
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Design Scheme for Delay Testing of Controllers

Using State Transition Information

Author(s)
IWAGAKI, Tsuyoshi; OHTAKE, Satoshi; FUJIWARA,

Hideo

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E87-A(12): 3200-3207

Issue Date 2004-12-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4697

Rights

Copyright (C)2004 IEICE. Tsuyoshi Iwagaki,

Satoshi Ohtake and Hideo Fujiwara, IEICE

TRANSACTIONS on Fundamentals of Electronics,

Communications and Computer Sciences, E87-A(12),

2004, 3200-3207.

http://www.ieice.org/jpn/trans_online/

Description

3200
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

PAPER Special Section on VLSI Design and CAD Algorithms

A Design Scheme for Delay Testing of Controllers Using State
Transition Information

Tsuyoshi IWAGAKI†a), Student Member, Satoshi OHTAKE†, Member, and Hideo FUJIWARA†, Fellow

SUMMARY This paper presents a non-scan design scheme to enhance
delay fault testability of controllers. In this scheme, we utilize a given state
transition graph (STG) to test delay faults in its synthesized controller. The
original behavior of the STG is used during test application. For faults that
cannot be detected by using the original behavior, we design an extra logic,
called an invalid test state and transition generator, to make those faults
detectable. Our scheme allows achieving short test application time and
at-speed testing. We show the effectiveness of our method by experiments.
key words: controller, delay fault, non-scan design, invalid test state and
transition generator, at-speed test

1. Introduction

As the speed of modern VLSI circuits increases, delay fault
testing is becoming essential to guarantee the timing correct-
ness of the circuits. Delay test generation for such circuits
is a challenging problem. This is because there exist many
sequentially untestable delay faults in a circuit [2], and the
task of identifying those faults is very time-consuming. It
is virtually impossible to identify all the untestable faults
in a large circuit. To facilitate delay test generation, stan-
dard scan methods [7], [8] and enhanced scan ones [2], [4]
have been proposed. Given a sequential circuit, these de-
sign methods make most or all of the sequentially untestable
faults detectable by making every flip-flop (FF) controllable
and observable. As a result, the test generation time is sig-
nificantly reduced and the fault coverage becomes higher.
However, in scan-based delay testing, the test application
time becomes longer because of the scan-shift operation. In
addition, the scan-shift operation is generally performed at
a low clock speed while the second vectors of two-pattern
tests are launched at a rated clock speed. This situation may
cause the IR-drop [9] because the operating speed rapidly
changes, and it makes apparent circuit delay increase tem-
porarily. In consequence, the test may detect temporary de-
lay faults and it poses over-testing. Therefore, it is desirable
that the operating speed is constant during test application.

Recently, design for testability (DFT) methods at reg-
ister transfer (RT) level have been proposed [5]. In general,
an RT-level circuit is composed of a controller, which is rep-
resented by a state transition graph (STG), and a data path,
which is represented by hardware elements such as regis-

Manuscript received March 18, 2004.
Manuscript revised June 18, 2004.
Final manuscript received August 5, 2004.
†The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology (NAIST), Ikoma-
shi, 630–0192 Japan.

a) E-mail: tsuyo-i@is.naist.jp

ters, multiplexers (MUXs) and operational modules. For
delay faults, a non-scan DFT method of data paths, which
overcomes the drawbacks of scan-based testing, has been
proposed [1]. On the other hand, a DFT method for stuck-at
faults in controllers has been proposed [6]. This method
is also non-scan based, and achieves complete fault effi-
ciency, short test application time and at-speed testing. In
this method, the above merits are realized by utilizing a
given STG and by appending an extra logic, called an in-
valid test state generator (ISG), to the original controller.

This paper proposes a non-scan design scheme, which
is an extension of one in [6], to enhance delay fault testa-
bility of controllers. In this scheme, we utilize a given STG
to test delay faults in its synthesized controller. The origi-
nal behavior of the STG is used during test application. For
faults that cannot be detected by using the original behav-
ior, we append an extra logic, called an invalid test state and
transition generator (ISTG), to the original controller. In
this paper, we discuss a classification of untestable faults in
a controller, and show our DFT flow based on the classifi-
cation. Our scheme allows achieving short test application
time and at-speed testing, which is always performed at a
constant clock speed. By some experiments, we show the
effectiveness of our method.

2. Preliminaries

2.1 Target Circuit and Fault Model

Our target circuit is a controller represented by an STG, and
we target delay faults which can be tested by two-pattern
tests (e.g., transition faults, path delay faults, etc.) in the cir-
cuit. In the following discussion, we focus on the transition
fault model for simplicity. Figure 1 shows an example of a
controller represented by an STG. In this paper, we assume
that a gate-level implementation of a controller is given, and

Fig. 1 State transition graph representing a controller.

IWAGAKI et al.: A DESIGN SCHEME FOR DELAY TESTING OF CONTROLLERS USING STATE TRANSITION INFORMATION
3201

Fig. 2 Synthesized controller.

Fig. 3 Combinational test generation model (CTGM).

the controller has a reset signal, i.e., we can make a tran-
sition from any state to the reset state by activating the re-
set signal. Figure 2 represents a sequential circuit which
can be obtained by synthesizing a given STG. We also as-
sume that, for a given controller, the mapping information
between each state in the STG and the value of the state reg-
ister (SR) (state encoding information) is available.

2.2 Terminologies

Here, we define several terminologies. For any value of the
SR in a sequential circuit synthesized from a given STG, the
state corresponding to the value is called a valid state if it
is reachable from the reset state in the STG. Otherwise, it is
called an invalid state. For a synthesized controller, a com-
binational circuit extracted from the controller by replacing
the SR with pseudo primary inputs (PPIs) and pseudo pri-
mary outputs (PPOs) is called a combinational test gener-
ation model (CTGM) (Fig. 3). Every two-pattern test for a
CTGM, (V1,V2), can be denoted as (I1&S 1, I2&S 2), where
I1 and I2 are the values of primary inputs (PIs), S 1 and S 2

are the values of PPIs, and “&” is the concatenation opera-
tor. A two-pattern test for a CTGM, (I1&S 1, I2&S 2), is said
to be a valid two-pattern test if there exists an arc (transi-
tion) (I, P,N,O) in a given STG such that I = I1, P = S 1

and N = S 2, where I is an input value, P is a present state
value, N is a next state value, and O is an output value. Oth-
erwise, it is called an invalid two-pattern test. The transi-
tion corresponding to a valid two-pattern test (resp. an in-
valid two-pattern test) is called a valid test transition (resp.
an invalid test transition). Valid test transitions and invalid
ones are collectively called test transitions. For each state
included in a test transition, the state is called a valid test
state (resp. an invalid test state) if it is a valid state (resp.
an invalid state). Also, valid test states and invalid ones are
collectively called test states.

Figure 4 shows an example of test states and test tran-
sitions. When two-pattern tests are generated for the CTGM
(Fig. 3) of Fig. 1, the test transitions corresponding to the
generated two-pattern tests can be classified into five types:

Fig. 4 Test states and transitions.

• valid test transition (Fig. 4(1)),
• invalid test transition from a valid test state to a valid

test state (Fig. 4(2)),
• invalid test transition from a valid test state to an invalid

test state (Fig. 4(3)),
• invalid test transition from an invalid test state to a valid

test state (Fig. 4(4)) and
• invalid test transition from an invalid test state to an

invalid test state (Fig. 4(5)).

3. Proposed Method

3.1 Test Architecture

In our testing scheme, the original behavior of a given STG
is used during test application, i.e., valid two-pattern tests
are applied by using the original behavior. Faults that cannot
be detected by using the original behavior are tested by an
extra logic, called an invalid test state and transition gener-
ator (ISTG). Our test architecture is shown in Fig. 5, which
is an extention of the test architecture [6]. In Fig. 5, the re-
spective DFT elements play the following roles.

• The ISTG is used to generate invalid test states and in-
valid test transitions.
• The extra pin of tmode is used to select between the nor-

mal mode and the test mode.
• The extra pins of tout are used to observe the value of

the SR. The bit width of tout is the same as that of the
SR.
• The extra pins of tsel are used to distinguish among in-

valid two-pattern tests†.
• The MUX is used to switch between the signal from

the combinational part of the controller and that from
the ISTG.

The differences between our test architecture and the previ-
ous one [6] are as follows. Unlike the ISG of the previous
test architecture, the ISTG of our test architecture is used to
generate not only invalid test states needed to apply the first
vectors of invalid two-pattern tests but also invalid test tran-
sitions corresponding to the invalid two-pattern tests. Notice
that the ISG has no tsel. Furthermore, in our test architecture,
tout is appended to the output side of the SR while tout of the

†The details will be described in Sect. 3.3.

3202
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

Fig. 5 Test architecture.

Fig. 6 Power-aware configuration.

previous test architecture is appended to the input side of
the SR. In consequence, our test architecture can test delay
faults appropriately because the value captured by the SR
can be observed.

Our test architecture can achieve short test application
time and at-speed testing because the scan-shift operation is
never used. Note that we use the terminology of “at-speed
test” only if test application can always be performed at a
rated clock speed.

Here, we mention testing of delay faults in the ISTG.
Since the ISTG is only used in the test mode, we do not need
to care about its behavior in the normal mode. Therefore, to
test delay faults in the ISTG, we need only to check whether
the value captured by the SR is correct or not by using tout

in the test mode. It can be performed during testing of the
controller simultaneously.

Let us consider an impact of power consumption on
a controller, which is induced by the ISTG. Although the
ISTG is only used during testing, it might consume power
in the normal mode. If the impact is serious, we can avoid it
by configuring the controller as Fig. 6. In Fig. 6, “AND” is
used to suppress the power consumption in the ISTG during
normal operation. If the value of tmode is 1, “AND” supplies
the values of the PIs and the SR to the ISTG. In the normal
operation, the ISTG receives the constant value of zeros by
setting the value of tmode to 0. Note that, in the following
discussion, we do not consider the power impact of an ISTG
for simplicity.

Fig. 7 Classification of untestable faults.

3.2 Test Quality

In a sequential circuit, untestable delay faults generally ex-
ist. Here, we classify untestable delay faults in a controller
into five categories in terms of “logic level,” “function level”
and tout. The classification is shown in Fig. 7. Let F be a
whole set of faults. All the faults in a set of FC are untestable
in the combinational part of the controller if we consider
the SR as POs and PIs, i.e., any two-pattern test can be ap-
plied to the combinational part and any response from that
can be observed. These faults are called combinationally
untestable faults. Some combinationally testable faults in
FC (= F − FC) are untestable because the value of the SR is
restricted by the available state transitions in its synthesized
controller. Such faults belong to a set of FS l (⊃ FC). We
call these faults sequentially untestable faults at logic level
without tout. When a given STG is synthesized, some new
states and transitions are generally implemented in the syn-
thesized controller. This implies that some testable faults in
FS l are untestable if the original behavior of the given STG
is only considered. We classify these faults into a set of
FS f (⊃ FS l). These faults are called sequentially untestable
faults at function level without tout. Let us consider append-
ing tout to the synthesized controller here. Appending tout

makes some untestable faults in FS l and FS f testable. Thus,
FS l and FS f change into sets of Ft

S l
(⊃ FC) and Ft

S f
(⊃ Ft

S l
),

respectively. Let M be a given STG, and M′ be the STG
corresponding to a sequential circuit derived by synthesiz-
ing M. In Fig. 7, some faults in FS l can be activated by
using the behavior of M but the effects of the faults cannot
be propagated to a PO by using the behavior of M′. Such
faults can be detected by using the behavior of M if tout is
appended to the circuit. These faults belong to FS l − Ft

S f
.

In test generation for a given sequential circuit, a
sequential test generator (ATPG) tries to identify all the
untestable faults in FS l and to generate tests for all the
testable faults in FS l . The goal of this task can be achieved if
the ATPG has enough time to complete the task. However,
it is infeasible for a large circuit. For such a circuit, DFT
approaches should usually be used to facilitate test genera-
tion. In our method, tout is appended to a given circuit in
order to facilitate test generation. As a result, some faults
in FS l are made detectable. However, the number of these
faults is not so large [2]. Our method aims to detect faults in

IWAGAKI et al.: A DESIGN SCHEME FOR DELAY TESTING OF CONTROLLERS USING STATE TRANSITION INFORMATION
3203

Fig. 8 Flow chart of our method.

Ft
S l

and identify faults in Ft
S l

as much as possible in a rea-
sonable time. Although a fault in FS f − Ft

S l
itself does not

affect the performance of a controller under the original be-
havior of its STG and under the single fault assumption, we
try to detect the fault. The reason is as follows. Suppose that
there exist an untestable fault f ′ in FS f − Ft

S l
and a testable

fault f in FS f simultaneously in a circuit, and the effect of f ′
cannot be propagated to a PO but f ′ can be activated during
normal operation. In this case, if f ′ is not tested, we cannot
evaluate whether a test generated for f is invalidated by f ′.
This implies that f can be missed if there are no tests that
detect f in a generated test set. In order to avoid such a situ-
ation, we should test not only testable faults in FS f but also
untestable faults in FS f −Ft

S l
. Under the single fault assump-

tion, the above discussion dose not make sense. However,
from a practical point of view, it is very useful because there
can exist multiple faults in a circuit.

3.3 Flow of Our Method

Given a controller, the procedure of our method is per-
formed as Fig. 8. In the following paragraphs, we explain
each step of Fig. 8 in detail.
Step 1: For the CTGM of a given controller, we use a
combinational ATPG. In order to generate valid two-pattern
tests, we give some information (constraint) to a combi-
national ATPG. A constraint is defined as a vector pair
(IC

1 &S C
1 , IC

2 &S C
2). Each bit of a constraint can take the

value of 0, 1 or don’t care (X). When we give a constraint
to a combinational ATPG, the ATPG tries to generate two-
pattern tests under the constraint, i.e., for every X of the
constraint, a suitable value is specified.

A constraint C is derived as follows. First, a transition
T = (I, P,N,O) is selected from a given STG. Then, T is
used as C = (I&P, “Xs”&N). It is obvious that two-pattern
tests generated under this constraint can always be applied
by using the original behavior of the controller. Thus, we
can obtain valid two-pattern tests. Note that, because of the

presence of a delay fault f , we may fail to justify a valid two-
pattern test generated for f by using the original behavior.
However, it does not matter because any error induced by
f in the SR can always be observed from tout. In Step 1, if
we use all the constraints corresponding to the transitions in
the STG, we can identify all the untestable faults in Ft

S f
, and

valid two-pattern tests can be generated for all the faults in
Ft

S f
. The detected faults are dropped from the fault list.

Step 2: For the remaining faults in Step 1, we try to iden-
tify untestable faults in Ft

S l
and generate a test sequence for

faults in Ft
S f
− Ft

S l
by applying a sequential ATPG to the

controller with tout. Since the circuit has tout, test genera-
tion for it is easier than that for the original one. More-
over, the number of target faults in this step is much reduced
compared with the total number of faults. Nevertheless, this
task is very time-consuming. Therefore, we use a sequential
ATPG under a limited processing time (or a limited num-
ber of backtracks) per fault. This implies that, in this step,
we take into account faults that can be easily identified as
untestable faults and easily detectable faults. The detected
faults and the untestable faults are dropped from the fault
list. Notice that if there are no aborted faults in this step, we
do not need to perform Steps 3 and 4. This means that only
the pins of tout are added to the original controller as a DFT
element.
Step 3: We generate two-pattern tests, which are invalid,
for the remaining faults in Step 2 under no constraint by
using a combinational ATPG. This step can identify all the
untestable faults in FC .
Step 4: We design an ISTG to test the faults detected
in Step 3 because we do not identify whether these faults
belong to Ft

S l
− FC or not. An ISTG must realize func-

tions to apply invalid two-pattern tests to the combinational
part of the controller. Furthermore, it must also have func-
tions that make all of the invalid test states in the invalid
two-pattern tests reachable from the reset state. For exam-
ple, given n invalid two-pattern tests t1 = (I1

1&S 1
1, I

1
2&S 1

2),
t2 = (I2

1 &S 2
1, I

2
2&S 2

2), . . ., tn = (In
1&S n

1, I
n
2&S n

2), an ISTG
must realize the functions shown in the truth table (Table 1).
Note that, in Table 1, if there exist m invalid two-pattern
tests such that I1

1&S 1
1 = I2

1&S 2
1 = · · · = Im

1 &S m
1 and S i

2 � S j
2

(∀i, j, 1 ≤ i, j ≤ m, i � j), we need tsel to distinguish among
them. The bit width of tsel is 	log mmax
, where mmax is the
maximum number of two-pattern tests that satisfy the above
conditions.

We touch on a problem to reduce the area of an ISTG
here. If the truth table shown in Table 1 includes X values,
i.e., X values are included in two-pattern tests, we can make
use of them to reduce the area of an ISTG. This problem
is considered as a type of an input encoding problem [10].
Therefore, we could apply some heuristics [10] for the in-
put encoding problem to design an ISTG. However, this is
still an open problem. In this paper, it is assumed that two-
pattern tests generated in Step 3 do not include X values.
Step 5: In order to construct a test sequence for the origi-
nal circuit, we determine an order of applying all the gener-

3204
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

Table 1 Truth table of an ISTG.

Inputs Outputs

I1
1 &S 1

1 S 1
2

I2
1 &S 2

1 S 2
2

.

.

.
.
.
.

In
1 &S n

1 S n
2

Table 2 Distance matrix.

R t1 t2 t3 t4 t5
R — 2 4 1 3 2
t1 1 — 0 2 4 3
t2 1 −1 — 2 4 3
t3 1 3 5 — 4 3
t4 1 1 3 0 — 1
t5 1 3 5 2 4 —

ated two-pattern tests. Note that the test sequence generated
in Step 2 is applied to the circuit before or after applying
the test sequence obtained in this step. Here, we consider a
problem to construct the test sequence that has the minimum
length. It is solved as an asymmetric traveling salesperson
problem (ATSP) on a complete weighted directed graph rep-
resented by a distance matrix, where a vertex t corresponds
to a two-pattern test, an arc (ti, t j) corresponds to the path
between ti and t j, and the weight of the arc corresponds to
the distance from ti to t j. The distance d(ti, t j) means the
minimum clock cycles that are needed to apply the first vec-
tor of t j after applying ti. Note that if t j is a valid two-patten
test and the values of the second vector of ti and the first vec-
tor of t j are identical, the value of d(ti, t j) is −1. Thus, we
can construct a test sequence by solving the corresponding
ATSP.

For example, let us consider the ATSP for Fig. 4. In
Fig. 4, there are five test transitions. These test transitions
(1), (2), (3), (4) and (5) correspond to two-pattern tests t1, t2,
t3, t4 and t5, respectively. Let the reaching states after apply-
ing t1, t2, t3, t4 and t5 be S 4, S 3, S U , S 1 and S U respectively,
where S U denotes an unknown state. Table 2 shows the dis-
tance matrix for the five two-pattern tests. Note that, in this
table, d(R, t) (resp. d(t,R)) denotes the minimum distance
from the reset state R (resp. S a) to S b (resp. R), where S a

is the reaching state after applying t, and S b is the state in
applying the first vector of t. A solution of this problem is
R → t1 → t2 → t4 → t3 → t5 → R. From this solution, t1,
t2, t4, t3 and t5 are applied in that order.

4. Advantages of Our Method

4.1 Conventional Methods and Our Method

In this subsection, we summarize the proposed method and
conventional methods (standard scan and enhanced scan
ones). In the following discussion, we assume that MUXs
are used in the scan-based methods although there are some
ways to implement a standard scan FF (SSFF) and an en-
hanced scan FF (ESFF).
Standard scan method: Test generation for a controller

designed by this method requires a combinational ATPG
which supports the skewed-load [7] mode and/or the broad-
side [8] one. Generated two-pattern tests are applied to the
controller through a scan chain in the skewed-load fashion
and/or the broad-side one. The test application time is esti-
mated as nTPT(nSSFF + 2) + nSSFF, where nTPT and nSSFF are
the number of two-pattern tests and SSFFs, respectively. In
this method, each SSFF in the controller has an additional
MUX. Therefore, the area overhead is AMUX × nSSFF, where
AMUX is the area of the additional MUX. As a result, the
delay of an MUX are added as the additional circuit delay.
This method needs three additional pins. Note that we as-
sume that this method has a single scan chain for simplicity.
Enhanced scan method: We can generate tests for a
controller designed by this method by using a combina-
tional ATPG. The test application time is estimated as
2nTPT(nESFF + 1) + 2nESFF, where nESFF is the number of
ESFFs. Each ESFF in the controller has an additional MUX
and a hold latch (HL) [4]. The area overhead is, therefore,
(AMUX + AHL) × nESFF. Note that, although the area over-
head can be reduced by using some techniques (e.g., [3]),
we estimate it as the above equation for simplicity. The de-
lay penalty is the same as that of the standard scan method
because HLs themselves are not connected to the combi-
national part of the controller. Also, the pin overhead of
this method is the same as that of the standard scan method
because HLs can be controlled by the scan clock. Conse-
quently, the total number of additional pins is 3. Note that it
is also assumed that this method has a single scan chain.
Our method: In our method, we first generate tests for the
combinational test generation model of a given controller
by using a combinational ATPG under the constraints ex-
tracted from its STG. The test generation is repeated nc

times, where nc is the number of constraints. Next, we
generate a test sequence for the remaining faults under a
limited processing time by using a sequential ATPG. Then,
we try to generate two-pattern tests for the aborted faults in
the previous step under no constraint. The test application
time is determined by an order of applying all the gener-
ated two-pattern tests to the controller. The area overhead
is AMUX × nFF + AISTG, where nFF is the number of FFs,
and AISTG is the area of an ISTG. The proposed method has
the same delay penalty compared to that of the scan-based
methods because ISTGs are not used during normal oper-
ation. However, in order to perform at-speed testing, we
need to pay attention to the maximum delay of an ISTG.
The maximum delay of an ISTG depends on its structure.
In the next subsection, we evaluate the maximum delays
of ISTGs by experiments. We believe that the ISTG of a
given controller can be constructed with small maximum
delay compared to that of the original circuit by contriving
ways to synthesize the ISTG. The extra pins (tsel, tout and
tmode) are needed in our method. The sum of the bit width
of these pins is |tsel| + |tout| + 1. Notice that, in the proposed
method, if Steps 3 and 4 are not performed, the pin over-
head is |tout|. In a controller-data path circuit, if we consider
that its controller part is tested independently of its data path

IWAGAKI et al.: A DESIGN SCHEME FOR DELAY TESTING OF CONTROLLERS USING STATE TRANSITION INFORMATION
3205

part, the PIs and the POs of the data path can be used as tsel

and tout during testing of the controller, respectively. The
PIs of the data path are split and connected to tsel, and the
POs of the data path are shared with tout by using MUXs.
Let nDPI and nDPO be the bit widths of the PIs and the POs
of the data path, respectively. In the sharing of test pins,
if nDPI ≥ |tsel|, no additional test pins are required for tsel.
Otherwise, the number of additional test pins is |tsel| − nDPI.
For tout, if nDPO ≥ |tout|, we need one additional test pin
to control MUXs. Otherwise, we need to apply one two-
pattern test 	|tout|/nDPO
 times and observe the value of tout in
	|tout|/nDPO
 batches. In this case, the number of additional
test pins is 	|tout|/nDPO
. As a result of the sharing, although
the area overhead increases to AMUX × (nFF + |tout|) + AISTG,
the pin overhead decreases to (|tsel| − nDPI)+ 	|tout|/nDPO
+ 1
in the worst case. Since it is expected that nDPI ≥ |tsel| and
nDPO ≥ |tout| can be satisfied for practical RT-level circuits,
the pin overhead decreases to 2. It is also reduced to 1 if
Steps 3 and 4 are skipped.

We mention here some differences among the three
methods. In the scan-based methods, every FF is just re-
placed with an SSFF or an ESFF injudiciously, while ISTGs
of our method are designed depending on generated invalid
two-pattern tests. These features could cause the follow-
ing. Suppose that additional two-pattern tests are required
for some reasons (e.g., for fault diagnosis) after applying
the respective methods to a circuit. In the enhanced scan
method, these two-pattern tests can always be applied with-
out modification of the circuit. However, the other methods
could not cope with such a situation. The advantages of
our method are as follows. Since the scan-shift operation
is needed in the scan-based methods, at-speed test cannot
be performed, i.e., a slow clock is used except in activat-
ing delay faults. However, our method can always apply
tests at a rated clock speed. In this environment, the IR-drop
will be suppressed. Moreover, our method can be performed
flexibly according to a trade-off between hardware overhead
and test generation time. The trade-off is determined by the
number of constraints used in Step 1 of the proposed method
and by the limited processing time per fault in Step 2. In the
scan-based methods, all the FFs in a circuit are modified
independently of the circuit function. Consequently, many
untestable delay faults, which do not need to be tested, are
made detectable. This implies that yield loss may poten-
tially occur. In our method, over-testing is also caused by
tout and the ISTG. However, owing to Steps 1 and 2 of the
proposed procedure, our method can alleviate over-testing
compared with the scan-based methods.

4.2 Experimental Results

To evaluate our method, the following experiments were
performed on a Sun Blade 2000 workstation. We used the
MCNC ’91 benchmark circuits shown in Table 3. A reset
signal was appended to every benchmark circuit. Columns
“#PIs,” “#POs,” “#FFs,” “#States” and “#Arcs” denote the
number of PIs, POs, FFs, states in an STG, and transitions

Table 3 Circuit characteristics.

Circuit
#PIs #POs #FFs #States #Arcs Areaname

bbsse 7 7 4 16 72 295
keyb 7 2 5 19 189 459

kirkman 12 6 4 16 446 360
planet 7 19 6 48 163 937
s298 3 6 8 218 1,314 3,662
s420 19 2 5 18 155 122
sand 11 9 5 32 216 866
scf 27 56 7 121 407 1,378

in an STG, respectively. Column “Area” represents circuit
size. The size was estimated by Design Compiler (Synop-
sys), and the value of “Area” was calculated by consider-
ing the area of a 2-input NAND gate to be 2. During logic
synthesis, binary encodings were used. Note that, it is as-
sumed that each benchmark circuit has a data path, which
is controlled by the benchmark circuit, and the data path has
enough PIs and POs to be shared with additional test pins. In
the following experiments, we compared our method (NS)
to the standard scan technique (SS) and the enhanced scan
technique (ES). TestGen (Synopsys) and FlexTest (Mentor
Graphics) were used as a combinational ATPG and a se-
quential one respectively, and the transition fault model was
targeted. Note that, in SS and ES, we assumed that the both
methods have a single scan chain. For SS, we compared
only the hardware overhead because the ATPGs do not sup-
port the skewed-load mode and the broad-side one.

First, we show the test generation results. In this ex-
periment, our method was performed as follows. Column
“#Arcs” in Table 3 corresponds to the number of constraints
in Step 1 of our method. We used all the constraints in
Step 1, i.e., for each circuit, test generation was repeated
#Arcs times. In Step 2, the backtrack limit was set to 64,
which is not so large value. In Step 5, we used a sim-
ple algorithm to solve the ATSP and the processing time
was negligibly short. Table 4 shows the test generation re-
sults of the respective methods. Columns “#All,” “#Det”
and “#Unt” give the number of total faults, detected faults
and untestable faults, respectively. Columns “#TPT” and
“#Vec” list the number of two-pattern tests and the length of
the test sequence generated in Step 2. Columns “TGT [s],”
“FC [%]” (= (#Det/#All) × 100) and “TAT [CC (clock cy-
cles)]” denote test generation time, fault coverage and test
application time, respectively. For reference, in Table 5, we
list the test generation results of our method in more detail.
Columns “#Tgt” and “#Abt” give the number of target faults
and aborted faults in each step. Column “FC [%]” repre-
sents the cumulative results of fault coverage. In ES, there
was no aborted fault during test generation, i.e., 100% fault
efficiency was achieved in all the cases. Our method en-
countered no aborted fault in Step 3 for all the circuits. This
implies that our method also achieved 100% fault efficiency.
In Table 4, the value in each parenthesis represents the re-
sult in the case of removing untestable faults identified in
Step 2 from the fault list of ES in advance. This can evaluate

3206
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

Table 4 Test generation results.

Circuit
#All

#Det #Unt #TPT #Vec TGT [s] FC [%] TAT [CC]
name ES NS ES NS ES NS ES NS ES NS ES NS

bbsse 782
782

760
0

22
57

82 95
0.2

6.5
100.00

97.44
578

269(779) (3) (55) (0.4) (99.62) (558)

keyb 1,196
1,196

1,184
0

12
110

170 279
0.5

33.1
100.00

99.00
1,330

641(1,194) (2) (110) (0.7) (99.83) (1,330)

kirkman 944
944

937
0

7
86

144 174
0.4

16.6
100.00

99.26
868

514(944) (0) (90) (0.6) (100.00) (908)

planet 2,580
2,579

2,553
1

27
122

169 191
1.6

60.1
99.96

98.95
1,720

542(2,578) (2) (115) (1.9) (99.92) (1,622)

s298 10,260
10,259

10,256
1

4
561

1,653 858
16.6

1,219.6
99.99

99.96
10,114

4,069(10,259) (1) (564) (17.5) (99.99) (10,168)

s420 254
232

216
22

38
27

30 82
0.1

5.8
91.34

85.04
334

156(232) (22) (24) (0.1) (91.34) (298)

sand 2,408
2,408

2,388
0

20
146

286 103
2.0

33.1
100.00

99.17
1,762

695(2,405) (3) (142) (1.1) (99.88) (1,714)

scf 3,850
3,844

3,784
6

66
188

331 628
2.7

209.2
99.84

98.29
3,022

1,300(3,838) (12) (175) (3.6) (99.69) (2,814)

Table 5 Detail of each step.

Circuit
#TPT

name
#Tgt #Det #Unt #Abt or TGT [s] FC [%]

#Vec

Step 1 782 612 170 0 80 4.2 78.26
bbsse Step 2 170 132 32 6 95 2.3 95.14

Step 3 6 6 0 0 2 0.0 97.44
Step 1 1,196 905 291 0 170 21.7 75.67

keyb Step 2 291 279 12 0 279 11.4 99.00
Step 3 — — — — — — —
Step 1 944 889 55 0 144 14.8 94.17

kirkman Step 2 55 48 7 0 174 1.8 99.26
Step 3 — — — — — — —
Step 1 2,580 2,206 374 0 150 32.4 85.50

planet Step 2 374 264 48 62 191 27.6 95.74
Step 3 62 62 0 0 19 0.0 98.95
Step 1 10,260 9,398 862 0 1,541 680.3 91.60

s298 Step 2 862 513 9 340 858 538.7 96.60
Step 3 340 339 1 0 112 0.6 99.96
Step 1 254 160 94 0 30 5.0 62.99

s420 Step 2 94 56 38 0 82 0.8 85.04
Step 3 — — — — — — —
Step 1 2,408 2,322 86 0 284 30.5 96.43

sand Step 2 86 64 20 2 103 2.6 99.09
Step 3 2 2 0 0 2 0.0 99.17
Step 1 3,850 3,438 412 0 323 147.4 89.30

scf Step 2 412 307 90 15 628 61.8 97.27
Step 3 15 15 0 0 8 0.0 98.29

test application time in the both method fairly. Note that, in
“TGT” of ES, the value in each parenthesis does not include
the identification time for the removed untestable faults, and
in “FC” of ES, the value in each parenthesis was calculated
as (#Det/#All) × 100. In the test generation results, the test
generation time of our method was longer than that of ES
because we used all the constraints in Step 1, and sequential
test generation was performed. However, we achieved low
fault coverage under 100% fault efficiency compared with
that of ES. This means that ES detected faults that do not
need to be tested, and our method alleviated over-testing
compared with the enhanced scan method. Furthermore,
we obtained shorter test application time. Unlike ES, we

Table 6 Hardware overheads.

Circuit Area OH [%] Pin OH
name SS ES NS SS ES NS

bbsse 9.5 23.1 9.8 2 (3) 2 (3) 2 (5)
keyb 7.6 18.5 7.6 2 (3) 2 (3) 1 (5)

kirkman 7.8 18.9 7.8 2 (3) 2 (3) 1 (4)
planet 4.5 10.9 15.6 2 (3) 2 (3) 2 (7)
s298 1.5 3.7 23.3 2 (3) 2 (3) 2 (10)
s420 28.7 69.7 28.7 2 (3) 2 (3) 1 (5)
sand 4.0 9.8 4.2 2 (3) 2 (3) 2 (6)
scf 3.6 8.6 6.6 2 (3) 2 (3) 2 (8)

can perform at-speed test in our method. It implies that the
actual test application time of our method becomes much
shorter than that of ES. If it is assumed that the scan clock
speed of ES is 1/5 as slow as the rated clock speed, the test
application time of our method is 10 or more times faster, on
average, than that of ES. Notice that, if we use one-hot en-
codings during logic synthesis, the advantage of our method
will stand out further. This is because the test application
time of ES depends on the number of ESFFs.

Next, we show the hardware overhead of our method.
Columns “Area OH [%]” and “Pin OH” of Table 6 denote
the ratio of the area of additional hardware elements to that
of the original circuit if the sharing of test pins was not
adopted, and the number of additional test pins, respectively.
To calculate “Area OH,” we considered AMUX and AHL de-
scribed in the previous section as 7 and 10, respectively. In
Table 6, the area overhead of SS was the smallest of all.
However, for three cases, our method achieved the same area
overhead as that of SS, and low area overhead compared
with that of ES except two cases. Note that, as mentioned
in Sect. 3.3, if we utilize X values in two-pattern tests, the
area overhead can be reduced. Besides, in a controller-data
path circuit, the controller is generally much smaller than
the data path. Therefore, even if the area overhead of a con-
troller is large, it is not critical in the whole circuit. In the
result of pin overheads, our method required a large number
of additional test pins for each circuit, which is shown in a

IWAGAKI et al.: A DESIGN SCHEME FOR DELAY TESTING OF CONTROLLERS USING STATE TRANSITION INFORMATION
3207

parenthesis, if the sharing of test pins is not adopted. How-
ever, if the sharing of test pins is adopted for the respective
methods, the pin overheads can be reduced as shown in Ta-
ble 6.

Finally, we mention the maximum delays of ISTGs.
For every case, the maximum delay of the ISTG was smaller
than that of the original circuit. This means that our method
can always apply tests at a rated clock speed.

5. Conclusions and Future Work

This paper proposed a non-scan design scheme to enhance
delay fault testability of controllers. In this scheme, the orig-
inal behavior of a given STG is used during test application.
For faults that cannot be detected by using the original be-
havior, we append an extra logic, called an invalid test state
and transition generator (ISTG), to the original controller.
Our scheme can achieve short test application time and at-
speed testing. We showed that our method is effective com-
pared with scan-based methods by experiments.

Our future work is to develop ways to reduce hardware
overhead and make test generation under constraints more
efficient.

Acknowledgments

We would like to thank Prof. Michiko Inoue of Nara Insti-
tute of Science and Technology for her valuable comments.
This work was supported in part by 21st Century COE (Cen-
ter of Excellence) Program “Ubiquitous Networked Media
Computing” and in part by JSPS (Japan Society for the Pro-
motion of Science) under Grants-in-Aid for Scientific Re-
search B(2) (No. 15300018).

References

[1] Md. Altaf-Ul-Amin, S. Ohtake, and H. Fujiwara, “Design for hier-
archical two-pattern testability of data paths,” IEEE 10th Asian Test
Symp., pp.11–16, 2001.

[2] T.J. Chakraborty, V.D. Agrawal, and M.L. Bushnell, “Improving
path delay testability of sequential circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol.8, no.6, pp.736–741, Dec. 2000.

[3] K.-T. Cheng, S. Devadas, and K. Keutzer, “A partial enhanced-
scan approach to robust delay-fault test generation for sequential
circuits,” Proc. Int. Test. Conf., pp.403–410, 1991.

[4] B.I. Dervisoglu and G.E. Stong, “Design for testability: Using scan-
path techniques for path-delay test and measurement,” Proc. Int. Test
Conf., pp.365–374, 1991.

[5] M.T.-C. Lee, High-Level Test Synthesis of Digital VLSI Circuits,
Artech House, 1997.

[6] S. Ohtake, T. Masuzawa, and H. Fujiwara, “A non-scan approach
to DFT for controllers achieving 100% fault efficiency,” J. Electron.
Test., Theory Appl., vol.16, no.5, pp.553–566, Oct. 2000.

[7] J. Savir and S. Patil, “Scan-based transition test,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.12, no.8, pp.1232–
1241, Aug. 1993.

[8] J. Savir and S. Patil, “Broad-side delay test,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol.13, no.8, pp.1057–1064, Aug.
1994.

[9] J. Saxena, K.M. Butler, V.B. Jayaram, and S. Kundu, “A case study
of IR-drop in structured at-speed testing,” Proc. Int. Test Conf.,

pp.1098–1104, 2003.
[10] T. Villa, T. Kam, R.K. Brayton, and A. Sangiovanni-Vincentelli,

Synthesis of Finite State Machines: Logic Optimization, Kluwer
Academic Publishers, 1997.

Tsuyoshi Iwagaki received the B.E. degree
in electronic engineering from Osaka Institute
of Technology, Osaka, Japan, in 2000, and M.E.
degree in information science from Nara Insti-
tute of Science and Technology, Nara, Japan, in
2002. Presently he is a Ph.D. candidate in Grad-
uate School of Information Science, Nara Insti-
tute of Science and Technology. His research
interests are VLSI CAD, design for testability
and test generation. He is a member of IEEE.

Satoshi Ohtake received the B.E. de-
gree in computer science from the University
of Electro-Communications, Tokyo, Japan, in
1995, and M.E. and Ph.D. degrees in informa-
tion science from Nara Institute of Science and
Technology, Nara, Japan, in 1997 and 1999, re-
spectively. He was a Research Fellow of the
Japan Society for the Promotion of Science from
1998 to 1999. Presently he is an Assistant Pro-
fessor at Graduate School of Information Sci-
ence, Nara Institute of Science and Technology.

His research interests are VLSI CAD, design for testability, and test pattern
generation. He received IEICE (the Institute of Electronics, Information
and Communication Engineers of Japan) Information and Systems Soci-
ety 2001 Year Paper Award in 2002. He is a member of IEEE Computer
Society.

Hideo Fujiwara received the B.E., M.E.,
and Ph.D. degrees in electronic engineering
from Osaka University, Osaka, Japan, in 1969,
1971, and 1974, respectively. He was with
Osaka University from 1974 to 1985 and Meiji
University from 1985 to 1993, and joined Nara
Institute of Science and Technology in 1993. In
1981 he was a Visiting Research Assistant Pro-
fessor at the University of Waterloo, and in 1984
he was a Visiting Associate Professor at McGill
University, Canada. Presently he is a Professor

at the Graduate School of Information Science, Nara Institute of Science
and Technology, Nara, Japan. His research interests are logic design, dig-
ital systems design and test, VLSI CAD and fault tolerant computing, in-
cluding high-level/logic synthesis for testability, test synthesis, design for
testability, built-in self-test, test pattern generation, parallel processing, and
computational complexity. He is the author of Logic Testing and Design
for Testability (MIT Press, 1985). He received the IECE Young Engineer
Award in 1977, IEEE Computer Society Certificate of Appreciation Award
in 1991, 2000 and 2001, Okawa Prize for Publication in 1994, IEEE Com-
puter Society Meritorious Service Award in 1996, and IEEE Computer So-
ciety Outstanding Contribution Award in 2001. He is an advisory member
of IEICE Trans. on Information and Systems and an editor of IEEE Trans.
on Computers, J. Electronic Testing, J. Circuits, Systems and Computers,
J. VLSI Design and others. Dr. Fujiwara is a fellow of the IEEE, a Golden
Core member of the IEEE Computer Society, and a fellow of the Informa-
tion Processing Society of Japan.

