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PAPER Special Issue on Speech Information Processing

Modified Restricted Temporal Decomposition and Its

Application to Low Rate Speech Coding

Phu Chien NGUYEN†, Student Member, Takao OCHI†∗, Nonmember,
and Masato AKAGI†, Regular Member

SUMMARY This paper presents a method of temporal de-
composition (TD) for line spectral frequency (LSF) parameters,
called “Modified Restricted Temporal Decomposition” (MRTD),
and its application to low rate speech coding. The LSF parame-
ters have not been used for TD due to the stability problems in
the linear predictive coding (LPC) model. To overcome this defi-
ciency, a refinement process is applied to the event vectors in the
proposed TD method to preserve their LSF ordering property.
Meanwhile, the restricted second order TD model, where only
two adjacent event functions can overlap and all event functions
at any time sum up to one, is utilized to reduce the computational
cost of TD. In addition, based on the geometric interpretation of
TD the MRTD method enforces a new property on the event
functions, named the “well-shapedness” property, to model the
temporal structure of speech more effectively. This paper also
proposes a method for speech coding at rates around 1.2 kbps
based on STRAIGHT, a high quality speech analysis-synthesis
method, using MRTD. In this speech coding method, MRTD
based vector quantization is used for encoding spectral informa-
tion of speech. Subjective test results indicate that the speech
quality of the proposed speech coding method is close to that of
the 4.8 kbps FS-1016 CELP coder.
key words: temporal decomposition, LSF, STRAIGHT, speech
coding

1. Introduction

Temporal decomposition (TD) [1], which is an analy-
sis procedure based on a linear model of the effects of
co-articulation, yields a linear approximation of a time
sequence of spectral parameters in terms of a series of
time-overlapping event functions and an associated se-
ries of event vectors as given in Eq. (1).

ŷ(n) =
K∑

k=1

akφk(n), 1 ≤ n ≤ N (1)

where ak and φk(n) are the kth event vector and kth
event function, respectively. ŷ(n) is the approximation
of y(n), the nth spectral parameter vector, produced
by the TD model. In matrix notation, Eq. (1) can be
written as

Ŷ = AΦ Ŷ ∈ RP×N ,A ∈ RP×K ,Φ ∈ RK×N
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where P , N , and K are the order of the spectral pa-
rameters, the number of frames in the speech segment,
and the number of event functions, respectively.

The second order TD model used in [15], where
only two adjacent event functions can overlap as shown
in Fig. 1, is given in Eq. (2).

ŷ(n) = akφk(n) + ak+1φk+1(n), nk ≤ n < nk+1

(2)

where nk and nk+1 are the locations of event k and
event k + 1, respectively.

The restricted second order TD model was utilized
in [2], [6], [9] with an additional restriction to the event
functions in the second order TD model that all event
functions at any time sum up to one. The argument for
imposing this constraint on the event functions has not
been explicitly stated in [6]. But, it has been shown
in [2] that this constraint is needed to describe TD
as a breakpoint analysis procedure in a multidimen-
sional vector space, where breakpoints are connected
by straight line segments (see Fig. 2). Equation (2) can
be rewritten as

Fig. 1 Example of two adjacent event functions in the second
order TD model.

Fig. 2 The path in parameter space described by the sequence
of spectral parameters y(n) is approximated by means of straight
line segments between breakpoints.
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ŷ(n)=akφk(n) + ak+1 (1−φk(n)) , nk≤n<nk+1

(3)

The spectral parameters used in the original TD
method by Atal [1] were the log-area parameters. Some
other spectral parameter sets such as log area ratios,
cepstrum, and so forth have also been considered as in-
put for TD [3]. Due to the stability problems in the
linear predictive coding (LPC) model, not all types
of parametric representations can be used. This is
because there is no guarantee that the selected spec-
tral parameters are valid after spectral transformation
performed by TD. Thus, the line spectral frequency
(LSF) parameters [4] have not been used for the conven-
tional TD method although they have several proper-
ties that make them more suitable for interpolation [11]
and quantization [12].

An important property of LSFs {ωi} is that they
are ordered in (0, π) as follows.

0 < ω1 < ω2 < · · · < ωP < π (4)

Also, (4) means that the difference of two consecutive
LSFs (dLSF) {di = ωi − ωi−1} with d1 = ω1 and
dP+1 = π − ωP are always greater than zero. This or-
dering property is a necessary and sufficient condition
for the stability of the corresponding LPC synthesis fil-
ter. It implies that TD can be applied to analyzing
the LSF parameters if the ordering property of LSFs is
guaranteed for the event vectors.

Kim and Oh [6] have introduced a method of tem-
poral decomposition for the LSF parameters, called
“Restricted Temporal Decomposition” (RTD), based
on the restricted second order TD model. The RTD
method enforces a minimum dLSF constraint on the
event vectors in order to preserve their LSF ordering
property. Originally, RTD was proposed in narrowband
speech coding for significantly reducing the bit rate for
spectral parameters [6]. Subsequent research [13] inves-
tigated on its application to wideband speech coding
and found that RTD is a promising approach to low
rate wideband speech coding also. However, both have
not reported any drawback, from which RTD is being
suffered.

In this paper we claim that the RTD method, how-
ever, has not completely guaranteed the LSF ordering
property for the event vectors; instead, we propose an
improved algorithm, namely modified RTD (MRTD),
to solve this problem. Additionally, we impose a new
property, the well-shapedness property, on the event
functions to model the temporal structure of speech
more effectively and reduce the quantization error when
vector quantized.

We have investigated the application of MRTD to
speech coding. In this paper a method for low rate
speech coding based on STRAIGHT [5], a high qual-
ity speech analysis-synthesis method, using MRTD is
also presented. Here, spectral information of speech is

encoded using MRTD based vector quantization (VQ),
whilst other speech parameters are encoded using scalar
quantization (SQ). As a result, low bit rate speech
coders operating at rates around 1.2 kbps have been re-
alized. Subjective test results indicate that the speech
quality of this speech coding method is close to that
of the 4.8 kbps US Federal Standard (FS-1016) CELP
coder.

2. MRTD of LSF Parameters

2.1 Additional Constraints on Event Functions

Based on the geometric interpretation of TD described
in [2], we impose a new property, namely, the well-
shapedness property on the event functions. Here, by a
well-shaped event function we mean an event function
having only one peak, as depicted in Fig. 3 (a). Those
event functions having more than one peak are called
ill-shaped event functions (see, e.g., Fig. 3 (b)). Well-
shaped event functions are desirable from speech coding
point of view. Further, the well-shapedness property
helps to describe the temporal structure of speech by
means of straight line segments between breakpoints
more effectively.

TD yields an approximation of a sequence of spec-
tral parameters by a linear combination of event vec-
tors. Since TD’s underlying distance metric is Eu-
clidean, a natural requirement is to have this ap-
proximation be invariant with respect to a transla-
tion or rotation of the spectral parameters. Dix and
Bloothooft [2] considered the geometric interpretation
of TD results and found that TD is rotation and scale
invariant, but it is not translation invariant.

In order to overcome this shortcoming and describe
TD as a breakpoint analysis procedure in a multidimen-
sional vector space, Dix and Bloothooft enforced two

(a)

(b)

Fig. 3 Examples of a well-shaped event function (a) and an
ill-shaped event function (b).
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(a)

(b)

Fig. 4 Determination of event functions in the transition in-
terval [nk, nk+1]. The point of the line segment between ak and
ak+1 (a), between ŷ(n−1) and ak+1 (b) with minimum distance
from y(n) is taken as the best approximation.

constraints, which are identical to those in the RTD
method [6], on the event functions: (i) at any moment
of time only two event functions, which are adjacent in
time, are non-zero; and (ii) all event functions at any
time sum up to one. In other words, the restricted sec-
ond order TD model was utilized in both [2] and [6].
Geometrically speaking, the two event vectors ak and
ak+1 define a plane in P-dimensional vector space. The
determination of event functions φk(n) and φk+1(n) in
the interval [nk, nk+1] is now depicted in Fig. 4 (a) as
the projection of vector y(n) onto this plane and is also
equivalent to that in [6]. Clearly the following holds:
φk(nk) = 1, φk(nk+1) = 0, and 0 ≤ φk(n) ≤ 1 for
nk ≤ n ≤ nk+1.

The TD model is based on the hypothesis of ar-
ticulatory movements towards and away from targets.
An appealing result of the above properties of event
functions is that one can interpret the values φk(n) as
a kind of activation values of the corresponding event.
During the transition from one event towards the next
the activation value of the left event decreases from
one to zero, whilst the right event increases its acti-
vation value from zero to the value of one. Note that
to model the temporal structure of speech more effec-
tively no backwards transitions are allowed. Therefore,
each event function should have a growth cycle; during

which the event function grows from zero to one and
a decay cycle; during which the event function decays
from one to zero. In other words, each event function
should have the well-shapedness property. In contrast,
an ill-shaped event function can be viewed as an event
function which has several growth and decay cycles.

However, the determination of event functions
in [2], [6], [13] has not guaranteed the well-shapedness
property for them since their changes during the transi-
tion from one event towards the next may not be mono-
tonic, which results in ill-shaped event functions. In
particular, one may wonder that if an event function
has some values of one interlaced by other values, it
will cause the next event function to have more than
one lobe, which is not acceptable in the conventional
TD method. Ill-shaped event functions are undesirable
from speech coding point of view also. They increase
the quantization error when vector quantized because
the uncharacteristic valleys and secondary peaks are
not normally captured by the codebook functions.

Taking into account the above considerations, we
have determined the event functions corresponding to
the point of the line segment between ŷ(n − 1) and
ak+1 instead of ak and ak+1 as considered in [2], [6],
[13], with minimum distance from y(n) (see Fig. 4 (b)).
This determination of event functions can be written in
mathematical form as

φk(n) =




1− φk−1(n), if nk−1 < n < nk

1, if n = nk

min(φk(n− 1),max(0, φ̂k(n))),
if nk < n < nk+1

0, otherwise

(5)

where

φ̂k(n) =
〈(y(n) − ak+1), (ak − ak+1)〉

‖ ak − ak+1 ‖2
(6)

Here, 〈., .〉 and ‖ . ‖ denote the inner product of two
vectors and the norm of a vector, respectively.

2.2 Refinement of Event Vectors

The event vectors are estimated corresponding to the
determined event functions in the least mean square
sense using the following formula [1], [6], [8], [13], [15].

A = YΦT (ΦΦT )
−1

(7)

The estimated event vectors may violate the ordering
property of LSFs since the error criterion does not con-
sider this property. Given the minimum value, ε, of
dLSFs, Kim and Oh [6] re-estimated the event vectors
from the lowest to the highest order, replaced ai−1,k

and ai,k by âi−1,k and âi,k = âi−1,k + ε, respectively,
whenever ai−1,k + ε > ai,k. Considering the increment
of error E, where E =

∑N
n=1 ‖ y(n) − ŷ(n) ‖2, caused

by this change, they determined âi−1,k as
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âi−1,k =
ai−1,k + ai,k − ε

2
(8)

However, this routine still does not assure the LSF or-
dering property for ak since âi−1,k < ai−1,k and there
is no guarantee that a1,k > 0 or aP,k < π. We propose
an improved algorithm to deal with this problem.

Firstly, a more general routine for changing J com-
ponents (1 ≤ J ≤ P − i + 1): ai,k,ai+1,k, · · · ,ai+J−1,k

to âi,k, âi+1,k = âi,k+ε, · · · , âi+J−1,k = âi,k+(J−1)ε,
respectively, is established. Consider that the incre-
ment of error E caused by this change is

∆ =
J−1∑
l=0

[ai+l,k − (âi,k + lε)]2
∑

n

φk(n)
2

and âi,k ≥ ai−1,k + ε, âi,k should be determined as
follows to minimize ∆:

âi,k =
{

ai−1,k + ε, if ãi,k < ai−1,k + ε
ãi,k, otherwise (9)

where

ãi,k =

J−1∑
l=0

ai+l,k

J
− (J − 1)ε

2
(10)

In the sequel, an algorithm for normalizing an event
vector ak is developed. In order to assure that a1,k > 0
and aP,k < π, we add zero and π to ak so that
ak = [0, a1,k, . . . ,aP,k, π]T . Zero and π are denoted
as a0,k and aP+1,k for simplicity. Note that a0,k and
aP+1,k cannot be changed during the normalization.
The whole algorithm is depicted in Fig. 5 and described
as follows:

Step 1: initialize i← 0.
Step 2: if i < P and ai,k+ε ≤ ai+1,k, set i← i+1.

Repeat this step until i = P or ai,k + ε > ai+1,k. If
i = P , go to step 6.

Step 3: if i = 0, set i ← 1 and j ← 1 since a0,k

could not be changed; if not, set j ← 2.
Step 4: change ai,k,. . .,ai+j−1,k to âi,k,. . ., âi+j−1,k

using Eq. (9). If i + j − 1 = P , go to step 6.
Step 5: if ai+j−1,k + ε > ai+j,k, restore ak from

the previous step, set j ← j +1, and go back to step 4;
if not, set i← i + j. Go back to step 2 if i < P .

Step 6: if aP,k + ε ≤ aP+1,k , ak has been normal-
ized; if not, restore i and the corresponding value of
vector ak from the previous step, set j ← P − i+1 and
go back to step 4.

At step 6, it is of interest to notice that if i is the
last component of a modified segment, i is then set to
the beginning of that segment. In particular, if i = 0,
vector ak is set as [0, π − Pε, π − (P − 1)ε, . . . , π]T .
However, in practice this case almost never occurs.

In the result, when the locations of events nk,
where k = 1, . . . , K, are known and the corresponding
event vectors are initialized with the samples of the LSF

Fig. 5 Block diagram of the improved algorithm for normaliz-
ing event vectors.

vector trajectory y(nk), we can calculate proper event
functions and event vectors iteratively using Eqs. (5),
(7), and (9). Here, we suggest using the local minima
of the following spectral feature transition rate (SFTR)
based on LSF parameters as the initial locations of
events [6], [8].

SFTR : s(n) =
P∑

i=1

ci(n)2, 1 ≤ n ≤ N (11)

where

ci(n) =

M∑
m=−M

myi(n + m)

M∑
m=−M

m2

, 1 ≤ i ≤ P (12)

The window size, 2M , of SFTR analysis is the only
parameter that effects the initial number and locations
of events. In addition, a new event is inserted where the
initial reconstruction error e(n) =‖ y(n) − ŷ(n) ‖2 has
a local maximum larger than a certain threshold θ as
considered in [6]. The way of segmenting input vectors
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Table 1 Percentage number of invalid LSF event vectors and
well-shaped event functions for RTD and MRTD methods. The
speech data set consists of 250 utterances spoken by 10 speakers
(5 male and 5 female) of the ATR Japanese speech database.

Method % invalid LSF % well-shaped
event vectors event functions

RTD 0.08% 88%
MRTD 0% 100%

Table 2 Event rate, average LSD, and percentage number of
outlier frames for RTD and MRTD methods. The speech data
set consists of 250 utterances spoken by 10 speakers (5 male and
5 female) of the ATR Japanese speech database.

Method Event rate Avg. LSD 2–4 dB > 4 dB

RTD 20.16 events/sec 1.563 dB 22.97% 0.96%
MRTD 20.16 events/sec 1.568 dB 23.15% 0.98%

for online analysis presented in [6] is also adopted in
the MRTD method.

2.3 Performance Evaluation

A set of 250 sentences of the ATR Japanese speech
database were selected as the speech data. This speech
data set consists of about 20 minutes of speech spo-
ken by 10 speakers (5 male & 5 female) re-sampled at
8 kHz sampling frequency. 10th order LSF parameters
were calculated using a LPC analysis window of 30ms
at 10ms frame intervals, and TD analyzed using the
original RTD and the MRTD methods in turn. Here,
2M = 4, θ = 0.2, and ε = 0.01 were empirically chosen
as suitable values for the window size of SFTR analysis,
the event insertion threshold, and the minimum dLSF,
respectively.

Table 1 gives the summary of invalid LSF event
vectors and well-shaped event functions obtained from
the MRTD and RTD methods for the above speech
data set. Results indicate that the drawbacks of RTD
method described in Sects. 2.1 and 2.2 have been over-
come in the proposed MRTD method.

Log spectral distortion (LSD) measure [11], [12]
was used to evaluate the interpolation performance of
the proposed MRTD algorithm in comparison with the
original RTD. The LSD evaluated is that between the
original LSF parameters, y(n), and the reconstructed
LSF parameters, ŷ(n). Table 2 gives the summary
of spectral distortion results obtained from the RTD
and MRTD methods for the speech data set mentioned
above. Results indicate slightly better performance in
the case of RTD over MRTD.

Shortly speaking, the drawbacks of RTD method
in terms of invalid LSF event vectors and ill-shaped
event functions can be solved with a negligible increase
in spectral distortion. Note that LSD was calculated
for the interpolation step only, i.e. before quantization.

Figure 6 shows the plot of event functions ob-
tained from the MRTD method for an example of a

Fig. 6 Plot of the event functions obtained from MRTD for the
Female/Japanese speech utterance “shimekiri ha geNshu desu
ka.” The speech waveform is also shown together with the pho-
netic transcription for reference. The numerals indicate the frame
numbers.

Female/Japanese speech utterance.

3. Coding Speech at Very Low Rates Based on
STRAIGHT Using MRTD

3.1 Overview of the Proposed Speech Coding Method

As shown earlier, the speech in TD is no longer repre-
sented by a vector updated frame by frame, but instead
by the continuous trajectory of a vector. The trajec-
tory is decomposed into a set of phoneme-like events,
i.e. a series of temporally overlapping event functions
and a corresponding series of event vectors. Since the
updating rate of events is much less than the frame rate,
TD has been considered for efficient coding of spectral
parameters [1], [3], [6], [8]–[10], [13].

STRAIGHT (Speech Transformation and Repre-
sentation using Adaptive Interpolation of weiGHTed
spectrum) has been proposed by Kawahara et al.,
which is a high quality vocoder type algorithm [5].
STRAIGHT can decompose a speech waveform into a
spectral envelope, i.e. spectrogram, F0 (fundamental
frequency) information, and noise ratios. Those param-
eters and the maximum value of amplitude are required
for synthesizing speech. The spectrogram derived from
STRAIGHT is very smooth thanks to a time-frequency
interpolation procedure. It follows that the LSF pa-
rameters extracted from the spectrogram are correlated
among frames, and thus the corresponding LSF vector
trajectory is smooth also. It is not the case of normal
LPC analyses, where LSF parameters are extracted in-
dependently on a frame-by-frame basis.

To make STRAIGHT applicable to low rate speech
coding, the bit rate required to represent the spectral
envelope must be minimized. Since the spectral en-
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Fig. 7 Proposed speech encoder and decoder block diagrams
(top: endcoder, bottom: decoder).

velope can be further analyzed into spectral param-
eters and gain information, TD can be incorporated
with STRAIGHT to create high quality speech coders
working at low bit rates.

In this section, we introduce a method for low rate
speech coding based on STRAIGHT using MRTD. The
encoder and decoder block diagrams are shown in Fig. 7
and a detailed description of the proposed speech cod-
ing method is shown in the subsections followed.

3.2 Derivation of LSF Parameters

The amplitude spectrum X [m], where 0 ≤ m ≤ M
2 with

M is the number of samples in the frequency domain,
obtained from STRAIGHT analysis is transformed to
the power spectrum using Eq. (13).

S[m] = | X [m] |2, 0 ≤ m ≤ M

2
(13)

The ith autocorrelation coefficient, R[i], is then calcu-
lated using the inverse Fourier transform of the power
spectrum as follows.

R[i] =
1
M

M−1∑
m=0

S[m] exp
{

j
2πmi

M

}
(14)

where S[m] = S[M − m] and 0 ≤ i ≤ M − 1. As-
sume that the speech samples can be estimated by a
P th order all-pole model, where 0 < P < M , the re-
construction error is calculated as given in Eq. (15).

PL = R[0]−
P∑

l=1

aP
l R[l] (15)

where {aP
l }, l = 1, 2 · · ·P , are the corresponding linear

predictive coding (LPC) coefficients. PL hereafter is
referred to as gain. By minimizing PL with respect to
aP

l , where l = 1, 2 · · ·P , aP
l s could be evaluated. They

are then transformed to the LSF parameters.

3.3 Determination of LSFs’ Order

3.3.1 Spectral Distortion vs. LSFs’ Order

Log spectral distortion (LSD) [11], [12] measure was

Fig. 8 Spectral distortion vs. the order of LSFs.

also used as the objective measure of performance to
determine the suitable order of LSFs. A set of 112
phoneme balanced sentences uttered by speaker MMY
of the ATR Japanese speech database were used as the
speech data. This speech data set were re-sampled at
8 kHz sampling frequency and then STRAIGHT ana-
lyzed. In the following, the spectral envelopes obtained
from STRAIGHT analysis were transformed to LSF pa-
rameters of orders 14, 18, 22, 26, 30, and 34 using the
procedure described in Sect. 3.2. Finally, the resulting
LSF parameters were MRTD analyzed.

The spectral distortion results obtained from
STRAIGHT analysis and LSF transformation, abbre-
viated as STRAIGHT-LSF, from STRAIGHT analy-
sis, LSF transformation, and MRTD analysis, abbrevi-
ated as STRAIGHT-LSF &MRTD, are shown in Fig. 8.
Note that these results were obtained before the quan-
tization step. The horizontal and vertical axes indicate
the order of LSFs and the average log spectral distor-
tion, respectively. Results show that a considerable re-
duction of the spectral distortion for STRAIGHT-LSF
& MRTD is not achieved when the order of LSFs ex-
ceeds the 22nd order.

3.3.2 Quality of Synthesized Speech vs. LSFs’ Order

We used the Scheffe’s method of paired comparison [14]
to subjectively evaluate the quality of the synthesized
speech as a function of the LSFs’ order. Six graduate
students known to have normal hearing ability were
recruited for the listening experiment. Each listener
was asked to make one of the following statements for
each ordered pair of stimuli (i, j).

(−2) Distortion of i is much larger than that of j.
(−1) Distortion of i is slightly larger than that of j.
(0) Distortion of i is equivalent to that of j.
(1) Distortion of j is slightly larger than that of i.
(2) Distortion of j is much larger than that of i.

Two phoneme balanced sentences uttered by speaker
MMY of the ATR Japanese speech database were re-
sampled at 8 kHz sampling frequency, and then ana-
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Fig. 9 Speech quality vs. the order of LSFs.

lyzed by STRAIGHT. The resulting spectral envelopes
were transformed to LSF parameters of orders 10, 14,
18, 22, 26, and 30. In the following, the LSF param-
eters were analyzed into event vectors and event func-
tions using the MRTD method. Those event vectors
and event functions were combined to reconstruct LSF
parameters used for synthesizing stimuli.

Figure 9 shows the results of the listening exper-
iment. In this figure, the positions on the horizontal
axis indicate the relative distances of stimuli. Here,
the positive values mean that the distortion is small
whilst the negative values indicate the high distortion.
The number on each arrow corresponds to the order of
LSFs. Results also show that an increase of distortion
is not easily realized when the order of LSFs exceeds
the 22nd order.

For the above reasons, the 22nd LSF parameters
were used in the proposed speech coding method.

3.4 MRTD Based VQ of LSF Parameters

The reason for interpolating the vector trajectory of
LSF parameters by using TD is that the updating rate
of events is much less than the frame rate, and both
event vectors and event functions can be quantized
efficiently. In other words, the LSF parameters can
be quantized efficiently by transforming them into the
event sequences first, and then quantizing event vectors
and event functions.

3.4.1 VQ of Event Vectors

Since the event vectors obtained from the MRTD
method are valid LSF parameter vectors [9], they can
be quantized by usual quantization methods for the
LSF parameters. Here, the Split-VQ method [12] was
adopted. Due to the distribution of LSFs, the event
vectors were divided into three subvectors of dimen-
sions 7, 7, 8 and each subvector was quantized inde-
pendently. We assigned 8 or 9 bits to each subvector,
which resulted in the number of bits allocated to one
event vector was 24 or 27, respectively.

3.4.2 VQ of Event Functions

In the case of event functions, normalizing event func-
tions is necessary to fix the dimension of the event func-
tion vector space. Notice that only quantizing φk(n)

in the interval [nk;nk+1] is enough to reconstruct the
whole event function φk(n). Moreover, φk(n) always
starts from one and goes down to zero in that inter-
val, and the type of decrease (after normalizing the
length of φk(n)) can be vector quantized. Therefore,
an event function φk(n) can be quantized by its length
L(k) = nk+1 − nk and shape in [nk + 1;nk+1 − 1]. In
this work, 10 equidistant samples were taken from each
event function for length-normalization and then vector
quantized by a 7-bit codebook. Considering that all in-
tervals between two consecutive event locations are less
than 256 frames long (note that the frame period used
in STRAIGHT analysis is 1ms long), we used 8 bits for
quantizing the length of each event function.

3.5 Coding Excitation Parameters

3.5.1 Coding F0 Parameters

For encoding F0 information, the lengths of voiced and
unvoiced segments were quantized by using SQ first,
with an average bit rate of 36 bps. In the following,
linear interpolation was used within the unvoiced seg-
ments to form a continuous F0 contour. The continuous
F0 contour was re-sampled at 28ms intervals, and then
quantized by a 5-bit logarithmic quantizer.

In the decoder, F0 values were reconstructed from
the quantized samples using the linear interpolation.
In the sequel, F0 values of unvoiced intervals were set
to zero. The root mean square (RMS) F0 error was
found to be about 3.7Hz for the speech data set used
in Sect. 3.3.1.

3.5.2 Coding Gain Parameters

The gain contour was re-sampled at 20ms intervals.
Logarithmic quantization was performed using 6 bits
for each sampled value. The quantized samples and the
spline interpolation were used in the decoder to form
the reconstructed gain contour. The RMS gain error
was found to be about 4.6 dB for the speech data set
used in Sect. 3.3.1.

3.5.3 Coding Noise Ratio Parameters

The noise ratio parameters were estimated from the
noise ratio targets and the event functions as follows.

î(n) =
K∑

k=1

ikφk(n), 1 ≤ n ≤ N (16)

where î(n) and ik are the reconstructed noise ratio pa-
rameter for the nth frame and the kth noise ratio target,
respectively. The noise ratio targets were determined
by minimizing the sum squared error, Ei, between the
original and the interpolated noise ratio parameters.
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Table 3 Bit allocation for the proposed speech coders.

Parameter Proposed Proposed
Coder 1 Coder 2

Event vector 24 bits (8+8+8) 27 bits (9+9+9)
Event function 7 bits 7 bits
Event location 8 bits 8 bits
Noise ratio target 5 bits 5 bits
Subtotal A
(sum × event rate) 660 bps 705 bps
F0 215bps 215 bps
Gain 300bps 300 bps
Maximum amplitude
of input speech 5 bps 5 bps
Subtotal B 520bps 520 bps
Total (A+B) 1180 bps 1225 bps

Ei=
N∑

n=1

(
i(n)− î(n)

)2
=

N∑
n=1

(
i(n)−

K∑
k=1

ikφk(n)

)2

(17)

where i(n) is the original noise ratio parameter for the
nth frame. The noise ratio targets were quantized by
using SQ with 5 bits. The RMS noise ratio error was
found to be about 0.1 for the speech data set used in
Sect. 3.3.1.

3.6 Bit Allocation

The bit allocation for the proposed speech coding
method is shown in Table 3. The average num-
ber of events per second, i.e. the event rate, was set
as 15 events/sec. We allocated 8 bits and 9 bits to
each subvector of the event vectors, which resulted in
1.18 kbps and 1.23 kbps speech coders, respectively.

3.7 Subjective Tests

In order to evaluate the performance of the proposed
speech coding method, the quality of the reconstructed
speech was compared to that of other low bit rate
speech coders: the 4.8 kbps FS-1016 CELP and 2.4 kbps
FS-1015 LPC-10E coders.

A listening experiment was carried out by using
the Scheffe’s method of paired comparison [14] similarly
to that in Sect. 3.3.2. A set of 108 phoneme balanced
sentences of the ATR Japanese speech database were
selected as the training data for the proposed speech
coders. Speakers were 3 male & 3 female reading each
of sentences. These speech utterances were re-sampled
at 8 kHz sampling frequency, and then STRAIGHT
analyzed using the frame shift of 1ms. 22nd order
LSF transformation was performed and the resulting
LSF parameters were MRTD analyzed. Two phoneme
balanced sentences, which are out of training set, ut-
tered by a male and a female were used as the test-
ing data. Stimuli were synthesized by using the fol-
lowing coders: 4.8 kbps FS-1016 CELP, 2.4 kbps FS-
1015 LPC-10E, proposed 1.18 kbps speech coder 1,
and proposed 1.23 kbps speech coder 2. Also, four

Fig. 10 Results of the listening experiment.

other stimuli were STRAIGHT synthesized using the
speech parameters obtained from STRAIGHT-LSF and
STRAIGHT-LSF & MRTD. The original and the re-
constructed speech files are located at the following
URL: http://www.jaist.ac.jp/∼chien/OF/

Results of the listening experiment are shown in
Fig. 10. It can be seen from this figure that the qual-
ity of the reconstructed speech obtained from the pro-
posed speech coder 2 is close to that of the 4.8 kbps
FS-1016 CELP coder and is much better than that of
the 2.4 kbps FS-1015 LPC-10E coder.

As shown previously, the reconstructed LSF pa-
rameters after RTD analyzed and synthesized may be
invalid, which causes the reconstructed speech to be
noisy as well as to have click tones. We therefore did
not evaluate the performance of the method for speech
coding using RTD.

4. Conclusion

We have presented a method of temporal decomposi-
tion, MRTD, for the LSF parameters. The additional
constraint on the event functions in the second order
TD model makes them monotonic during the transi-
tion from one event towards the next, from which the
event functions can describe the temporal structure of
speech more effectively. Also, this reduces the quanti-
zation error of event functions when vector quantized.
The ordering property of LSFs has completely been en-
sured for the event vectors using the improved algo-
rithm so that MRTD can be used for decomposing the
LSF parameters.

We have also described a low rate speech cod-
ing method based on STRAIGHT using MRTD, where
MRTD based VQ is used for encoding spectral informa-
tion of speech. As a result, two low rate speech coders
operating at rates around 1.2 kbps were produced. Al-
though the quality of the reconstructed speech is little
bit lower than that of the 4.8 kbps FS-1016 CELP coder
according to the listening experiment, it is much bet-
ter than that of the 2.4 kbps FS-1015 LPC-10E coder.
However, the speech quality of the proposed speech cod-
ing method can be improved by increasing the event
rate, which results in an increase in the bit-rate re-
quired for encoding speech.

It is necessary to evaluate other attributes of the
proposed speech coding method: algorithmic delay,
complexity, and noise robustness. In this work the
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event rate was set as 15 events/sec, thus resulting in
an average algorithmic delay of about 90ms. We can
add additional events, if necessary, to keep the algo-
rithmic delay below 100ms. Meanwhile, the computa-
tional cost and noise robustness of the proposed speech
coding method depend mainly on STRAIGHT. This is
because MRTD has significantly reduced the computa-
tional cost of TD by avoiding the use of the compu-
tationally costly singular value decomposition routine
and the adaptive Gauss-Seidel iterations used in Atal’s
method. On the other hand, MRTD can be applied
to analyzing any LSF vector trajectory. Currently, a
real-time method for STRAIGHT based low rate speech
coding using MRTD still remains for future research.
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