdot is better than non-
deterministic one-pebble for 2-fa’s.
Theorem 4.1. NPFA ⊂� AIFA.
Proof. It is shown in [5] that NPFA ⊆ AIFA. To prove the
theorem, we below show that AIFA − NPFA � φ. For each

m ≥ 1, let V(m) = {x1c1x2c2 . . . xmcm|∀i(1 ≤ i ≤ m)[xi ∈
{0, 1}(m,m) ∧ ci ∈ {2}(m,1)]}, and T3 = {xx|∃m ≥ 1[x ∈ V(m)]}.
We prove that

(1) T3 ∈ AIFA, and
(2) T3 � NPFA.

Proof of (1): T3 is accepted by an alternating inkdot 2-fa M
which acts as follows. Suppose that an input tape

w = x1c1x2c2 . . . xkck xk+1ck+1 . . . x2kc2k

is presented to M, where k ≥ 1, xi ∈ {0, 1}(m,m) and ci ∈
{2}(m,1), m ≥ 1, for each 1 ≤ i ≤ 2k. (Input tapes of the form
different from the above can easily be rejected by M.) M
first checks that k = m. To do so, M first moves the input
head H on the symbol w(1, 1). After that, moving H one row
down each time H reads symbol “2” twice, M moves H in
the right-lower direction. Acting like this, if H reaches the
symbol “2” situated on the right-lower corner of w, then M
can know that k = m.

After knowing that k = m, M tries to check that the left
and right halves of the input tape w are the same, i.e., that
xi(r, s) = xm+i(r, s) for every i, r, s (1 ≤ i, r, s ≤ m). To do
so, M first moves H to the right-lower corner of xm. Then,
scanning the left segment x1c1x2c2 . . . xm of w from right
to left, M universally makes process Pi(r, s) on the symbol
xi(r, s) for every 1 ≤ i, r, s ≤ m. Process Pi(r, s) is used
to check that xi(r, s) = xm+i(r, s). In order to check that
xi(r, s) = xm+i(r, s), Pi(r, s) drops the inkdot on the symbol
xi(r, s). After that, Pi(r, s) tries to move H to the s-th column
of xm+i. For the purpose, Pi(r, s) first moves H on the symbol
xm+i(m, 1) as follows:

1-1. Move H to the first row and to the right on the first row
of xi until H meets a symbol 2. After that, go to step
1-2.

1-2. Move H one cell down, and go to step 1-3.
1-3. If H reads a symbol 2, then go to step 1-4. If H reads a

bottom boundary symbol #, then go to step 1-5.
1-4. Move H to the right on the current row until H meets a

symbol 2. After that, go to step 1-2.
1-5. Move H one cell up, and then one cell right.

After executing step 1-5, process Pi(r, s) has moved H on
the symbol xm+i(m, 1). Then, in order to guess the s-th col-
umn of xm+i, Pi(r, s) existentially chooses one of the follow-
ing two actions on each symbol of the m-th row of xm+i:

(i) (Guessing that the current column is not the s-th col-
umn of xm+i) move H one cell right.

(ii) Guess that the current column is the s-th column of
xm+i.

If Pi(r, s) continues to choose the action (i) above and H
meets a symbol 2, then Pi(r, s) halts without entering an ac-
cepting state. If Pi(r, s) chooses the action (ii) above, then
Pi(r, s) universally branches into two sub-processes Pi(r, s)1

and Pi(r, s)2. Sub-process Pi(r, s)1 tries to check whether
the current column is the s-th column of xm+i, and if so, then
enters an accepting state. Otherwise, Pi(r, s)1 halts without
entering an accepting state. That is, Pi(r, s)1 acts as follows:
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2-1. Move H diagonally in the left-upper direction. Then,

(i) if H meets a top boundary symbol #, then move
H one cell left (note that at this time, H has been
moved m+ 1 cells left compared with the position
just before executing step 2-1), and go to step 2-2,
and

(ii) if H meets a left boundary symbol #, then halt
without entering an accepting state.

2-2. Move H downwards. In this course, if H meets the
inkdot, then enter an accepting state. If H reaches a
bottom boundary symbol # without meeting the inkdot,
then move H one cell up, and go to step 2-1.

Sub-pross Pi(r, s)2 existentially chooses one of the follow-
ing two actions on each symbol of the current column (hope-
fully, the s-th column) of xm+i:

(i) Move H one cell up.
(ii) Guess that the current row is the r-th row of xm+i.

If Pi(r, s)2 continues to choose the action (i) above and H
meets a top boundary symbol #, then Pi(r, s)2 halts without
entering an accepting state. If Pi(r, s)2 chooses the action (ii)
above, then it memoririzes the symbol under H in the finite
control, and continues to move H to the left. If H reaches
a left boundary symbol # without meeting the inkdot, then
Pi(r, s)2 halts without entering an accepting state. If H meets
the inkdot somewhere, then Pi(r, s)2 compares the symbol
memorized in the finite control with the symbol xi(r, s) un-
der the inkdot. Pi(r, s)2 enters an accepting state only if
these symbols are the same. It is obvious that M accepts
T3.
Proof of (2). The proof borrows an idea in the proof of The-
orem 4.1 in [3]. We suppose to the contrary that a nonde-
terministic one-pebble 2-fa M accepts T3. Let Q be the set
of states of the finite control of M. We divide Q into two
disjoint subsets Q+ and Q− which corresponds to the sets
of states when M holds and does not hold the pebble in the
finite control, respectively. M starts from the initial state
in Q+ with the input head on the upper-leftmost symbol of
an input tape. We assume without loss of generality that M
satisfies the following condition (A):

(A) M does not go out of the boundary symbols #.(Of
course, M does not go into the input tape from the out-
side of the boundary symbols #.) Furthermore, when
M accepts an input tape in T3, M enters an accepting
state in Q+ on a right boundary symbol #, and halts.

For each m ≥ 1, let W(m) = {xy | x, y ∈ V(m)}. Below we
shall consider the computations of M on tapes in W(m) for
large m. Let x be any tape in V(m) that is supposed to be
a left or right half of an input tape (in W(m)) to M, and let
x(#) be the tape obtained from x by attaching the boundary
symbols # to the upper and lower sides of x. That is, x(#) is
a two-dimensional tape over {0, 1, 2, #} such that l1(x(#)) =
m+ 2, l2(x(#)) = l2(x) = m(m+ 1), x(#)[(2, 1), (m+ 1,m(m+
1))] = x, and x(#)(1, k) = x(#)(m + 2, k) = # for each k(1 ≤

k ≤ m(m + 1)). Note that, from the above condition (A),
the entrance points to x(#) (or the exit points from x(#)) for
M are the left and right sides of x(#). Let PT (m) be the set
of these entrance points (or exit points). Clearly, |PT (m)| =
2(m+ 2). Suppose that the pebble of M is not placed on this
x(#). Then, we define a mapping Mx, which depends on M
and x, from Q− × PT (m) to the power set of Q− × PT (m) as
follows:

• (s′, p′) ∈ Mx(s, p) ⇔ when M enters x(#) in state s
from entrance point p, there exists a sequence of steps
of M in which M eventually exits x(#) in state s′ from
exit point p′.

Let x, y ∈ V(m). We say that x and y are M−-equivalent if
Mx(s, p) = My(s, p) for each (s, p) ∈ Q− × PT (m) (i.e.,
if two mappings Mx and My are the same). Thus, M can-
not distinguish between two tapes in V(m) which are M−-
equivalent, without the pebble. M−-equivalence is an equiv-
alence relation on V(m), and |V(m)| = 2m3

. Clearly, there are
at most

e(m) = (2|Q
−|×2(m+2))|Q

−|×2(m+2)

M−-equivalence classes of tapes in V(m). Let P(m) be a
largest M−-equivalence class of tapes in V(m). Then we
have

|P(m)| ≥ 2m3

e(m)
. (1)

Note that |P(m)| � 1 for large m. Let x1 and x2 be in
P(m). For any computation comp(x1x2) of M on x1x2, let

• cross(comp(x1x2))
�
= the sequence of pairs of (i) states

and (ii) cross-points of the input head when M crosses
the boundary between x1(#) and x2(#) from left to right
or from right to left in comp(x1x2), and
• pebble-cross(comp(x1x2))

�
= the sequence of pairs of

(i) states (in Q+) and (ii) cross-points of the input head
when M crosses the boundary between x1(#) and x2(#)
with the pebble in the finite control from left to right or
from right to left in comp(x1x2).

Of course, pebble-cross(comp(x1x2)) is a subsequence of
cross(comp(x1x2)).

For each x ∈ P(m), xx is in T3, and so it must
be accepted by M. Therefore, there exists an accept-
ing computation of M on xx. Let “accomp(xx)” be
such a fixed loop-free accepting computation of M on
xx. Since pebble-cross(accomp(xx)) is loop-free, it fol-
lows that pebble-cross(accomp(xx)) is such that the same
pair of (i) a state (in Q+) and (ii) a cross-point of the
input head appears at most twice (one is with M cross-
ing the boundary between the left x(#) and the right x(#)
from left to right (or from right to left), and the other
is with M crossing the boundary from right to left (or
from left to right) in pebble-cross(accomp(xx)). There-
fore, the length of pebble-cross(accomp(xx)) is bounded by
2|Q+|(m + 2). For each m � 1, let PEBBLE-CROS S (m) =
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{pebble-cross(accomp(xx))|x ∈ P(m)}. From the observa-
tion above, it follows that

|PEBBLE-CROS S (m)| ≤ (|Q+|(m + 2))2|Q+ |(m+2). (2)

By a simple calculation, it follows from inequalities
(1) and (2) that for large m, we have |P(m)| �
|PEBBLE-CROS S (m)|. Thus, there must be two different
tapes x and y in P(m) such that pebble-cross(accomp(xx)) =
pebble-cross(accomp(yy)). From condition (A) mentioned
above, we can assume without loss of generality that for
some odd number k ≥ 1,

(i) pebble-cross(accomp(xx)) = pebble-cross(accomp(
yy)) = p1 p2 . . . pk (each pi ∈ Q+ × PT (m)),

(ii) cross(accomp(xx)) =
px

01 px
02 . . . p

x
0i0

p1 px
11 px

12 . . . p
x
1i1

p2 px
21 px

22 . . . p
x
2i2

p3 . . . pk px
k1 px

k2 . . . p
x
kik

(i0, i1, . . . , ik ≥ 0, and each
px

i j ∈ Q− × PT (m)),
(iii) cross(accomp(yy)) =

py01 py02 . . . p
y
0 j0

p1 py11 py12 . . . p
y
1 j1

p2 py21 py22 . . . p
y
2 j2

p3 . . . pk pyk1 pyk2 . . . p
y
k jk

( j0, j1, . . . , jk ≥ 0, and each
pyi j ∈ Q− × PT (m)), and

(iv) accomp(yy) ends with an accepting state qa ∈ Q+ on a
right boundary symbol #.

Since x and y are M−-equivalent, by combining accomp(xx)
and accomp(yy), we can construct an accepting computation
comp(xy) of M on xy such that:

(i) cross(comp(xy)) = px
01 px

02 . . . p
x
0i0

p1 py11 py12 . . . p
y
1 j1

p2

px
21 px

22 . . . p
x
2i2

p3 py31 py32 . . . p
y
3 j3

p4 . . . pk pyk1 pyk2 . . . p
y
k jk

,
and

(ii) pebble-cross(comp(xy)) = p1 p2 . . . pk, and
(iii) comp(xy) ends with M entering the accepting state qa ∈

Q+ on the right boundary symbol #.

(A similar idea is used in the proof of Lemma 4.1 in [3].)
Therefore, xy would be also accepted by M. This contra-
dicts the fact that xy is not in T3. This completes the proof
of (2).

5. UPFA Versus AIFA

This section investigates a relationship between UPFA and
AIFA.

Here is some preliminary. Let M be an alternating one-
pebble 2-fa with only universal states, and let c1c2 . . . cm

(m ≥ 1) be a computation of M on an input tape x. Then,
this computation is called:

• a halting computation of M on x if cm is a halting con-
figuration other than any accepting confuguration,
• a double-looping computation of M on x if there ex-

ist some i (1 ≤ i ≤ m − 2) and some (possibly
empty) sequence of confugurations s such that (i)
c j � ck for each 1 ≤ j < k ≤ i, (ii) c1c2 . . . cm =

c1c2 . . . ci−1ciscisci (we call ciscisci the double-looping
segment of the computation), and (iii) each configura-
tion in cis is different from each other, and different

from each cr (1 ≤ r < i), and
• a rejecting computation of M on x if the sequence

c1c2 . . . cm is a halting, or double-looping computation.

We note the following: Since M has only universal states,
M does not accept an input if and only if there is a halting
computation (defined here) or a nonterminating computa-
tion. There is a nonterminating computation if and only if
there is a double-looping computation. Hence, M does not
accept an input if and only if there is a rejecting computation
(defined here).
Theorem 5.1. AIFA − UPFA � φ.
Proof. Let V(m), m ≥ 1, be the set described in the proof of
Theorem 4.1, and T4 = {xy | ∃m ≥ 1 [x, y ∈ V(m)] ∧ x �
y}. To prove the theorem, we below show that

(1) T4 ∈ AIFA, and
(2) T4 � UPFA.

Proof of (1): The proof is almost the same as the proof of (1)
in the proof of Theorem 4.1. The only difference is to check
that xi(r, s) � xm+i(r, s) for some i, r, s (1 ≤ i, r, s ≤ m).
This check can be done by using a process similar to process
Pi(r, s) in the proof of (1) in the proof of Theorem 4.1. The
details are omitted here.
Proof of (2): The proof is essentially similar to the proof
of (2) in the proof of Theorem 4.1, where we derived a
contradiction by constructing an accepting computation on
xy � T3 by combining accepting computations on xx and
yy. We suppose to the contrary that there is an alternat-
ing one-pebble 2-fa with only universal states M which ac-
cepts T4. Here, we derive a contradiction by constructing
a rejecting computation (defined above) of M on xy ∈ T4

by combining rejecting computations of M on xx and yy
(where x, y ∈ V(m) for large m). Let Q be the set of states of
the finite control of M, and Q+ and Q− be defined as in the
proof of Theorem 4.1. M starts from the initial state in Q+

with the input head on the upper-leftmost symbol of an input
tape. We assume without loss of generality that M satisfies
the following condition (B):

(B) M does not go out of the boundary symbols #.(Of
course, M does not go into the input tape from the out-
side of the boundary symbols #.)

For each m ≥ 1, let W(m) = {xy | x, y ∈ V(m)}. Below we
shall again consider the computations of M on tapes in W(m)
for large m ≥ 1. Let x be any tape in V(m) that is supposed
to be a left or right half of an input tape (in W(m)) to M, and
let #x (resp., x#) be the tape obtained from x by attaching
the boundary symbols # to the left, upper and lower (resp.,
right, upper and lower) sides. That is, for example, #x is
a two-dimensional tape over {0, 1, 2, #} such that l1(#x) =
m + 2, l2(#x) = l2(x) + 1 = m(m + 1) + 1, #x[(2, 2), (m +
1,m(m + 1) + 1)] = x, #x(1, k) = #x(m + 2, k) = # for each
k (1 ≤ k ≤ m(m + 1) + 1), and #x(r, 1) = # for each r
(1 ≤ r ≤ m + 2). Note that, from the above condition (B),
both the entrance points to #x (resp., x#) and the exit points
from #x (resp., x#) are the right (resp., left) side of #x (resp.,
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x#). Let PT (m) be the set of these entrance (or exit) points.
Clearly, |PT (m)| = m + 2. Suppose that the pebble of M is
not placed on this #x (resp., x#). Then, we define a mapping
Ml

x (resp., Mr
x), which depends on M and x, from Q×PT (m)

to the power set of (Q × PT (m)) ∪ Qstop ∪ {loop} as follows
(where Qstop is the set of halting states other than accepting
states, and loop is a new symbol):

• for any (s, p), (s′, p′) ∈ Q− × PT (m),
(s′, p′) ∈ Ml

x(s, p) (resp., Mr
x(s, p)) ⇔ when M en-

ters #x (resp., x#) in state s from entrance point p of
the right (resp., left) side of #x (resp., x#), there ex-
ists a computation of M in which M eventually exits
#x (resp., x#) in state s′ from exit point p′ of the right
(resp., left) side of #x (resp., x#),
• for any (s, p) ∈ Q × PT (m) and for any s′ ∈ Qstop,

s′ ∈ Ml
x(s, p) (resp., Mr

x(s, p)) ⇔ when M enters #x
(resp., x#) in state s from entrance point p of the right
(resp., left) side of #x (resp., x#), there exists a compu-
tation of M in which M eventually enters state s′ in #x
(resp., x#), and halts, and
• for any (s, p) ∈ Q × PT (m),

loop ∈ Ml
x(s, p) (resp., Mr

x(s, p)) ⇔ when M enters
#x (resp., x#) in state s from entrance point p of the
right (resp., left) side of #x (resp., x#), there exists a
computation in which M enters a loop in #x (resp., x#).

Let x1, x2 ∈ V(m). We say that x1 and x2 are

• M-equivalent if two mappings Ml
x1

and Ml
x2

are the
same, and two mappings Mr

x1
and Mr

x2
are the same,

and
• M−-equivalent if for any (s, p), (s′, p′) ∈ Q− × PT (m)

and for any a ∈ {l, r}, (s′, p′) ∈ Ma
x1

(s, p) if and only if
(s′, p′) ∈ Ma

x2
(s, p).

(Note that if x1 and x2 are M-equivalent, then x1 and x2

are M−-equivalent.) Clearly, M-equivalence is an equiva-
lence relation on V(m). Clearly, there are at most e(m) =
((2|Q|(m+2)+d+1)|Q|(m+2))2,where d = |Qstop|, M-equivalence
classes of V(m). Let P(m) be a largest M-equivalence

class of V(m). Then we have |P(m)| ≥ |V(m)|
e(m) =

2m3

e(m) .
Note that |P(m)| � 1 for large m. Let x1 and x2 be in
P(m). For any computation comp(x1x2) of M on x1x2, let
cross(comp(x1x2)) and pebble-cross(comp(x1x2)) be de-
fined as in the proof of (2) in the proof of Theorem 4.1.

For each pair pi in cross(comp(x1x2)) = p1 p2 . . . pi . . .,
let

• comp(x1x2)[−, pi]
�
= the sub-computation of comp(x1

x2) from the beginning of comp(x1x2) to the moment
of M crossing the boundary between #x1 and x2# in
pair pi, and
• comp(x1x2)[pi,−]

�
= the sub-computation of comp(x1

x2) after the moment of M crossing the boundary be-
tween #x1 and x2# in pair pi.

For any pairs pi and pj (i < j) in cross(comp(x1x2)) =

p1 p2 . . . pi . . . pj . . . , let

• comp(x1x2)[pi, pj]
�
= the sub-computation of comp(x1

x2) from the moment of M crossing the boundary be-
tween #x1 and x2# in pair pi to the moment of M cross-
ing again the boundary in pair pj.

For each x ∈ P(m), xx is not in T4, and so it must be re-
jected by M. Therefore, there exists a rejecting computa-
tion of M on xx. Let “recomp(xx)” be such a fixed re-
jecting computation of M on xx. Since a rejecting com-
putation contains at most three same configurations, in
recomp(xx), M crosses at most three times the boundary
between #x and x# in the same direction and with the
same pair of (i) a state (in Q+) and (ii) a cross-point of
the input head. This implies that the same pair appears
at most six times in pebble-cross(recomp(xx)). There-
fore, the length of pebble-cross(recomp(xx)) is bounded by
6|Q+|(m + 2). For each m � 1, let PEBBLE-CROS S (m) =
{pebble-cross(recomp(xx))|x ∈ P(m)}. From the ob-
servation above, it follows that |PEBBLE-CROS S (m)
| ≤ (|Q+|(m + 2))6|Q+ |(m+2). By a simple calcula-
tion, it follows that for large m, we have |P(m)| �
|PEBBLE-CROS S (m)|. Thus, there must be two dif-
ferent words x and y in P(m) such that pebble-cross
(recomp(xx)) = pebble-cross(recomp(yy)). We below de-
rive a contradiction by showing that a computation of M
on xy which forces the tape xy to be rejected can be con-
structed by combining recomp(xx) and recomp(yy), and
thus xy would be rejected by M. We only consider the case
where for some odd number k ≥ 1,

(i) pebble-cross(recomp(xx)) = pebble-cross(recomp(
yy)) = p1 p2 . . . pk (each pi ∈ Q+ × PT (m)),

(ii) cross(recomp(xx)) =
px

01 px
02 . . . p

x
0i0

p1 px
11 px

12 . . . p
x
1i1

p2 px
21 px

22 . . . p
x
2i2

p3 . . . pk px
k1 px

k2 . . . p
x
kik

(i0, i1, . . . , ik ≥ 0, and each
px

i j ∈ Q− × PT (m)), and
(iii) cross(recomp(yy)) =

py01 py02 . . . p
y
0 j0

p1 py11 py12 . . . p
y
1 j1

p2 py21 py22 . . . p
y
2 j2

p3 . . . pk pyk1 pyk2 . . . p
y
k jk

( j0, j1, . . . , jk ≥ 0, and each

pyi j ∈ Q− × PT (m)).

For other cases, a similar idea is used to derive a contradic-
tion. Note that for each w ∈ {x, y},

(i) in recomp(ww)[−, p1] and in recomp(ww)[pi, pi+1] for
each even number i, 2 ≤ i ≤ k − 1, the pebble is on the
left half #w of the input #ww#, and

(ii) in recomp(ww)[pi, pi+1] for each odd number i, 1 ≤ i ≤
k − 2, and in recomp(ww)[pk,−], the pebble is on the
right half w# of the input #ww#.

Since x and y are M-equivalent, it follows that we can con-
struct a computation comp(xy), which never enters any ac-
cepting state, of M on xy such that:

(i) cross(comp(xy)) = px
01 px

02 . . . p
x
0i0

p1 py11 py12 . . . p
y
1 j1

p2

px
21 px

22 . . . p
x
2i2

p3 py31 py32 . . . p
y
3 j3

p4 . . . pk pyk1 pyk2 . . . p
y
k jk

,
and
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(ii) pebble-cross(comp(xy)) = p1 p2 . . . pk,
(iii) comp(xy)[−, px

01] = recomp(xx)[−, px
01]

(comp(xy)[−, p1] = recomp(xx)[−, p1] if i0 = 0), and
(iv) for each even number l(0 ≤ l ≤ k − 1),

• comp(xy)[pl, px
l1] = recomp(xx)[pl, px

l1](where
l � 0),
• for each even number r(2 ≤ r ≤ il − 1),

comp(xy)[px
lr, p

x
l,r+1] = recomp(xx)[px

lr, p
x
l,r+1],

• comp(xy)[px
lil
, pl+1] = recomp(xx)[px

lil
, pl+1], and

(v) for each odd number l(1 ≤ l ≤ k),

• comp(xy)[pl, p
y
l1] = recomp(yy)[pl, p

y
l1],

• for each even number r(2 ≤ r ≤ jl − 1),
comp(xy)[pylr, p

y
l,r+1] = recomp(yy)[pylr, p

y
l,r+1],

• comp(xy)[pyl jl
, pl+1] = recomp(yy)[pyl jl

, pl+1]
(where l � k).

Note that the M-equivalence of x and y implies the follow-
ing:

• For each even number l(0 ≤ l ≤ k − 1) and each odd
number r(1 ≤ r ≤ il − 1), comp(xy)[px

lr, p
x
l,r+1] can

be constructed owing to the fact that x and y are M−-
equivalent, and for each odd number l(1 ≤ l ≤ k) and
each odd number r(1 ≤ r ≤ jl−1), comp(xy)[pylr, p

y
l,r+1]

can also be constructed owing to the fact that x and y
are M−-equivalent.
• If recomp(yy) is a halting computation, then we can

construct comp(xy)[pyk jk
,−] (comp(xy)[pk,−] if jk =

0) from recomp(yy)[pyk jk
,−] (recomp(yy)[pk,

−] if jk = 0) so as for comp(xy) to be a halting compu-
tation.
• Let recomp(yy) be a double-looping computation, and

recomp(yy) = c1c2 . . . cm = c1c2 . . . ci−1ciscisci, where
ciscisci is the double-looping segment of recomp(yy).

(i) If M crosses the boundary between the left
half #y and the right half y# with a pair p ∈
Q × PT (m) from left to right (resp., from right
to left) in the double-looping segment ciscisci,
and enters a configuration c, then afterwards M
again crosses the boundary with the same pair
p from left to right (resp., from right to left) in
ciscisci, and enters the same configuration c, be-
cause ciscisci is the “double-looping” segment of
recomp(yy). Therefore, in this case, we can con-
struct comp(xy)[−, pyk jk

] (comp(xy)[−, pk] if jk =

0) from recomp(yy)[−, pyk jk
] (recomp(yy)[−, pk] if

jk = 0) and recomp(xx) so as for it to have a loop.
(ii) If M never crosses the boundary between #y

and y# in the double-looping segment ciscisci

(that is, recomp(yy)[pyk jk
,−] (recomp(yy)[pk,−]

if jk = 0) has a loop), then we can construct
comp(xy)[pyk jk

,−] (comp(xy)[pk,−] if jk = 0)
from recomp(yy) [pyk jk

,−] (recomp(yy)[pk,−] if
jk = 0) and recomp(xx) so as for it to have a loop.

APFA

AIFA

NPFA UPFA

NIFA DPFA UIFA

DIFA
Fig. 2 Inclusion relationship among the classes of sets accepted by
inkdot and one-pebble 2-fa’s.

Clearly, this comp(xy) forces the input xy to be rejected by
M, which contradicts the fact that xy is in T4. This com-
pletes the proof of (2).
Unfortunately, it is unknown whether UPFA ⊂� AIFA.
From Theorem 5.1, we get the following corollary:
Corollary 5.1. UPFA ⊂� APFA.

6. Conclusion

Figure 2 shows the inclusion relationship obtained in [3],
[5] and in this paper. The bold lines indicate the proper
inclusions, and the dotted lines indicate the incomparable
relationships.

We conclude this paper by posing several open prob-
lems.

(1) AIFA ⊂� APFA ?
(2) What are the relationships between NIFA and UPFA

and between UIFA and NPFA ?
(3) Is NPFA incomparable with UPFA ?
(4) UPFA ⊂� AIFA ?
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