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PAPER

Fundamental Frequency Estimation for Noisy Speech

Using Entropy-Weighted Periodic and Harmonic Features

Yuichi ISHIMOTO†, Student Member, Kentaro ISHIZUKA††, Kiyoaki AIKAWA†††,
and Masato AKAGI†, Members

SUMMARY This paper proposes a robust method for es-
timating the fundamental frequency (F0) in real environments.
It is assumed that the spectral structure of real environmental
noise varies momentarily and its energy does not distribute evenly
in the time-frequency domain. Therefore, segmenting a spec-
trogram of speech mixed with environmental noise into narrow
time-frequency regions will produce low-noise regions in which
the signal-to-noise ratio is high. The proposed method estimates
F0 from the periodic and harmonic features that are clearly ob-
served in the low-noise regions. It first uses two kinds of spec-
trogram, one with high frequency resolution and another with
high temporal resolution, to represent the periodic and harmonic
features corresponding to F0. Next, the method segments these
two kinds of feature plane into narrow time-frequency regions,
and calculates the probability function of F0 for each region. It
then utilizes the entropy of the probability function as weight to
emphasize the probability function in the low-noise region and
to enhance noise robustness. Finally, the probability functions
are grouped in each time, and F0 is obtained as the frequency
with the highest probability of the function. The experimental
results showed that, in comparison with other approaches such
as the cepstrum method and the autocorrelation method, the de-
veloped method can more robustly estimate F0s from speech in
the presence of band-limited noise and car noise.
key words: fundamental frequency estimation, entropy, instan-
taneous amplitude, periodic feature, harmonic feature

1. Introduction

Extraction of the fundamental frequency (F0) of speech
is an important problem as regards various areas of
speech signal processing, such as speech recognition,
speech analysis/synthesis, and speech segregation. For
example, in speech recognition, prosodic features of
speech can be used for prosodic phrase segmentation
in order to improve the recognition accuracy [1]. In
speech analysis/synthesis, F0 is the factor controlling
the pitch of speech, so F0 extraction in the analysis part
is necessary for synthesizing natural speech sounds [2].
In auditory scene analysis, such as speech segregation,
it is considered that the human auditory system uses
pitch, which is related to F0, as a cue to segregate con-
current speech signals [3]. There have been many stud-
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ies in computational auditory scene analysis that use
F0s of target speech in noisy environments [4], [5]. F0
extraction from speech in noisy environments is thus
important for applications of speech signal processing
in real environments. However, it is difficult because
noises distort the harmonic components of speech.

Various methods of F0 estimation have been devel-
oped [6]–[8], and most of them make use of the periodic
features of speech in the time domain or harmonic fea-
tures in the frequency domain. To extract F0s from the
periodic features of speech in the time domain, the au-
tocorrelation function of the speech waveform has been
used. The autocorrelation method is robust against
white noise, but it is not robust against colored noise.
To extract F0s from the harmonic features in the fre-
quency domain, the cepstrum method and comb fil-
tering of the amplitude spectrum of speech have been
used. The cepstrum method can extract accurate F0s
from clean speech, but the accuracy is easily deterio-
rated by noise. Comb filtering of the amplitude spec-
trum is more robust than the cepstrum method, but
it cannot estimate F0s of noiseless speech with similar
accuracy to that of the method that uses instantaneous
frequency (explained below).

The instantaneous frequency of speech has recently
been used for accurately estimating F0s [9]–[12]. The
instantaneous frequency is one of the features that can
accurately represent the periodic feature of speech sig-
nals; however, the accuracy of such representation is
easily deteriorated by noise. For example, Kawahara et
al. proposed a method of F0 extraction (STRAIGHT-
TEMPO, based on the stability of instantaneous fre-
quencies) to construct a speech analysis/synthesis sys-
tem [11]. This method can accurately extract F0s of
clean speech, but it is not very effective in noisy en-
vironments, especially when the signal-to-noise ratio
(SNR) is below 10 dB. The instantaneous amplitude
of speech obtained by time-frequency analysis can also
represent harmonic components of speech [13], and it
is more robust against noise than the instantaneous
frequency. Unoki and Akagi constructed a sound-
segregation model using F0 estimation based on the
comb filtering of the instantaneous amplitude [5]. This
method can estimate F0s of vowels in noisy environ-
ments; however, its accuracy deteriorates for continu-
ous speech mixed with noise.
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We previously proposed a robust and accurate
method based on instantaneous amplitude and fre-
quency for estimating the F0 of noisy speech [14]. This
method combines two F0 estimation ways: one based
on the periodic and harmonic features of instantaneous
amplitude (PHIA) for robust estimation in noisy envi-
ronments, and the other based on the stability of the
instantaneous frequency in relation to accurate esti-
mation. PHIA can more robustly estimate F0s from
continuous speech under white-noise environment than
the methods using only periodic or harmonic features.
However, the performance of this approach is not very
good under real environmental noise. The reason for
this is as follows. The energy produced by environ-
mental noise does not distribute evenly in the time-
frequency domain; for example, most energy produced
by car noise exists in low-frequency region and varies
momentarily. PHIA uses mainly harmonic components
of speech in the low-frequency region. Environmental
noise, which, like car noise, has high energy in low-
frequency region, thus affects the accuracy of PHIA.
We consider, therefore, that F0 estimation by using in-
stantaneous amplitude in real environments should not
use a particular frequency region but must use actively
low-noise regions taken from the whole frequency. It is
thus important to understand how the F0 estimation
method utilizes the low-noise time-frequency regions.

In light of the above-mentioned background, we
have developed a robust F0 estimation method that
uses periodic and harmonic features weighted by en-
tropy in real environments. This method is consid-
ered to be used as the first estimation part of [14].
Although the first part of [14] requires the robustness
and the accuracy against real environmental noise, the
robustness is more important than the accuracy be-
cause the accuracy is given by another part of [14].
The key feature of the proposed method is to make
a point of estimating F0s from the low-noise regions
in the time-frequency domain. The method segments
the time-frequency plane into regions that consist of a
short time section and a frequency band with several
harmonics. It then obtains the probability functions
of the F0 produced from the periodic and harmonic
features in the regions. Although the correct F0 can
be extracted from each probability function in the seg-
mented plane in the case of clean speech, the proba-
bility function will be distorted by noise in the case of
speech mixed with environmental noise. Accordingly,
to enhance the noise robustness, the method utilizes
the low-noise regions. If noise exists in a region, en-
tropy of the probability function becomes high in that
region. The method thus emphasizes low-noise regions
by integrating regional features by using entropy-based
weight, and more robustly estimate F0 from speech in
the presence of real environmental noise.

2. Algorithm

2.1 Overview

Figure 1 shows an overview of the proposed method.
In the first step, this method analyzes the observed sig-
nal by using two filterbanks and represents the instan-
taneous amplitude of the signal in the time-frequency
domain. If the signal has a harmonic complex tone
like speech, this time-frequency representation of the
instantaneous amplitude of the signal will have peri-
odic and harmonic features corresponding to the F0s of
the signal. F0 can be extracted from any local region
of the two time-frequency planes. Therefore, even if
some local regions are contaminated by noise, F0 can
be extracted from the local regions that are not con-
taminated by noise. The main idea of this paper is to
improve reliability of F0 estimation by using entropy to
weight the two features in the cleaner local regions as
mentioned below.

In the next step, multiple F0 candidates are ex-
tracted from the periodic and harmonic features of the
instantaneous amplitude by autocorrelation in the time
and frequency domains. The autocorrelation is pro-
cessed in each time-frequency region and, accordingly,
the F0 candidates are mapped in the time-frequency
plane. There are some low-noise regions of noisy speech
in real environments because the energy produced by
real environmental noise does not distribute evenly in
the time-frequency domain. The method segments the
time-frequency plane, which is allocated the F0 candi-

Fig. 1 Block diagram of the proposed method.
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dates, into narrow regions to select the low-noise re-
gions.

A histogram of the F0 candidates is then con-
structed in each region. The histogram is considered
to be a probability function of the F0 in the region.
The distribution of the probability function in the low-
noise region has a definite peak, whereas the distribu-
tion in the high-noise region is broad and has no def-
inite peak. Entropy of the narrow distribution is low
and that of the broad distribution is high. Hence, the
method weights against the probability function using
the reciprocal of entropy. It can emphasize the prob-
ability function with a correct peak of the F0 in the
low-noise regions, and reduce influence of the probabil-
ity function with incorrect peaks in the noisy regions.
In other words, by utilizing entropy, this method can
reduce distortion caused by noise.

In the final step, the weighted probability function
of the F0 from the periodic feature and that from the
harmonic feature are integrated. The frequency with
the highest probability is extracted as the F0 of the
signal.

2.2 Time-Frequency Representation of Instantaneous
Amplitude

The time-frequency representation of the instantaneous
amplitude of speech is obtained as follows. An in-
put signal s(t) is analyzed by using a filterbank. A
band-limited signal sk(t) is then obtained for each fil-
ter, where k is the channel number in the filterbank.
Under the assumption that ŝk(t) is the Hilbert trans-
form of sk(t) with all frequency components delayed 90
degrees, the analytic signal s̃k(t) is given by

s̃k(t) = sk(t) + jŝk(t). (1)

The absolute value of the analytic signal s̃k(t) is the
instantaneous amplitude of signal s(t) in the center fre-
quency of channel k.

This time-frequency analysis is performed by two
filterbanks that represent the periodic and harmonic
features of the instantaneous amplitude of speech. The
instantaneous amplitude provided by a constant Q fil-
terbank with high temporal resolution represents the
periodic feature, which is a fluctuation corresponding
to the fundamental periods of speech in the time do-
main. Similarly, the instantaneous amplitude provided
by a filterbank with a constant narrow bandwidth rep-
resents the harmonic feature, which is a fluctuation cor-
responding to the F0s of speech and its multiples in the
frequency domain. This is because a filterbank with the
narrow bandwidth has a high frequency resolution. Fig-
ures 2 and 3 show the periodic and harmonic features
of the instantaneous amplitude for the male vowel /a/.
Candidates for F0 can be obtained from the periodic
and harmonic features, because the peak intervals of
the periodic feature equal the reciprocal of the F0s and

Fig. 2 The periodic feature of instantaneous amplitude
represented by the constant Q filterbank for the male vowel /a/
in the time-frequency domain.

Fig. 3 The harmonic feature of instantaneous amplitude
represented by the constant bandwidth filterbank for the male
vowel /a/ in the time-frequency domain.

those of the harmonic feature are the same as the F0s.
In this paper, the filterbanks are constructed by using
gammatone filters [15], [16]. A constant Q gammatone
filterbank is constructed with 64 channels with center
frequencies from 60 to 6000Hz and bandwidth of about
90Hz when the center frequency is 600Hz. A constant-
bandwidth gammatone filterbank is constructed with
800 channels with center frequencies from 60 to 4000Hz
and bandwidth of about 5Hz.

2.3 Probability Function of F0 from Periodic and Har-
monic Features

The proposed method calculates each probability func-
tion from the periodic and harmonic features in each
time-frequency region.

From the periodic feature of the instantaneous am-
plitude of speech in the time-frequency domain, candi-
dates for F0 are extracted using autocorrelation in each
time region for each filter. Similarly, from the harmonic
feature of the instantaneous amplitude, F0 candidates
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are extracted using autocorrelation in each frequency
region by dislocating the window of the autocorrela-
tion. This means that we can obtain F0 candidates
mapped to time-frequency planes. If the observed sig-
nal is noiseless, both F0 candidates determined from
the periodic and harmonic features in the voiced sec-
tion almost equal the F0s of the speech in the whole
region. In the following, for the periodic feature, the
frame length of the autocorrelation is about 20ms, and
the frame-shift is about 5ms. For the harmonic fea-
ture, the frame length of the autocorrelation is about
1200Hz, and the frame-shift is about 80Hz.

For speech mixed with noise, the periodic and har-
monic features do not appear clearly in noisy time-
frequency regions. Hence, F0 candidates for the noisy
signal are unsteady in the noisy region. Figure 4 shows
the periodic and harmonic features of instantaneous
amplitude for the male vowel /a/ mixed with band noise
(1000–2000Hz). The F0 candidates for the signal are
plotted as a gray scale in the lower graphs. The F0
candidates extracted in the noisy region corresponding
to 1000–2000Hz do not show the collect F0, and they
have various spurious values. However, in the low-noise
region, i.e. below 1000Hz or above 2000Hz, the F0 can-
didates are the correct F0s.

To find the low-noise regions, the method divides
time-frequency planes mapping the F0 candidates by
narrow time-frequency windows. The F0 candidates

Fig. 4 The periodic and harmonic features of instantaneous amplitude for the vowel
with band noise (1000–2000 Hz), and F0 candidates. The gray scale of bottom panels
indicates the F0 candidate calculated in each time-frequency region. The voiced section is
40–160 ms.

in a window are used for constructing a histogram to
distinguish whether the time-frequency region in the
window is low-noise. The windows were defined as a
time width of 20ms and eight bands with equal log-
frequency for the periodic feature, and eight bands with
equal linear frequency for the harmonic feature. A time
step of the windows is 1ms. The histogram ht,f(k) is
constructed from the F0 candidates in the window with
time t and fth frequency band, where k is bin number
of the histogram. Here, the bin width of the histograms
is taken as 4Hz. Next, the histogram ht,f (k) is normal-
ized as

pt,f(k) =
ht,f (k)∑

k

ht,f (k)
, (2)

which can be considered to be the probability function
of F0 in the time t and fth frequency region. Figure 5
shows the probability function pt,f (k) of the F0 of the
vowel with band noise. The distribution of the proba-
bility function in the low-noise region has a sharp peak
corresponding to the correct F0. The distribution in
the noisy region is broad and does not have a definite
peak.

In the case of both the periodic and harmonic fea-
tures, the probability function pt,f (k) is calculated in
the same way as described above.
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Fig. 5 The probability function pt,f (k) of F0. Top panel: F0
candidates obtained from the periodic features of instantaneous
amplitude of the vowel with the band noise; middle panel: the
probability function of the F0 in the low-noise region; bottom
panel: the probability function of the F0 in the noisy region.

2.4 Weighted Probability Function of F0 by Entropy

Entropy Ht,f is given by

Ht,f = −
∑

k

pt,f (k) log pt,f (k). (3)

When the distribution of pt,f (k) has sharp peaks, the
entropy of the distribution is low, and when the distri-
bution is broad, the entropy is high. On this basis, the
probability function pt,f(k) of F0 is weighted with the
reciprocal of the entropy as

p̄t,f (k) =
pt,f (k)
Ht,f

. (4)

In other words, the entropy is used as a weight to em-
phasize the probability function of the F0 in the low-
noise regions and reduce that in the noisy regions. The
probability function p̄t,f (k) can thus be grouped ac-
cording to each time region as

pt(k) =

∑

f

p̄t,f (k)

∑

k

∑

f

p̄t,f (k)
. (5)

Figure 6 shows the probability function pt(k) of the F0

Fig. 6 The probability function pt(k) for the clean vowel in the
time-frequency domain. The gray scale indicates probabilities.

derived from the periodic and harmonic features of the
clean vowel in the time-frequency domain. Both figures
indicate that the regions with high probabilities corre-
spond to the F0 contour. For noisy speech, however,
the probability function without entropy-weighting has
spurious peaks because of distortion by noise. Fig-
ure 7 (a) shows the probability function pt(k) without
entropy-weighting in the case of the vowel with band
noise. Figure 7 (b) shows the effect of entropy-weighting
for the same signal. In contrast, the spurious peaks for
the entropy-weighted probability function are reduced.
The proposed method can thus effectively use features
corresponding to F0 in the low-noise regions by utiliz-
ing entropy. Hence, it can be used to estimate reliable
F0s in real environments.

The entropy of the probability function pt(k) tends
to be low in the voiced section and high in the unvoiced
section. It may be possible that the entropy will be
used for voiced/unvoiced decision, but that discussion
remains for future work.

2.5 Integration of the Probability Functions of F0
from Periodic and Harmonic Features

If both probabilities determined from the periodic and
harmonic features are high, it is considered that they
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Fig. 7 Improvement of the probability function by entropy-
weighting for the periodic feature from the vowel with band noise.

indicate the correct F0. However, if one of them is high
and the other is very low, they may not indicate the
correct F0. To improve F0 estimation in noisy environ-
ments, the method integrates the two probability func-
tions of F0 obtained from the periodic and harmonic
features by Dempster’s rule of combination

m(Ak) =

∑

Ai∩Aj=Ak

m1(Ai)m2(Aj)

1−
∑

Ai∩Aj=φ

m1(Ai)m2(Aj)
, (6)

where m1 and m2 are basic probability functions and Ai

and Aj (i, j = 1, 2, 3, . . .) are focal elements [17]. The
Dempster’s rule intensifies the element in which two
functions have high probability and weakens that in
which one side of the two functions has low probability.
This rule can deal with ignorance to represent lack of
belief, although Bayesian theory deals with only belief
and disbelief. However, ignorance is not dealt because
of simple formulation in this paper. To use this rule for
integrating the probability functions of F0, we regard
the probability functions of F0 obtained from periodic
and harmonic features as the basic probability function,
and the frequency bin of the probability function as the
focal element. That is, for the periodic features, m(Ai)

is corresponding to the probability function p1t(k) and
Ai is the frequency bin of the probability function. Sim-
ilarly, for the harmonic feature, m(Aj) is corresponding
to the probability function p2t(k) and Aj is the fre-
quency bin of the probability function. The integrated
probability function gt(k) is then calculated as

gt(k) =
p1t(k)p2t(k)∑

k

p1t(k)p2t(k)
, (7)

Finally, the frequency with the highest probability in
the probability function gt(k) is extracted as F0 in time
t.

3. Experiments

To compare the robustness of the proposed method
with that of others (i.e., the autocorrelation method,
the cepstrum method, STRAIGHT-TEMPO [11] and
PHIA [14]), we carried out two experiments using real
speech mixed with band-limited noise and car noise.
In the experiments, voiced/unvoiced decision was re-
moved from STRAIGHT-TEMPO, because the other
methods do not consider voiced/unvoiced decision. A
database of simultaneous recordings of speech sounds
and electroglottograph (EGG) [12] was used as the
speech data in the experiments. The reference F0s of
speech were as being equal to F0s extracted by orig-
inal STRAIGHT-TEMPO with voiced/unvoiced de-
cision from clean EGG data, because STRAIGHT-
TEMPO has a high accuracy for clean speech [18]. The
evaluation measures were the gross F0 error and the fine
F0 error. The gross F0 error was derived by counting
the samples that differ by more than 20% from reference
F0s in voiced sections. The fine F0 error was defined
as a standard deviation of the error within the thresh-
old of the gross F0 error. The sampling frequency was
16 kHz.

3.1 Experiment 1 (Band-Limited Noise)

In this experiment, we used band-limited noise whose
center frequency varied in time and whose bandwidth
was fixed at 400Hz. Figure 8 (a) shows the spectrogram
of the band-limited noise. The SNR of speech mixed
with the band-limited noise was 0 dB.

Figure 9 shows the estimated F0 contours and the
gross F0 error determined by the five F0 estimation
methods for a sentence uttered by a male in the pres-
ence of band-limited noise. Table 1 lists averages of the
gross F0 error by each noise band for three sentences
uttered by two male and two female speakers, and Ta-
ble 2 lists the fine F0 error in the same conditions.

Table 1 clearly shows that the proposed method
can robustly estimate F0s for all the band noises in com-
parison with the others. This means that the proposed
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Table 1 Gross F0 error for sentences mixed with band-limited noises.

band noise [Hz]
method 0–400 400–800 800–1200 1200–1600 1600–2000 2000–2400

Autocorrelation 55.3% 51.5% 42.3% 37.4% 36.4% 37.3%

Cepstrum method 17.3 9.5 10.8 10.4 10.9 3.3

STRAIGHT-TEMPO 44.2 61.6 40.0 1.1 2.0 0.4
PHIA 40.3 39.2 32.4 19.1 16.3 13.9

Proposed method 11.1 12.1 10.7 8.9 8.8 5.8

Table 2 Fine F0 error for sentences mixed with band-limited noises.

band noise [Hz]
method 0–400 400–800 800–1200 1200–1600 1600–2000 2000–2400

Autocorrelation 13.5 Hz 12.5Hz 10.4Hz 9.8Hz 8.2Hz 8.5Hz

Cepstrum method 6.9 6.6 6.3 5.8 5.3 5.3

STRAIGHT-TEMPO 4.9 4.9 2.6 2.4 2.5 2.6
PHIA 8.8 8.1 7.0 6.1 5.5 6.0

Proposed method 8.2 7.0 6.1 5.8 5.6 6.3

Fig. 8 Spectrograms of noise used in the experiments.

method can use the local low-noise regions in the time-
frequency domain and does not use a particular fre-
quency region for extraction of F0. Table 2 shows that
the proposed method has dispersion of F0 estimates
against robustness to noise. It should be noted that the
proposed method can estimate the F0 contours when
the frequency of the band noise is 0–400Hz, though the
other methods cannot estimate them. The performance
of PHIA (previously proposed by the authors) is low
when the frequency of the noise band is low, because
PHIA uses mainly harmonic components of speech in
the low frequency regions. STRAIGHT-TEMPO uses
the fundamental component for extracting F0s; there-
fore, the performance of STRAIGHT-TEMPO is very
low when the frequency of the noise band is low. How-

Fig. 9 Estimated F0 contours and gross F0 error for a
sentence uttered by a male with band-limited noise. The
broken line indicates the same as the top panel.

ever, if there is no noise in the low frequency region,
e.g., 0–1200Hz, it has high performance. The cepstrum
method has relatively high performance even for low-
band noise, because it uses harmonic components of
speech in the entire frequency range. However, since
the cepstrum method impartially uses harmonic fea-
tures in the noisy regions as well as in the low-noise
regions, its performance is inferior to that of the pro-
posed method. The autocorrelation method is sensitive
to any band noises, because the high energy of noise dis-
torts the waveform of speech even if the noise band is
narrow.
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3.2 Experiment 2 (Car Noise)

In this experiment, to investigate the robustness of the
proposed method for real environmental noise, we used
car noise recorded in the cabin of a moving car. The car
noise is included in the JEIDA noise database [19]. Fig-
ure 8 (b) shows the spectrogram of the car noise, which
clearly has high energy in the low-frequency regions and
low energy in the high-frequency regions.

Figure 10 shows the estimated F0 contours and the
gross F0 error determined by the F0 estimation meth-
ods for a sentence uttered by a male speaker with the
car noise. The SNR of speech mixed with the car noise
was 3 dB. The proposed method could robustly esti-
mate F0s in almost all of the voiced sections. Moreover,
the gross F0 error of the proposed method is more than
10% lower than that of the others.

Figure 11 shows the gross F0 error and the fine
F0 error of the F0 estimation methods as a function of
SNR. In this experiment, we used 14 sentences for 14
male and 14 female speakers. The speech data were
mixed with car noise and the SNRs were 10, 5, 3,
and 0 dB. The figure shows that the gross F0 error of
the proposed method is the lowest when SNR is below
10 dB. In point of robustness to noise, it can be con-
cluded that the performance of the proposed method is
superior to that of the other methods in car noise en-
vironment. This entropy-weighted method developed
with the aim of improving the robustness to real en-
vironmental noise, and the proposed method can be
replaced with PHIA as the first part of [14] from this re-
sult. Because the fine F0 error of the proposed method
was almost same as that of PHIA, the robustness of

Fig. 10 Estimated F0 contours and gross F0 error for a
sentence uttered by a male with car noise. The broken line
indicates the same as the top panel.

[14] to real environmental noise will improve by us-
ing the proposed method instead of PHIA. The pro-
posed method could not provide the same accuracy as
STRAIGHT-TEMPO for frequency resolution of the
fiterbanks and the bin width of the histogram. How-
ever, we consider that the accuracy of the proposed
method is permissible because the accuracy is improved
by another part of [14].

4. Conclusions

A robust F0 estimation method that employs peri-
odic and harmonic features weighted by entropy in real
environments was developed. The spectral structure
of real environmental noise varies momentarily, and
noise energy does not distribute evenly in the time-
frequency domain. Therefore, segmenting a spectro-
gram of speech mixed with environmental noise into
narrow time-frequency regions, will produce many low-
noise regions. A feature of this method is to use en-
tropy for emphasizing low-noise regions. The proposed
method calculates the probability function of F0 from
periodic and harmonic features of speech in each narrow
time-frequency region. The probability function is then
weighted using the reciprocal of entropy. This means
that the method emphasizes the probability function in
the low-noise regions to enhance the noise robustness.

Fig. 11 Performance of the F0 estimation methods as a
function of SNR between speech and car noise.
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The method thus robustly estimates F0 from speech in
the presence of real environmental noise. Experiments
for speech mixed with band-limited noise and car noise
were carried out to evaluate the robustness of the pro-
posed method in noisy environments. The experiment
results show that the proposed method can correctly es-
timate F0 from speech with noise in the low frequency
region like 0–400Hz, though the low-frequency noise
distorts the fundamental component of speech. The
performance of the method is superior to that of other
F0 estimation methods when the SNR of speech to car
noise is below 10 dB. In particular, its gross F0 error
for speech with car noise is more than 5% lower than
that of the others when the SNR is 0 dB.
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