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PAPER

Reliable Data Routing for Spatial-Temporal TMR

Multiprocessor Systems

Mineo KANEKO†, Regular Member

SUMMARY This paper treats the data routing problem for
fault-tolerant systolic arrays based on Triple Modular Redun-
dancy (TMR) in mixed spatial-temporal domain. The number of
logical links required in TMR systolic array is basically 9 times
larger than the one for corresponding non-fault-tolerant systolic
array. The link sharing is a promising method for reducing the
number of physical links, which may, however, degrade the fault
tolerance of TMR system. This paper proposes several robust
data-routing and resource-sharing (plural data transfers share a
physical link, or a data transfer and a computational task share
a PE as a relay node for the former and as a processor for the
latter), by which certain classes of fault tolerant property will
be guaranteed. A stage and a dominated set are introduced to
characterize the features of routing/resource-sharing in TMR sys-
tems, and conditions on the dominated set and their resultant
fault-tolerant properties are derived.
key words: systolic arrays, fault tolerance, on-line error cor-
rection, routing, network architecture,

1. Introduction

The evolution in VLSI technology allows various com-
plicated arithmetic to be implemented on VLSI chip
using multiple, regular connected processing elements,
which is named a systolic array. It has a great potential
in concurrency and pipeline-ability for resolving large
computation problems, such as matrix arithmetic, sig-
nal processing and other scientific/engineering applica-
tions [1]–[5]. A major drawback of such a high degree
of integration is the high possibility of failures in the
system. When a target algorithm has been tightly and
irredundantly mapped into the spatial-temporal space,
a single failure in processing elements (PEs) or com-
munication links makes the entire computing system
useless.

Reconfiguration is one of proper approaches to
fault tolerant systolic arrays, in which we can fully
utilize the modularity of the systolic arrays [13], [14].
However it needs a certain time to achieve reconfigura-
tion, and, in general, the reconfiguration will be applied
at fabrication time or with suspending application ser-
vices. Focusing on on-line error detection and correc-
tion, algorithm-based techniques have been shown to
be efficient in redundancy overhead [9]–[12]. However,
most of algorithm-based techniques can be applied only
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to linear algebra-based applications. Furthermore, to
avoid the error diffusion which causes too many erro-
neous data to preserve the finite distance property, the
mapping from tasks to PEs is strongly limited, which
may possibly degrade the concurrency and pipelining-
ability.

Triple Modular Redundancy (TMR) is one of the
most popular schemes for fault tolerant computing. To
preserve the modularity/scalability, connection-locality
and massively parallelism of the systolic array, the tech-
nique will be applied with cell (PE)-based triplication,
and voting mechanism is quipped on each cell to mask
internal erroneous data immediately. While the con-
cept of TMR technique is a classical one in a sense, it
is an inherent feature of TMR systolic array that hard-
ware redundancy imposed by the triplication can be
traded for time redundancy, and we have various de-
sign alternatives with different mixtures of hardware-
time redundancy.

This paper addresses the data routing problem for
fault-tolerant systolic arrays based on TMR in mixed
spatial-temporal domain [15]. Since the number of log-
ical links required in TMR systolic array is basically 9
times larger than the one for corresponding non-fault-
tolerant systolic array. The link sharing is a promis-
ing method for reducing the number of physical links
and hence for reducing hardware complexity of the re-
sultant system. Both to increase the possibility of
link sharing and to improve the connection locality,
the decomposition of a data transfer into a series of
data transfers via several PEs is also a candidate tech-
nique [16]. However, these modifications may possi-
bly degrade fault tolerance of the TMR systolic array.
In literature [15], the decomposition of a data trans-
fer into a series of data transfers is not treated, and
literature [16] discusses the scheduling aspect of rout-
ing and resource-sharing for data transfers, but does
not the fault-tolerance aspect of them. The purpose
of this paper is to develop the relation between routing
and resource-sharing for data transfers and its resultant
tolerance to faults. To achieve it, a stage and a dom-
inated set will be introduced to characterize routing
and resource-sharing scheme, and some conditions for
routing/resource-sharing to possess certain fault toler-
ant property will be derived in this paper.

This paper is organized as follows. In Sect. 2, a
systematic design procedure for TMR systolic arrays is
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briefly outlined. Problem of physical implementation
of data communications and some basic strategies for
reducing the complexity of physical links are described
in Sect. 3. In Sect. 4, conditions for reliable routing and
link-sharing in TMR system is discussed. An design
example is shown in Sect. 5. Finally, we conclude our
remarks in Sect. 6.

2. Triple Modular Redundancy in Mixed
Spatial-Temporal Domain

Data processing on a systolic array system includes
computations in each processing element and data com-
munication between processing elements. A systematic
design of fault tolerant systolic array based on Triple
Modular Redundancy (TMR) begins with the triplica-
tion of an original dependence graph, and it is followed
by the mapping of the triplicated dependence graph
onto physical spatial-temporal space [15].

Throughout this paper, δ0, δ1 and δ2 represent
vectors (0, 0), (1, 0) and (0, 1), respectively.

2.1 From Dependence Graph to Triplicated Depen-
dence Graph

Assume that a target algorithm which is to be im-
plemented is given by uniform recurrence equations
and a N -dimensional Dependence Graph (DG) G =
(V , A(D)) is constructed. Each node in V corresponds
to a unit computational task and is addressed by a N -
dimensional vector, say v(a) as a node at a ∈ ZN . Each
directed arc in A(D) represents data flow (data depen-
dency). The set of arcs A(D) is generated from a set
of kernel vectors named dependence vectors D ⊂ ZN

as follows;

A(D) = { (v(a), v(a + d))|
d ∈ D, v(a) ∈ V , v(a + d) ∈ V } (1)

Furthermore, D is partitioned into two subsets. One
is the set of iterated dependence vectors, D(I), along
which iteratively updated data pass. The other one is
the set of transmission dependence vectors, D(T ), along
which constant data pass.

Triplicated Dependence Graph (TDG), GT =
(V T , AT (D)), is a triplicated version of a dependence
graph, in which the address of each node is specified
with a (N + 2)-dimensional vector and the set of arcs
AT (D) is generated from the original dependence vec-
tors D as shown below.

V T = {v(a, δi)|v(a) ∈ V , i ∈ {0, 1, 2}} (2)
AT (D) = {(v(a, δi), v(a + d, δj)) |d ∈ D,

v(a, δi) ∈ V T , v(a + d, δj) ∈ V T } (3)

Figure 1 shows a simplified model of TDG.
Assuming D = {d1, d2, · · · , dK}, in DG, each node

v(a) first receives K different data from v(a − d1),

Fig. 1 Triplicated dependence graph.

v(a − d2), · · ·, v(a − dK), respectively, it performs its
task, and finally it delivers K different data to v(a+d1),
v(a + d2), · · ·, v(a + dK), respectively. On the other
hand, in TDG, each node v(a, δi) receives K sets of
three data, each set from v(a − dk, δ0), v(a − dk, δ1)
and v(a − dk, δ2), k ∈ {1, 2, · · · , K}, and it takes ma-
jority over each set of three data to get error-corrected
K inputs. Then the node performs its task and dis-
tributes each of K results to three nodes v(a+dk, δ0),
v(a+dk, δ1) and v(a+dk, δ2), k ∈ {1, 2, · · · , K}. As a
result, in TDG, any single node fault among three nodes
v(a, δ0), v(a, δ1) and v(a, δ2) is tolerable for each a.

2.2 Transformation to Systolic Array Processing

The space transformation matrix P = [P O, P R] with
its dimension M × (N + 2) and the timing schedule
function W = [W O, W R] with its dimension 1× (N +
2) define the mapping from TDG to array processing.
That is, a PE address p in M -dimensional space and a
control step t for a node v(a, δi) to be assigned will be
given as,

[
pT

t

]
=

N︷ ︸︸ ︷[
P O

W O

2︷ ︸︸ ︷
P R

W R

] [
aT

δi
T

]
(4)

Using the same P and W , a new data dependence vec-
tor (dk, δj − δi) in TDG is mapped as,[



(i,j)
k

T

De(
(i,j)
k )

]
=

[
P O P R

W O W R

] [
dk

T

(δj − δi)T

]
(5)

where 

(i,j)
k represents the spatial difference between a

source PE and a destination PE of data transfer, and
De(
(i,j)

k ) represents the time difference (the number of
control steps) between the data creation at a source PE
and the data consumption at a destination PE. In the
following, 


(i,j)
k will be called communication vector.

In choosing the space transformation matrix and
the timing schedule function, the following constraints
are claimed.
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i |= j ⇒ P Rδi
T |= P Rδj

T (6)

W (dk, δj − δi)
T = W Odk

T + W R(δi − δj)T >= 1
(7)

(a, δi) |= (b, δj) ⇒[
P O P R

W O W R

] [
aT

δi
T

]
|=

[
P O P R

W O W R

] [
bT

δj
T

]
(8)

The first claim guarantees a single erroneous data
among three replicas by a single faulty processor, the
second one is for preserving data dependency in tem-
poral domain, and the third one for avoiding execution
conflicts.

Since every computation is triplicated and results
are completely exchanged right after the computations,
any single PE failure among three PEs onto which trip-
licated nodes v(a, δ0), v(a, δ1) and v(a, δ2) are respec-
tively mapped is tolerable.

3. Physical Implementation of Logical Links

Figure 2 shows an original DG for a matrix multipli-
cation, in which d1 = (0, 1, 0) and d2 = (1, 0, 0) are
two transmission dependence vectors, and d3 = (0, 0, 1)
is an iterated dependence vector. From this original
DG, first, TDG will be constructed within (3 + 2)-
dimensional space, and next nodes are mapped onto
spatial-temporal space by the space transformation ma-
trix and timing scheduling function. Figure 3 shows a
rough sketch of resultant PE array and input/output
sequences to the system designed with the following
transformation matrix and timing scheduling function.

P =

P O︷ ︸︸ ︷[
1 0 0
0 1 −1

P R︷ ︸︸ ︷
−1 −1
0 −1

]
(9)

W =

W O︷ ︸︸ ︷[
1 1 2

W R︷ ︸︸ ︷
0 0

]
(10)

In Fig. 3, a box with Pi,j denotes a PE and aij

(ith row jth element in A), bij (ith row jth element
in B) and cij (ith row jth element in C) are the pri-

Fig. 2 DG for C = A×B.

mary input/output data, which are drawn on “con-
trol step”× “primary input/output port” plane. Data
transfers (and physical links) between PEs are excluded
in this figure, since their complete drawing falls into a
complicated figure. On the other hand, Table 1 shows
communication vectors generated in this design, and
Fig. 4 draws the set of data transfers needed for v(a, δ0)
(mapped onto Pi,j), v(a, δ1) (mapped onto Pi−1,j) and
v(a, δ2) (mapped onto Pi−1,j−1) to execute their own
tasks, and each of those data transfers corresponds to
one of communication vectors shown in Table 1. As
we have mentioned before, each communication vector
represents relative position of a destination PE from
a source PE for a data transfer, and Pi,j , Pi−1,j and
Pi−1,j−1 are any three PEs with the same relative posi-
tion (their absolute positions are determined depending
on the value of a) in the PE array shown in Fig. 3. Note

Fig. 3 A systolic implementation of TDG for the matrix mul-
tiplication: PE array and input/output sequences. Three dotted
rectangles show three ranges onto each of which {v(a, Æ0)|v(a) ∈
V }, {v(a, Æ1)|v(a) ∈ V } or {v(a, Æ2)|v(a) ∈ V } is mapped.

Table 1 List of communication vectors.

generated generated generated
from d1 from d2 from d3

`
(0,0)
1 = (0, 1) `

(0,0)
2 = (1, 0) `

(0,0)
3 = (0,−1)

`
(0,1)
1 = (−1, 1) `

(0,1)
2 = (0, 0) `

(0,1)
3 = (−1,−1)

`
(0,2)
1 = (−1, 0) `

(0,2)
2 = (0,−1) `

(0,2)
3 = (−1,−2)

`
(1,0)
1 = (1, 1) `

(1,0)
2 = (2, 0) `

(1,0)
3 = (1,−1)

`
(1,1)
1 = (0, 1) `

(1,1)
2 = (1, 0) `

(1,1)
3 = (0,−1)

`
(1,2)
1 = (0, 0) `

(1,2)
2 = (1,−1) `

(1,2)
3 = (0,−2)

`
(2,0)
1 = (1, 2) `

(2,0)
2 = (2, 1) `

(2,0)
3 = (1, 0)

`
(2,1)
1 = (0, 2) `

(2,1)
2 = (1, 1) `

(2,1)
3 = (0, 0)

`
(2,2)
1 = (0, 1) `

(2,2)
2 = (1, 0) `

(2,2)
3 = (0,−1)
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Fig. 4 Data transfers needed for v(a, Æ0), v(a, Æ1) and
v(Æa, Æ2) to execute their tasks in the array processing shown
in Fig. 3. Bold solid arrows, thin solid arrows and bold broken
arrows indicate data transfers corresponding to dependence vec-
tors d1, d2 and d3, respectively. The right hand side shows the
mapping from operation nodes to PEs.

Fig. 5 Routing and network architecture-I. (a) Each data
transfer is performed by a direct connection. (b) The overall
network architecture. PEs and links with bold lines indicate re-
sources contained in a single stage (see Sect. 4).

that, for Pi,j , Pi−1,j and Pi−1,j−1 near the boundary of
PE array, the data transfer from a source PE would be
a primary input from the outside to the PE array.

Figure 5 shows the network architecture† designed
by the realization of each logical link with a physical
link which directly connects a source PE and a desti-
nation PE of a data transfer. In this implementation,
logical links having the same source PE and the same
destination PE are realized with a single physical link.

Here we encounter the problems; (1) Is it possi-
ble to reduce architectural complexity? (2) Is a fault-
tolerant property preserved even if plural logical link
(data transfers) share a single physical link?

In general, by the multiplication of data depen-
dency, each dependence vector in D for an original DG
is multiplicated into 32 dependencies, and logical com-
munication links which are generated from |{
(i,j)

k |dk ∈
D, i, j ∈ {0, 1, 2}}| = |D| × 32 communication vectors
should be implemented physically on a processor array.

The reduction of the link complexity can be

Fig. 6 Decomposition of a communication vector.

achieved by the following factors.
(A) Removing a self-looped link 


(i,j)
k = O.

(B) When the following holds for an original transmis-
sion dependence vector dk ∈ D(T ), data transfer
along 


(jr−1,jr)
k can be omitted.



(i,j0)
k + 


(j0,j1)
k + 


(j1,j2)
k + · · ·

+

(jr−2,jr−1)
k + 


(jr−1,jr)
k = O (11)

(C) If two communication vectors are identical, say


(i,j)
k = 


(m,n)
 , and the mapping of nodes

{v(a, δi)|v(a) ∈ V } and the one in {v(a, δm)|v(a)
∈ V } are spatially overlapped, then two kinds of
data transfer, one is along 


(i,j)
k and the other is

along 

(m,n)
 , can share a single physical link.

(D) When a communication vector is decomposed into
more than one vector, such as,



(i,j)
k = L1 + L2 + · · ·+ Lr (12)

then the data transfer along 

(i,j)
k can be replaced

with the series of data transfers along L1, L2, · · ·,
and Lr (Fig. 6). Such decomposition increases the
possibility of link sharing and also may contribute
to shorten the length of a physical link.
To achieve the decomposition of a communication

vector and link sharing, further investigations on both
conflict-free scheduling of multiple data communication
on a physical link [15], [16] and the reliability degrada-
tion imposed by the resource sharing (plural logical
links (data transfers) share a physical link, or a data
transfer and a computational task share a PE as a relay
node for the former and as a processor for the latter) are
needed. This paper treats the latter problem, and show
some classes of fault-tolerance guaranteed by the ap-
propriately restricted link sharing. Unfortunately, we
have not clarified yet the relation between the factor
(B) and the reliability, and we will exclude (B) from
the discussions in this paper.

4. Reliable Routing and Resource Sharing

We consider a system which consists of physical PEs
and physical links. A physical PE is responsible not
only for the execution of tasks mapped on it but also

†Figure 5 (b) shows a part of network architecture for a
TMR matrix multiplication of a larger size. Note that some
physical links are omitted for boundary PEs.
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for relaying data transfer. On the other hand, a phys-
ical link is just a wire having two ends each of which
connects to a physical PE.

We treat both PEs and links as subjects to be
faulty, and the number of faults is counted with the
number of faulty

Assumption 1: When a PE is faulty, data transfer
through this PE as well as computations mapped onto
this PE are assumed to be all erroneous. When a phys-
ical link is faulty, data transfer through this link are
assumed to be all erroneous.

Consider an original DG having a set of depen-
dence vectors D = {d1, d2, · · · , dK}. After the con-
version from a DG to a TDG followed by the trans-
formation to systolic array processing, a physical PE,
onto which a node v(a, δi) in the TDG is mapped, is
denoted in short as P (a, δi), i ∈ {0, 1, 2}. We will use
“the computation results of P (a, δi)” to represent the
computation results with respect to the node v(a, δi).

On the other hand, a route of data transfer in the
physical domain is defined, in this paper, as an alter-
nate sequence of PEs and links which begins with an
out-going link of a source PE and ends with a destina-
tion PE, where neighboring PE and link are physically
connected. It is assumed that individual data transfer
from one PE to another is carried out along a single
route.

A resource (a PE or a link) p is said to “dominate
P (a, δj) with respect to P (a−dk, δi)” if p is contained
in the route for data transfer from P (a − dk, δi) to
P (a, δj) which corresponds to the communication vec-
tor 


(i,j)
k .
Furthermore, we will introduce following notations

for convenience’s sake.

R(a)
�
= {P (a, δ0), P (a, δ1), P (a, δ2)} (13)

D(p, a, dk, δi)
�
= {P (a, δj) |P (a, δj) ∈ R(a) is dominated

by p with respect to P (a − dk, δi)} (14)

S(a) �
=

{
p |p dominates an element in R(a)

with respect to an element

in
⋃K

k=1 R(a − dk)
}

(15)

Note that R(a) is a set of three different PEs each
of which executes one of the triplicated tasks v(a, δ0),
v(a, δ1) and v(a, δ2).

We will refer to S(a) as a stage, and use “the out-
puts of S(a)” to represent the computation results of
P (a, δ0), P (a, δ1) and P (a, δ2). Figure 7 illustrates a
stage, and Fig. 8 shows an example of D(p, a, dk, δi).

Note that, from the definition,
1. P (a, δi) dominates itself with respect to each ele-

ment in
⋃K

k=1 R(a − dk).

Fig. 7 Illustration of stage.

Fig. 8 Example of D(p,a,dk, Æi): (a) Bold arrows and bro-
ken arrows are data transfers from R(a − dk) to R(a). (b)
Routes for data transfers which are represented with bold ar-
rows in (a), where p is either a PE or a physical link. In this
case, D(p,a,dk, Æi) = {P (a, Æ1), P (a, Æ2)}.

2. P (a − dk, δi) does not dominate any element in
R(a) with respect to P (a−dk, δi), except the case
P (a−dk, δi) = P (a, δj) for some P (a, δj) ∈ R(a).
(P (a − dk, δi) may possibly dominate some el-
ement in R(a) with respect to some element in(⋃K

k=1 R(a − dk)
)
\{P (a− dk, δi)}.

3. Each stage S(a) has K preceding stages (some may
be primary inputs) S(a−d1), S(a−d2),· · ·, S(a−
dK), and has K succeeding stages (some may be
primary outputs) S(a+ d1), S(a+ d2),· · ·, S(a+
dK).
At a stage S(a) in our triplicated systolic process-

ing, P (a, δi) first receives K × 3 data elements, each of
which is sent from one in

⋃K
k=1 R(a−dk) via elements

in S(a). For each k ∈ {1, 2, · · · , K}, three data ele-
ments from elements in R(a−dk) are then taken their
majority to be the correct k-th input. After that, the
PE computes K results using these data, and finally it
sends K results to the following PEs. In general, each
one of K results does not always depend all of K in-
puts. That is, even if a PE receives some inputs which
are uncorrectable by voting, some of the computation
results may possibly be error-free. However, in this
paper, we will neglect the details of input/output de-
pendency within a node, and will employ the following
model on the correctness of the computation results for
making our discussions concise.



KANEKO: RELIABLE DATA ROUTING FOR TMR SYSTEMS
1795

Assumption 2: Computation results of P (a, δi) are
all error-free if and only if
1. P (a, δi) is fault-free, and
2. P (a, δi) receives K sets of at least two correct
data,

otherwise they are all erroneous.

When every element in R(a) yields correct out-
puts, the stage S(a) is said to be fair. When ex-
actly one element in R(a) yields erroneous outputs and
the other yield correct outputs, the stage is said to be
marginally fair. Otherwise, it is said to be unfair.

When, for every triplicated primary outputs, at
least two among them are correct, i.e., every primary
output is either correct or correctable by voting, the
entire TMR system is said to be normal.

The following Lemma 1 is trivial from the nature
of the TMR system.

Lemma 1:
(1) A stage S(a) is fair if every preceding stage of
the stage S(a) is either fair or marginally fair and
all of the elements within S(a) are fault free.

(2) A stage S(a) is unfair if at least one of the pre-
ceding stages of the stage S(a) is unfair.

(3) A TMR system is normal if and only if every
stage in the system is either fair or marginally fair.

The remaining part of this section is used for filling
the gap between (1) and (2) of Lemma 1 for guaran-
teeing every stage to be fair or marginally fair, i.e., the
system to be normal, with respect to a certain class of
fault patterns.

Lemma 2: Under the condition that all of the preced-
ing stages of the stage S(a) are fair, the stage S(a) is
either fair or marginally fair for any single fault within
S(a) iff

∀p ∈ S(a),∣∣∣∣∣∣
K⋃

k=1

⋃
i |=j

[D(p, a, dk, δi) ∩D(p, a, dk, δj)]

∣∣∣∣∣∣ <= 1 (16)

holds, where
⋃

i |=j denotes the union over 0 <= i <= 2,
0 <= j <= 2, i |= j.

Proof of Lemma 2:
Necessity:
If there exists p ∈ S(a) such that∣∣∣∣∣∣

K⋃
k=1

⋃
i |=j

[D(p, a, dk, δi) ∩D(p, a, dk, δj)]

∣∣∣∣∣∣ >= 2, (17)

it implies that at least one of the three cases holds.
(a) There exist k, i, i′ |= i, and Pα, Pβ ∈ R(a), Pα |=

Pβ , such that both Pα and Pβ are dominated by
p with respect to both P (a − dk, δi) and P (a −
dk, δi′) (Fig. 9 (a)).
In this case, when p is faulty, both Pα and Pβ

receive at least two erroneous k-th inputs.

Fig. 9 Explanatory figures for necessity proof of Lemma 2.

(b) There exist k, {i, i′, i′′} = {0, 1, 2}, and Pα, Pβ ∈
R(a), Pα |= Pβ , such that Pα is dominated by
p with respect to both P (a − dk, δi) and P (a −
dk, δi′) and at the same time Pβ is dominated by
p with respect to both P (a − dk, δi) and P (a −
dk, δi′′) (Fig. 9 (b)).
In this case, when p is faulty, both Pα and Pβ

receive at least two erroneous k-th inputs.
(c) There exist k, k′ |= k, {i, i′, i′′} = {0, 1, 2}, and Pα,

Pβ ∈ R(a), Pα |= Pβ , such that Pα is is dominated
by p with respect to both P (a−dk, δi) and P (a−
dk, δi′) and at the same time Pβ is dominated by
p with respect to both P (a − dk′ , δi) and P (a −
dk′ , δi′′) (Fig. 9 (c)).
In this case, when p is faulty, Pα receives at least
two erroneous k-th inputs, and Pβ receives at least
two erroneous k′-th inputs.

In every case among the above, when p becomes faulty,
the computation results of Pα and Pβ are both erro-
neous, and the stage S(a) becomes unfair.
Sufficiency:
The condition (16) implies that, for any single resource
p, at least two elements in R(a) are not contained in
the set;
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Fig. 10 Explanatory figures for sufficiency proof of Lemma 2.

D∪(p, a)
�
=

K⋃
k=1

⋃
i |=j

[D(p, a, dk, δi) ∩ D(p, a, dk, δj)]

Let Pα ∈ R(a) be a such PE for a certain p, i.e. Pα |∈
D∪(p, a).
(a′) When there exist k and i such that Pα ∈

D(p, a, dk, δi), then

Pα |∈ D(p, a, dk, δj), j ∈ {0, 1, 2}\{i}
As a result, even if p is faulty, Pα can receive
two correct redundant k-th inputs without pass-
ing through p, and it can recover the correct k-th
input (Fig. 10(a′)).

(b′) When Pα |∈ D(p, a, dk, δi) for all i, 0 <= i <= 2 for
some k, 1 <= k <= K, it is trivial that, even if p is
faulty, Pα can receive three correct redundant k-th
inputs (Fig. 10(b′)).

Since either (a′) or (b′) holds for any resource p, even
if any single fault occurs in S(a), at least two elements
in R(a) can yield correct outputs.

End of proof.

Theorem 1: If the condition given by Eq. (16) holds
for every stage in a TMR system, then the entire TMR
system is tolerable for any single fault within each two
successive stages (in the sense that the sum of the
number of faults in S(a) and the number of faults in
S(a − dk) equals to one).

Proof of Theorem 1:
We will use the fact that the original computation al-
gorithm to be implemented is given by the uniform re-
currence equations.

Suppose that the entire system is not normal. Let
S(a) be an unfair stage and every one of its preced-
ing stages and ancestor stages is either fair, marginally
fair or triplicated primary input (treated as to be fair).

Such S(a) always exist, since the TDG under consider-
ation does not contain directed loops. If the stage S(a)
is fault free, then at least one of the stages of S(a)
should be unfair. However it contradicts to the choice
of S(a). If the stage S(a) contains a single fault, then
every preceding stage of S(a) are fault-free from the
condition of Theorem 1. Together with the assumption
that every immediate preceding stage of each immedi-
ate preceding stage of S(a) is either fair or marginally
fair, every immediate preceding stage of S(a) is fair
(Lemma 1). From Lemma 2, the stage S(a) should
be either fair or marginally fair, and it contradicts the
choice of S(a). As a result, the proposition “the entire
system is not normal” is denied.

End of proof.

Note that, if p ∈ S(a) ∩ S(a − dk) exists, faulty p
is a single fault for S(a) and also a single fault for the
immediate preceding stage S(a − dk), and we can not
apply Theorem 1 to this case. In other words, Theorem
1 does not allow the sharing of hardware resource (PEs
and links) between two successive stages.

Lemma 3: When every preceding stage of the stage
S(a) is either fair or marginally fair, and

∀p ∈ S(a),
∣∣∣∣∣

K⋃
k=1

2⋃
i=0

D(p, a, dk, δi)

∣∣∣∣∣ <= 1 (18)

holds, then, for any single fault within S(a), the stage
S(a) is either fair or marginally fair.

Proof of Lemma 3:
For any element p ∈ S(a), at least two elements Pα,
Pβ in R(a) can receive all their inputs without passing
through p. Then at least two elements in R(a) yield
correct outputs for any single fault within S(a) even if
some of immediate preceding stages are marginally fair.

End of proof.

Theorem 2: If the condition given by Eq. (18) holds
for every stage in the TMR system, then the entire
TMR system is tolerable for any single fault within each
stage.

Proof of Theorem 2:
The proof can be done with similar way to the one for
Theorem 1.

Considering the entire system is not normal, let
S(a) be an unfair stage and every one of its immedi-
ate preceding stages and ancestor stages is either fair,
marginally fair or primary input. Such S(a) always ex-
ists when the entire system is not normal. However,
from Lemma 3, S(a) can not be unfair, and it contra-
dicts that the entire system is not normal.

End of proof.

From Theorems 1 and 2, we can see the tradeoff
between the limitation on resource sharing and tolera-
ble fault patterns, i.e., the set of feasible implementa-
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Fig. 11 Explanatory figure for proof of Lemma 4.

tions under Theorem 2 (Eq. (18)) is a subset of the one
under Theorem 1 (Eq. (16)), while the set of fault pat-
terns tolerable under Theorem 2 is a superset of the one
under Theorem 1. In this sense, the following lemma
and theorem offer another pair of the limitation on re-
source sharing and tolerable fault patterns, which is in
between Theorem 1 and Theorem 2.

Lemma 4: When every preceding stage is fair, and∣∣∣∣∣∣
K⋃

k=1

⋃
i |=j

[D(p, a, dk, δi) ∩D(p, a, dk, δj)]

∣∣∣∣∣∣
=

{
0 : ∀p ∈ S(a)\R(a)
1 : ∀p ∈ R(a) (19)

holds, then the stage S(a) is fair for any single fault
within S(a)\R(a) and it is marginally fair for any sin-
gle fault within R(a).

Proof of Lemma 4:
For p ∈ S(a)\R(a), Pα ∈ R(a) and k; if there exists i
such thatD(p, a, dk, δi) contains Pα ∈ R(a), then Pα |∈
D(p, a, dk, δj) with respect to j ∈ {0, 1, 2}\{i}. Other-
wise Pα |∈ D(p, a, dk, δj) with respect to j ∈ {0, 1, 2}.
It means that any Pα ∈ R(a) can receive at least two
k-th inputs without passing through p (refer to Fig. 10),
and it can have correct k-th input even if p is faulty. As
a result, every element in R(a) can have K correct in-
puts and can yield correct outputs, i.e., the stage S(a)
is fair, for any single fault within S(a)\R(a).

Next we will consider the case p = Pα ∈ R(a).
Note that Pα is contained D(Pα, a, dk, δi) for every
possible i and k. For any k, if Pβ ∈ R(a), Pβ |= Pα, is
contained in D(Pα, a, dk, δi) with certain i, then it is
not contained in D(Pα, a, dk, δj) with j ∈ {0, 1, 2}\{i}
(Fig. 11). Otherwise Pβ |∈ D(Pα, a, dk, δj) for j, j ∈
{0, 1, 2}. In both cases, Pβ can receive at least two k-
th inputs without passing through Pα. Totally, every
element in R(a) can receive at least two k-th inputs
without passing through any one of the other two ele-
ments in R(a), and hence it can have correct k-th input
even if one of the other two element in R(a) is faulty.
As a result, even if one of the elements in R(a) is faulty,
the other two elements can yield correct outputs, i.e.,
the stage S(a) is marginally fair.

End of proof.

Theorem 3: If the condition given by Eq. (19) holds

for every stage in a TMR system, then the entire TMR
system is tolerable for any single fault within a stage
S(a) and its preceding R(a−dk), in the sense that the
number of faulty elements in S(a) plus the number of
faulty elements in R(a − dk) equals to 1.

Proof of Theorem 3:
Suppose that the entire system is not normal. Let
S(a) be an unfair stage and every one of its immedi-
ate preceding stages and ancestor stages is either fair,
marginally fair or primary input (treated as to be fair).

If all immediate preceding stages of the stage S(a)
are fair or primary inputs, the stage S(a) should be
either fair or marginally fair for any single fault within
S(a), which contradicts the proposition.

When an immediate preceding stage of S(a), say
S(a − dk1), is marginally fair, we can find a sequence
of marginally fair stages S1 = S(a−dk1), S2 = S((a−
dk1)−dk2), · · ·, SR = S((a−dk1 −· · ·−dkR−1)−dkR),
where R >= 1, Sr is an immediate preceding stage of
Sr−1, and immediate preceding stages of SR are fair
stages and primary inputs. For the consistency pur-
pose, we let S0 = S(a). From Lemma 4, R(a − dk1 −
· · · − dkR) should contain single fault. From the lim-
itation of fault occurrence given in Theorem 3, SR−1

should be fault-free. Furthermore each of immediate
preceding stages of SR−1 is either fair or marginally
fair. As a result, SR−1 should be fair, which contra-
dicts the proposition for any value of R(>= 1).

End of proof.
We have obtained three theorems on the relation

between data transfer routing and fault tolerance prop-
erty, each of which provides a sufficient condition on
data transfer routing for “any” single fault within a
certain range being tolerable.

Unfortunately, applications of Theorem 1 and The-
orem 3 are seriously restricted, since resource sharing
between successive stages is not allowed. Resource
sharing between successive stages may occur depend-
ing on (1) the selection of the space transformation
matrix P (affects PE sharing) and (2) data transfer
routing scheme (affects PE sharing and link sharing).
It is preferable, for preserving high utilization of PEs,
to select the space transformation matrix so that PEs
are shared by successive stages, as link the design ex-
ample demonstrated in Fig. 3. So we need to investigate
further into Theorem 1 and Theorem 3 to make them
widely applicable to various designs with less limita-
tions on the selection of the space transformation ma-
trix.

5. Examples of Network Configuration

Here we demonstrate some data transfer routing
schemes for TMR version of matrix multiplication
shown in Sect. 3. Since, as we have mentioned before,
the space transformation matrix used for that systolic



1798
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.12 DECEMBER 2001

Fig. 12 Routing and network architecture-II. (a) Set of
routing for communication vectors. (b) Overall network
architecture.

array induces PE sharing between successive stages,
Theorem 2 is applied for network configurations shown
in the following. Note again that the scheduling aspect
of data transfer is not discussed throughout this paper.

First of all, we will check the direct implementa-
tion (network architecure-I) shown in Fig. 5. In this
implementation, every data transfer is realized by a di-
rect physical link from source PE to destination PE,
and the problem is whether some class of fault toler-
ant property is preserved or not when all data transfers
with a common source PE and an common destination
PE are achieved by a single physical link. Theorem
2 gives us a positive answer, that is, any single fault
within a single stage is tolerable, where a single stage
S(a) in this case consists of the set of three PEs R(a)
and the set of physical links as;

{ (P (a − dk, δi), P (a, δj))|
k ∈ {1, 2, 3}, i ∈ {0, 1, 2}, j ∈ {0, 1, 2},
P (a − dk, δi) |= P (a, δj)}

Resources within a single stage are indicated by gray
boxes (PEs in a R(a)) and bold allows (physical links)
in Fig. 5. Since, in this implementation, each PE in
a stage S(a) dominates only itself and each physical
link in the stage dominates only one PE in R(a), the
condition Eq. (18) holds and hence Theorem 2 holds.

Figure 12 and Fig. 13 show two sets of possible
routing for logical links with communication vector de-
compositions (a), both of which meet the condition in
Theorem 2, and their corresponding final network ar-
chitectures ((b): network architecture-II and network
architecture-III). In (b) of these figures, gray boxes
denote elements in R(a), and bold boxes (PEs) and
bold arrows (links) together with gray boxes denote re-
sources in a stage S(a) for some value of a. Note that a
bold white box plays only the role to relay data transfer
in this certain stage S(a), while it may execute node
operation in other stage with different value of a.

Table 2 summarizes some numerical features of

Fig. 13 Routing and network architecture-III. (a) Set
of routing for communication vectors. (b) Overall network
architecture.

Table 2 Numerical comparison between different network
configurations.

Network I II III

Communication vector decomposition No Yes Yes
# of outgoing edges per PE 14 9 7
# of PEs in a stage 3 8 10
# of links in a stage 22 22 24
# of PE-to-PE data transfers in a stage 24 30 32

Fig. 14 Different ranges in which a second faulty PE is not
guaranteed to be tolerated depending on the data routing scheme.

those three networks. From this table, we can see the
tendency that, when we try to reduce the number of
links per PE, the communication vector decomposition
should be applied aggressively which results in larger
number of PEs and larger number of PE-to-PE data
transfers contained in a stage. As a result, since a stage
is a set of resources in which “any” single fault is guar-
anteed to be tolerable (by Theorem 2), the smaller the
number of links per PE is, the lower the reliability in a
statistical measure is expected to be.

Another appearance of such tendency is shown in
Fig. 14 which illustrates the range in which a second
faulty PE is not guaranteed to be tolerated (from The-
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orem 2) under the existence of a faulty (permanent)
PE marked by a cross. Network architecure-I has the
smaller such range than network architecure-II or III
has, which indicates that network architecure-I toler-
ates the denser faulty PE distribution than network
architecure-II or III does.

While our configurations are guaranteed to toler-
ate any single fault in every stage, the tolerance (or in-
tolerance) to two or more faults in each stage depends
on a fault pattern for the entire array system, and its
analysis is not yet developed. So, the exact evaluation
of the reliability in statistical measure remains as a fu-
ture work, and we will evaluate reliability lower bounds
based only on single-fault/stage tolerance property.

Now we consider a matrix multiplication of L×M
matrix A and M × N matrix B, which is implemented
on L × (M + N − 1) PE array (nominal version) and
(L+1)×(M+N) PE array (TMR version). We assume
that PE fault and link fault occur randomly, and we
let p and q are reliabilities of a single PE and a single
physical link, respectively. For simplicity, we will use
n = L × (M + N − 1) and n′ = (L + 1)× (M + N).

In a nominal (non-fault-tolerant) implementation
(remove all redundant computations and data trans-
fers (redundant PEs and physical links) from Fig. 5, for
details please refer to Fig. 5 in [15]), each PE has 3
incoming physical links, and we treat a PE and its in-
coming physical links as a unit to compute reliability.
It is clear that the reliability of a single unit is given as
r0 = p · q3, and the overall reliability Rnominal is given
as,

Rnominal = r0
n = (pq3)n

With respect to TMR version with network archi-
tecture-I, similar to the previous one, we treat a PE and
its incoming physical links as a unit, and its reliability
is given as r1 = p · q14. As we have shown in Fig. 14,
when a unit (a PE and its incoming links) becomes
faulty, 6 other units around it are not allowed to be
faulty (tolerance is not guaranteed). Hence the overall
reliability RTMR-1 is given as,

RTMR-I

>= rn′
1

+n′rn′−1
1 (1− r1)

+
n′(n′ − 7)

2!
rn′−2
1 (1− r1)2

...

+
n′(n′ − 7) · · · (n′ − 7(k − 1))

k!
rn′−k
1 (1− r1)k

...
�
= R1L (20)

For simplicity, we assume that n′ can be divided by 7
evenly. Then,

Fig. 15 Reliability comparison. Rnominal, R1L, R2L and R3L

denote overall reliabilities of nominal implementation, TMR with
network architecture-I, TMR with network architecture-II and
TMR with network architecture-III, respectively.

R1L

=
n′/7∑
k=0

n′(n′− 7) · · · (n′− 7(k − 1))
k!

rn′−k
1 (1− r1)k

= r
6n′/7
1

n′/7∑
k=0

n′/7Ck7kr
(n′/7−k)
1 (1− r1)k

= r
6n′/7
1 (r1 + 7(1− r1))

n′/7

= r
6n′/7
1 (7− 6r1)

n′/7 (21)

Similarly, the lower bounds of the overall reliability
for TMR with network architecture-II (R2L) and for
TMR with network architecture-III (R3L) are given us-
ing r2 = p · q9 and r3 = p · q7 as,

R2L = r
22n′/23
2 (23− 22r2)

n′/23 (22)

R3L = r
34n′/35
3 (35− 34r3)

n′/35 (23)

Originally, the success of highly integrated systems
will be supported by reliable components, and the over-
all reliability at near around p = 1, q = 1 may be an
important measure. To evaluate and to compare such
values for network architecture-I, II and III, the sec-
ond order approximation on Taylor expansion around
p = 1, q = 1 will be adopted, and its results are given
as follows.

R1L ≈ 1− 3n′ ((1− p) + 14(1− q))2 (24)

R2L ≈ 1− 11n′ ((1− p) + 9(1− q))2 (25)

R3L ≈ 1− 17n′ ((1− p) + 7(1− q))2 (26)

We can see R1L > R2L > R3L under the situation where
the reliability of a PE is much lower than that of a
physical link, while R1L > R3L > R2L may arise when
a physical link is relatively unreliable.

Finally of this section, the numerical compari-
son of reliabilities Rnominal, R1L, R2L and R3L under
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L = M = N = 10 is shown in Fig. 15. While the graph
is drawn with its x-axis p for convenience, we have as-
sumed in those computations that the failure rate of a
single link is 1/20 times smaller than the one of a single
PE, i.e., (1− q) = (1− p)/20. From this figure, we can
verity numerically the tendency: the smaller the num-
ber of links per PE is by resource sharing, the lower the
overall reliability is.

6. Conclusions

In this paper, relations between data transfer routing/
resource-sharing and fault tolerant property in TMR
systolic array systems are investigated, and three theo-
rems have been obtained. It is notable that these three
theorems line up in the tradeoff between limitation
of data transfer routing/resource-sharing and tolera-
ble fault patterns. We can find another type of design
tradeoff from design examples (network architecture-I,
II and III) based on Theorem 2; the smaller the number
of links per PE is, the lower the reliability in a statistical
measure becomes. It is because to reduce the number
of links per PE needs aggressive communication vector
decomposition, which results in a TMR system in which
each stage (a set of resources in which a single fault is
tolerated by Theorem 2) contains a larger number of
PEs and PE-to-PE data transfers.

While Theorem 2 is applicable to variety of systolic
operations with various selections of the space trans-
formation matrix and the timing schedule function, ap-
plications of Theorem 1 and Theorem 3 are seriously
restricted, since resource sharing between successive
stages is not allowed. Also discussions in this paper
including these three theorems assume Assumption 1
and Assumption 2, which are somewhat pessimistic as
a model of error generation/propagation. The study
on the fault tolerance under more precise model of the
correctness of computation results is a future problem.
Further discussion together with the scheduling prob-
lem of data transfer toward physical link minimization
and tighter evaluation of overall system reliability are
also left for future works.
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