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PAPER Special Section on Discrete Mathematics and Its Applications

Digital Curve Approximation with Length Evaluation

Tetsuo ASANO†a), Regular Member, Yasuyuki KAWAMURA†, Student Member,
Reinhard KLETTE††, Nonmember, and Koji OBOKATA†, Regular Member

SUMMARY The purpose of this paper is to discuss length
estimation based on digitized curves. Information on a curve in
the Euclidean plane is lost after digitization. Higher resolution
supports a convergence of a digital image towards the original
curve with respect to Hausdorff metric. No matter how high
resolution is assumed, it is impossible to know the length of an
original curve exactly. In image analysis we estimate the length
of a curve in the Euclidean plane based on an approximation.
An approximate polygon converges to the original curve with
an increase of resolution. Several approximation methods have
been proposed so far. This paper proposes a new approximation
method which generates polygonal curves closer (in the sense of
Hausdorff metric) in general to its original curves than any of the
previously known methods and discusses its relevance for length
estimation by proving a Convergence Theorem.
key words: approximating sausage, digital curve, digital geom-
etry, length of a curve, multigrid convergence, perimeter

1. Introduction

Recent progress in the technology of high-quality image
representations supports finer grid resolutions, which
allow visually improved and more accurate images of
digitized curves. However, increase in grid resolution
is insufficient to keep all information available in the
original continuous image. This is caused by an infor-
mation loss due to digitization from a continuous space
into a discrete space. For example, the length of a curve
may change considerably by digitization. First of all, it
is not easy to define the length of a curve in a digital
image or to measure the ‘correct’ length of a digitized
curve. As we increase the resolution of an image, a
digitized curve looks visually closer to the original con-
tinuous one (reflecting convergence with respect to the
Hausdorff metric. Hausdorff metric measures the de-
gree of mismatch of two polygons). However, this does
not imply that the length of a digitized curve converges
to that of the original curve [5]. Figure 1 shows that
the length of the staircase remains constant and is not
converging towards the length of an original diagonal
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Fig. 1 The staircase curve is a good approximation of the diag-
onal line with respect to a Hausdorff metric. However, the length
of the staircase line remains constant.

line, no matter how large the grid resolution is chosen.
The digital approximation of a planar curve is one

of the important topics in image analysis. An approxi-
mation scheme is required to ensure convergence of esti-
mated properties such as diameter, moments, or curve
length towards true values (of the curve before digi-
tization) as the grid resolution increases. For exam-
ple, the digital straight segment approximation method
(DSS method, in short), see [3], [8], and the mini-
mum length polygon approximation method assuming
one-dimensional grid continua as boundary sequences
(GC-MLP method), see [9], are methods for which
there are convergence theorems when specific convex
sets are assumed to be given input data, see [5], [7],
[10]. This paper studies the convergence property of a
new minimum length polygon approximation method
based on so-called approximating sausages. Here after,
our method is refered to as AS-MLP method.

Motivations for studying this new technique are
as follows: the resulting DSS approximating polygon
depends upon starting point and the orientation of the
boundary scan, it is not uniquely defined, but it may be
calculated for any given digital object. The resulting
GC-MLP approximation polygon is uniquely defined,
but it assumes a one-dimensional grid continua as an
input polygon which is only possible if a given digital
object does not have cavities of width 1 or 2. The new
method generates a uniquely defined polygon, and it
can be computed for any given digital object.

Another advantage of our new method becomes
clear by studying resulting shapes. The approximated
curves obtained by the previous methods DSS and GC-
MLP have a Hausdorff distance at least (DSS), or ex-
actly (GC-MLP) equal to the grid constant from the
original curves. In a number of experiments we could
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statistically verify that approximated curves created by
DSS often have ‘sharp angles’ and those by GC-MLP
may be ‘shifted away’ from the original curve loca-
tion. Our new approximation scheme AS-MLP gen-
erates ‘better fitted’ shapes in many cases.

In this paper first we provide some preliminary def-
initions and propose our new approximation method
AS-MLP. Then, we prove a convergence theorem. Fi-
nally we compare this method with other methods by
discussing experimental results.

2. Preliminaries and Previous Works

Let r be the grid resolution defined as being the number
of grid points per unit length. We consider r-grid points
gr

i,j = (i/r, j/r) in the Euclidean plane, for integers i, j.
Any r-grid point is assumed to be the center point of
an r-square with r-edges of length 1/r parallel to the
coordinate axes, and r-vertices.

Let S be a simply-connected compact set in the
Euclidean plane, called real preimage. The frontier of
S defines the simple curve of interest. The set Cr(S) is
the union of all those r-squares whose center points gr

ij

are in S. We call this boundary ∂Cr(S) the r-frontier
of S. The frontier ∂Cr(S) may consist of several non-
connected curves even in the case of a convex set S. A
set S is r-compact iff there is a number r0 > 0 such that
∂Cr(S) is just one (connected) curve for any r � r0.
This definition of r-compactness has been introduced
in [6] in the context of showing multigrid convergence
of the DSS method.

Given a connected region S in the Euclidean plane
and a grid resolution r, the r-frontier of S is uniquely
determined. We consider r-compact sets S, and grid
resolutions r � r0 for such a set, i.e. ∂Cr(S), the fron-
tier of Cr(S), is just one (connected) curve.

DSS scheme: DSS segmentation algorithm traces
an r-frontier, i.e., an alternating sequence of r-vertices
and r-edges, and subdivides it into maximum length
digital straight segments. This algorithm detects for
each maximum length DSS(Digital Straight line Seg-
ment), the coordinates of its end points (two r-vertices)
and calculates the length of each DSS as the Euclidean
distance between these two points. The sum of the
lengths of these DSS’s is finally used as DSS estimator
of the perimeter.

Let S be a bounded subset of the Euclidean plane,
Ir(S) be the union of all closed r-squares completely
contained in the interior of S, and Or(S) be the union
of all r-squares having a non-empty intersection with
set S. The open set Or(S) \ (Ir(S) ∪ ∂Or(S)) is an
open r-boundary of set S.

An open r-boundary is finite, alternating sequence
of r-edges and r-squares if the set S is bounded. Open
r-boundaries consist of a finite number of r-squares and
r-edges. Any run around an open r-boundary passes
through an alternating sequence of r-squares and r-

edges.
GC-MLP scheme: GC-MLP algorithm makes the

shortest polygonal Jordan curve, which encircles Ir(S),
in the open r-boundary of S. The length of this curve
is used as GC-MLP estimator of the perimeter.

3. New Approximation Scheme AS-MLP

The digitization model for our new approximation
method is just the same as that considered in case of
the DSS method, that is, the r-frontier of S. In such a
case the r-frontier of S can be represented in the form
P = (v0, v1, . . . , vn−1) in which the vertices are clock-
wise ordered so that the interior of S lies to the right
of the boundary. Note that all arithmetics on vertex
indices is modulo n.

Let δ be a real number between 0 and 1/2r. For
each vertex of P we define forward and backward shifts:
A forward shift f(vi) of vi is a point on the edge
(vi, vi+1) at the distance δ from vi. A backward shift
b(vi) is that on the edge (vi−1, vi) at the distance δ from
vi.

For example, in the approximation scheme de-
scribed below we will replace an edge (vi, vi+1) by a
line segment (vi, f(vi+1)) interconnecting vi and the
forward shift of vi+1, which is referred to as the forward
approximating segment and denoted by Lf (vi). The
backward approximating segment (vi, b(vi−1)) is defined
similarly and denoted by Lb(vi). Refer to Fig. 2 for il-
lustration. Now we have three sets of edges, original
edges of the r-frontier, forward and backward approx-
imating segments. Based on these edges we define a
connected region Ar(S), which is homeomorphic to the
annulus, as follows:

Given a polygonal circuit P describing an r-
frontier in clockwise orientation, by reversing P we
obtain a polygonal circuit Q in the counterclockwise
order. In the initialization step of our approximation
procedure we consider P and Q as the external and
internal bounding polygons of a polygon PB homeo-
morphic to the annulus. It follows that the area of
this initial polygon PB zero, and as a set of points it
coincides with ∂Cr(S). In the next step, we add all for-
ward and backward approximating segments to P or Q
in order to increase the area of the polygon PB. For any
forward or backward approximating segment Lf (vi) or
Lb(vi), we first remove the part lying in the interior of
the current polygon PB and updating the polygon PB

Fig. 2 Definition of the forward and backward approximating
segments associated with a vertex vi.
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Fig. 3 Construction of approximating sausage and
approximation by shortest internal path.

by adding the remaining part of the segment as a new
boundary edge. The direction of the edge is determined
so that the interior of PB lies to its right. The resulting
polygon PB contains ∂Cr(S), and where the Hausdorff
distance between P and Q becomes non-zero, i.e., the
internal and external boundaries of PB do not touch
each others.

Definition 3.1: The resulting polygon PB is referred
to as the approximating sausage of the r-frontier of S
and denoted by Ar(S).

The width of such an approximating sausage de-
pends on the value of δ. It is easy to see that as far
as the value of δ is at most half of the grid size, i.e.,
less than or equal to 1/2r, the approximating sausage
Ar(S) is well defined, that is, it has no self-intersection.
It is also immediately clear from the definition that the
Hausdorff distance from the r-frontier ∂Cr(S) to the
boundary of the sausage Ar(S) is at most δ � 1/2r. In
this paper, we implicitly assume δ = 1/2r.

We are ready to define the final step in our AS-
MLP approximation scheme for estimating the length
of a digital curve. Our method is similar to that of the
GC-MLP introduced in [9].

Definition 3.2: Assume a region S having a con-
nected r-frontier. An AS-MLP curve for approximat-
ing the boundary of S is defined as being a shortest
closed curve γr(S) lying entirely in the interior of the
approximating sausage Ar(S), and encircling the inter-
nal boundary of Ar(S).

It follows that such an AS-MLP curve γr(S) is
uniquely defined, and that it is a polygonal curve de-
fined by finitely many straight segments. Note that
this curve depends upon the choice of the approxima-
tion constant δ. An example of such a shortest closed
curve γr(S) is given in Fig. 3.

4. Properties of Digital Curves

We discuss some of the properties of the approximat-
ing polygonal curve γr(S) defined above, assuming that
∂Cr(S) is a single connected curve.

Non-selfintersection: The AS-MLP curve γr(S) is de-
fined to be a shortest closed curve lying in the approx-
imating sausage. Since it is obvious from the definition

that the sausage has no self-intersection, the curve has
no self-intersection.

Controllability: The width of an approximating sausage
can be controlled by selecting a value of δ.

Linear complexity: Due to the definition of our curve
γr(S) the number of its vertices is at most twice the
number of vertices of the r-frontier.

Computational complexity: Assuming that a triangu-
lation of an approximating sausage is given, linear com-
putation time suffices to find a shortest closed path
within the sausage: we can triangulate an approxi-
mating sausage in linear time since the vertices of the
sausage can be calculated only using nearby segments.
So, linear time is enough to triangulate it. Then, we
can construct an adjacency graph, which is a tree, rep-
resenting adjacency of triangles again in linear time.
Finally, we can find a shortest path in linear time by
slightly modifying the linear-time algorithm for finding
a shortest path within a simple polygon.

5. Convergence Theorem

In this section we first prove the main result of this
paper about the multigrid convergence of the AS-MLP
curve based on the length estimation of the perimeter
of a given set S. The multigrid convergences of the DSS
and GC-MLP curves have been shown in [6].

Theorem 5.1: The length of the approximating
polygonal curve γr(S) converges to the perimeter of
a given region S if S is an r-compact polygonal convex
bounded set.

We begin a proof of this theorem by an investiga-
tion of some geometric properties of the r-frontier of a
convex polygonal region S and then provide a series of
lemmas so as to obtain Theorem 5.1.

We first classify r-grid points into interior and ex-
terior points depending on whether they are located
inside of the region S or not. Then, CHin is defined
to be the convex hull of the set of all interior r-grid
points. That is, CHin is the minimum convex polygon
including all interior points. CHout is defined to be the
convex hull of the set which is obtained by ‘expansion’
of the set of interior r-grid points. Here, by expan-
sion of a point set we mean including for each r-grid
point its four neighbors into the point set. See Fig. 4
for illustration.

Lemma 5.2: Given an r-compact polygonal convex
bounded set S, the approximating polygonal curve
γr(S) is contained in the region bounded by CHin and
CHout.

Proof The PB is contained in the region bounded by
CHin and CHout. ✷
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Fig. 4 Interior r-grid points (filled circles) and exterior points
(empty circles) with CHin and CHout.

Lemma 5.3: The perimeter of CHout is larger by
4
√
2/r than that of CHin.

Proof The r-grid points which are added by expansion
from r-grid points make CHout. We classify edges of
CHin into four groups by their slopes θ: (i) 315◦ <
θ � 45◦, (ii) 45◦ < θ � 135◦, (iii) 135◦ < θ � 225◦,
and (iv) 225◦ < θ � 315◦. An r-grid point (i, j) on the
convex hull CHin produces a new r-grid point (i+1, j),
(i, j + 1), (i − 1, j), or (i, j − 1) if it is an endpoint of
an edge of the first, second, third, and forth group,
respectivly. All other intermediate r-grid points along
those hull edges have the same property. Thus, an edge
of CHin in the first group (315◦ < θ � 45◦) slides
vertically down as an edge of CHout and an edge in the
second group (45◦ < θ � 135◦) slides horizontally to
the right, and so on. Since the r-grid point incident
to two edges of different groups slides vertically and
horizontally, the length of its associated edge is longer
than that of the original one by

√
2/r. There are four

such boundary points in total. Thus, we obtain the
lemma. ✷

This lemma implies that the difference between
the lengths of the two boundaries in an approximating
sausage is exactly 4

√
2/r if both of them are convex.

Now, we can prove the following lemma which will be
of crucial importance for proving the convergence the-
orem.

Next, we discuss a worst-case bound for perime-
ter estimates by AS-MLP. We represent below the r-
frontier as an alternating sequence of horizontal and
vertical edges by merging any two consecutive r-edges
having the same orientation, instead of an alternating
sequence of unit r-edges and r-vertices. Edges consist-
ing of more than one r-edge are called long edges. Due
to the convexity of the region S, any such sequence
must have the following four edges: (1) North horizon-
tal edge eN of the largest y-coordinate, (2) East vertical
edge eE of the largest x-coordinate, (3) South horizon-
tal edge eS of the smallest y-coordinate, and (4) West
vertical edge eW of the smallest x-coordinate.

Let eend
N be the last long horizontal edge on the r-

frontier we encounter before eE when we follow it from
the North edge eN in clockwise order. If there is no such

Fig. 5 A contradiction to the convexity of S.

long edge, eend
N is eN itself. Similarly, let estart

N be the
last long horizontal edge on the r-frontier we encounter
before eN when we follow it from eW in clockwise order.
If there is no such long edge, estart

N is eN . Then, the
North part of the r-frontier is defined as the part of it
from estart

N to eend
N . The East, South, and West parts

are similarly defined.
The following lemma is obtained from the convex-

ity of region in digital image.

Lemma 5.4: The North part of the r-frontier is well
defined and includes no long vertical edge if an original
set is convex.

Proof First of all, we observe that any long edge
must be followed by a unit edge when the edge turns
left. If there is a long edge following another long edge,
the exterior point between the edges is in the region S
because S is convex. This is a contradiction. If there is
a long vertical edge between eN and eend

N , an exterior
point causes similar contradiction. See Fig. 5. ✷

An approximating curve γr is not always convex
though S is convex. Fortunately, we can prove that the
concave part appears at most constant times.

Lemma 5.5: Given a convex region S in the contin-
uous plane, the closed curve γr(S), the approximation
of its boundary by AS-MLP contains at most 8 concave
parts.

Proof It is shown here that there is at most one con-
cave part between eN and eend

N . It is easy to prove
similar properties at the other 7 parts.

We set the origin as shown in Fig. 6 (below) and
investigate p and q such that γr(S) makes a concave
part. The coordinates of the three points P1, P2, and
P3 associated with a concave part of γr(S) are given
by P1( −p

4rp−r ,
2p

4rp−r ), P2(
q

4rq−r ,
2q−1
4rq−r ), P3(

4q2−2q
4rq−r ,

−2q+1
4rq−r ), respectively.

The condition for P2 lying below P1P3 can be
expressed as follows:

P1P2× P1P3 > 0⇔ 2q2 − (6p+ 1)q + 2p > 0.

Here, since p and q are natural numbers, P2 lies
below P1P3 if q > 3p.

This condition may be satisfied only at the corner
next to eN . At the other corners, q depends on p as
shown in Fig. 7. That is, q � p+ 1 in such occasion, so
a concave part does not appear. ✷

Due to the concave parts the length of the curve
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Fig. 6 Appearance of a concave part. (the size of pixel is 1
r
× 1

r
)

Fig. 7 Dependency of q on p. q cannot be longer than p + 1.
Since a long edge appears after a vertical unit edge, inner points
(black) must lie below the line and outer points (white) must lie
above the line.

γr(S) can be longer than that of the convex hull of
γr(S). We will argue how large the difference can be
for each concave part.

Lemma 5.6: The approximating curve γr(S) is
longer by at most 0.02334/r than the convex hull of
γr(S) at an concave part.

Proof Here is a sketch of the proof. See Appendix for
details. When the coordinates of three points P1, P2
and P3 are defined as before, the difference of γr(S)
and the perimeter of its convex hull can be computed
as d = P1P2 + P2P3− P1P3.

d is a function in p and q, which is monotonically
decreasing in p for any q. Since p and q are natural
numbers, we can see d < 0.02334/r. ✷

Combining the observations above, we have the
theorem required.

Lemma 5.7: When S is a finite convex region in the
Euclidean space, there is r0 such that the following con-
dition is satisfied for all r > r0: the approximating
curve γr(S) obtained by AS-MLP from Cr(S) forms a

simple polygon and its length lr satisfies

|Perimeter(S)− lr|
� (4

√
2 + 8× 0.0234)/r ≈ 5.84/r

where Perimeter(S) denotes the perimeter of S.

This theorem guarantees the convergence of the
perimeter of a convex region to its true length with
increasing resolution.

6. Visual Comparisons for Non-Convex
Regions

The previous theorem shows that AS-MLP can approx-
imate a convex region with a guaranteed upper error
bound for length estimates. However an effective ap-
proximation for general non-convex regions is expected
and AS-MLP can be applied to such regions. This sec-
tion gives actual comparisons of approximations scheme
for such general regions.

Figure 8 gives visual comparisons of the proposed
method with the existing schemes.

Here is an example to show superiority of AS-MLP
over DSS and GC-MLP. Consider a comb shape shown
in Fig. 9. Figure 10 illustrates the results produced by
DSS and GC-MLP where concave parts are extremely
narrow. It is seen that DSS makes notches and GC-
MLP fills concave parts, so these schemes are not ap-
propriate for such an image. However, AS-MLP does
not fill concavities. A standard AS-MLP with δ = 0.5
generates an approximating curve similar to that ob-
tained by DSS. An approximating curve by AS-MLP
becomes close to the simple boundary of the set of pix-
els Cr(S) for a smaller value of δ. On the other hand,
for a larger value of δ, an angular shape disappears. In
short, AS-MLP can control results by varying δ.

Figure 11 shows the result of approximations for
comb shape region, which looks like the same set as
the one in Fig. 9, for a four times finer resolution. Be-
cause of high resolution, GC-MLP can also approximate
without filling concave parts and DSS is the same as r-
frontier Cr(S). It is seen in Fig. 11 that AS-MLP can
control roundish apophysis. Thus, for a high resolution
image, standard AS-MLP approximates like GC-MLP
and for δ = 0, it does as DSS.

It may be understood in an example of “comb”
that, for high resolution image, every approximation
scheme makes a curve close to the r-frontier ∂Cr(S)
and they are quite similar to each other. For a low
resolution image, a complicated region is approximated
to that is quite different from the preimage. Figure 12 is
one of examples in which the convexities are so small to
approximate and convex and concave parts altanately
appear. It is well observed in Fig. 13 that AS-MLP
approximates more naturally than DSS and GC-MLP.
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Fig. 8 Different approximated curves created by the three
methods: DSS (left), GC-MLP (center), and AS-MLP (right).

Fig. 9 Comb shape. (the width of a concave part is 1/r)

Fig. 10 Approximating curves for Fig. 9. To the order from
the left DSS, GC-MLP, standard AS-MLP (δ = 0.5) and AS-
MLP with δ = 0.2.

Fig. 11 Approximating curves for a comb shaped region (the
same as Fig. 9) with fine resolution. From left to right: DSS,
GC-MLP, standard AS-MLP with δ = 0.5 and AS-MLP with
δ = 0.2.

Fig. 12 A region which has many small convex and concave
parts.

Fig. 13 Approximations of the object in Fig. 12. The results
shown above are ones by the previous schemes (left: DSS, right:
GC-MLP) and below are ones by AS-MLP. (left: δ = 0.5,
right:δ = 0.25)

7. Experimental Evaluation

We have seen above that the error by AS-MLP is
bounded in theory by 5.8/r for a grid resolution r
for convex polygons. To see its practical behavior we
have done experiments on various curves, which are de-

Fig. 14 Experimental objects.

Fig. 15 Experimental results. The performances of GC-MLP,
AS-MLP and DSS are arranged from left to right in each row in
the figures.

scribed below. Although we have restricted ourselves
to convex objects in a convergence theorem, we took
non-convex curves as well. Figure 14 illustrates a set of
objects used for experiments.

CIRCLE: the equation of the circle is (x− 0.5)2 +
(y − 0.5)2 = 0.42.

COMMA: the shape of “comma” is composed of
three circular arcs. The lower arc is a part of CIRCLE.
The upper arcs are circular arcs whose radii are half of
CIRCLE.
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CRESCENT: the crescent object is the remainder
of two circles with the two centers separated by 0.28.

SINC: the equation of “sinc” corresponding to the
upper curve is y = sin(16πx)

64πx . Other edges are parts of
SQUARE.

SQUARE: each edge of SQUARE is parallel to axis
and its length is 0.8.

We have implemented the three approximating
schemes, DSS, GC-MLP, and our AS-MLP for compar-
isons (DSS and GC-MLP based on source code provided
by the authors of [4]). We have computed the approx-
imating curve lengths against the true perimeter of a
given set S. The error EDSS of DSS approximating
scheme is defined by

EDSS =
P (S)− P (DSSS)

P (S)

where P (S) is the true perimeter of S and P (DSSS)
is the perimeter of the approximation polygon by DSS
scheme. EMLP and EASMLP are similarly defined.

Figures 15(a)–(e) show the errors for the listed ob-
jects used in the experiments. The performances of GC-
MLP, AS-MLP and DSS are arranged from left to right
in each row in the figures. It may be clear from these
graphs that AS-MLP has higher performance than GC-
MLP does, but DSS is the best among the three.

8. Conclusion

This paper proposes the AS-MLP scheme for a fi-
nite convex region and compares it with the previous
schemes of DSS and GC-MLP. The properties of the
AS-MLP scheme are: (1) more natural approximation
is obtained than by the previous schemes, (2) it is more
accurate than GC-MLP and (3) the resulting curve is
uniquely determined while DSS may produce differnt
curves depending on starting points and orientation.
The greatest advantage of AS-MLP is the controllabil-
ity of resulting shapes for lower resolution by parameter
variation.
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Appendix: Proof of Lemma 5.6

Proof First, it is shown that d = d(p, q) de-
creases monotonically in p for any q. For three
points P1, P2, P3 determining a concave part, we ro-
tate P3, P1, P2 to make P2P3 horizontal and let
P2 coincide with the origin in new coordinates. Let
these three points be mapped from P1, P2, P3 into
S(x, y), O, T (l, 0), respectively, and the line which S
moves on by increasing p be y = ax + b. Figure A· 1
illustrates this procedure. Note that x = x(p) satisfies
d
dpx > 0.

d = P1P2 + P2P3− P1P3 = SO + l − ST

=
√
x2 + y2 + l −

√
(x− l)2 + y2

=
√
x2 + (ax+ b)2 + l −

√
(x− l)2 + (ax+ b)2

Since

d

dx

√
x2 + (ax+ b)2 � d

dx

√
(x− l)2 + (ax+ b)2,

d reduces monotonically about p, Thus d is maximum
at p = 1.

Here, we recall

d(p, q) = P1P2 + P2P3− P1P3

=

√√√√√√√

(
q

r(4q − 1) +
p

r(4p− 1)

)2

+
(

2q − 1
r(4q − 1) −

2p
r(4p− 1)

)2

Fig. A· 1 Monotone decrease in p.



994
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.5 MAY 2003

+

√√√√√√√

(
2q(2q − 1)
r(4q − 1) − q

r(4q − 1)

)2

+
(
− 2q − 1
r(4q − 1) −

2q − 1
r(4q − 1)

)2

−

√√√√√√√

(
2q(2q − 1)
r(4q − 1) +

p

r(4p− 1)

)2

+
(
− 2q − 1
r(4q − 1) −

2p
r(4p− 1)

)2

and substitute 1 for p:

=

√√√√√√√

(
q

r(4q − 1) +
1
3r

)2

+
(

2q − 1
r(4q − 1) −

2
3r

)2

+

√√√√√√√

(
2q(2q − 1)
r(4q − 1) − q

r(4q − 1)

)2

+
(
2(2q − 1)
r(4q − 1)

)2

−

√√√√√√√

(
2q(2q − 1)
r(4q − 1) +

1
3r

)2

+
(

2q − 1
r(4q − 1) +

2
3r

)2

=
1

3r(4q − 1)
√
(7q − 1)2 + (−2q − 1)2

+
1

r(4q−1)
√
16q4−24q3+9q2+4(4q2−4q+1)

− 1
3r(4q−1)

√
(12q2−6q+4q−1)2+(14q−5)2

=
1

3r(4q − 1)
(√

53q2 − 10q + 2

+ 3
√
16q4 − 24q3 + 25q2 − 16q + 4

−
√
144q4 − 48q3 + 172q2 − 132q + 26

)
.

Every term is bounded.
The first term:√

53q2 − 10q + 2 �
√
53q if

1
5

� q.

The second term:√
16q4 − 24q3 + 25q2 − 16q + 4 � 4q2 − 3q + 2
if 0 � q.

The third term:

−
√
144q4 − 48q3 + 172q2 − 132q + 26

� −(12q2 − 2q).
Thus, we have

d(1, q) �
√
53q + 3(4q2 − 3q + 2)− (12q2 − 2q)

3r(4q − 1)

=
(
√
53− 7)q + 2
3r(4q − 1) .

This increases monotonically about q. So, we have

d(1, q) � lim
q→∞

(
√
53− 7)q + 2
3r(4q − 1) ≈ 0.2801

12r

=
0.02334

r
.
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