
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Digital Halftoning: Algorithm Engineering

Challenges

Author(s) ASANO, Tetsuo

Citation
IEICE TRANSACTIONS on Information and Systems,

E86-D(2): 159-178

Issue Date 2003-02-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4699

Rights

Copyright (C)2003 IEICE. T.Asano, IEICE

TRANSACTIONS on Information and Systems, E86-

D(2), 2003, 159-178.

http://www.ieice.org/jpn/trans_online/

Description

IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003
159

INVITED SURVEY PAPER Special Issue on Selected Papers from LA Symposium

Digital Halftoning: Algorithm Engineering Challenges

Tetsuo ASANO†, Regular Member

SUMMARY Digital halftoning is a technique to convert a
continuous-tone image into a binary image consisting of black and
white dots. It is an important technique for printing machines
and printers to output an image with few intensity levels or col-
ors which looks similar to an input image. This paper surveys
how algorithm engineering can contribute to digital halftoning
or what combinatorial problems are related to digital halfton-
ing. A common criterion on optimal digital halftoning leads to a
negative result that obtaining an optimal halftoned image is NP-
complete. So, there are two choices: approximation algorithm
and polynomial-time algorithm with relaxed condition. Main al-
gorithmic notions related are geometric discrepancy, matrix (or
array) rounding problems, and network-flow algorithms.
key words: approximation algorithm, combinatorial optimiza-
tion, matrix rounding, network flow

1. Introduction

The quality of color printers has been drastically im-
proved in recent years, mainly based on the develop-
ment of fine control mechanism. On the other hand,
there is no great invention on the software side of the
printing technology. Required is a technique to convert
a continuous-tone image into a binary image consist-
ing of black and white dots that looks similar to the
input image. Theoretically speaking, the problem is
how to approximate an input continuous-tone image
by a binary-tone image. Since this is one of the central
techniques in computer vision and computer graphics, a
great number of algorithms have been proposed to the
date (see, e.g., [8], [18], [24], [26], [28], [30], [49]). How-
ever, there have been few studies discussing reasonable
criteria for evaluating the quality of output binary im-
ages; maybe because the problem itself is very practi-
cally oriented. Actually, the most popular criterion is
to judge the quality by human eyes. It is desirable to
establish a good evaluation system for halftoning meth-
ods (instead of the “human eye’s judgment”), and to
handle the digital halftoning problem fully mathemati-
cally or algorimically. Unfortunately, to the author’s
knowledge there has been no attempt to investigate
computational complexities of the halftoning problem.
This paper surveys recent challenges of algorithm engi-
neers and describe some related problems.

Manuscript received February 8, 2002.
†The author is with the School of Information Sci-

ence, Japan Advanced Institute of Science and Technology,
Ishikawa-ken, 923–1292 Japan.

2. Known Basic Algorithms

Throughout the paper we put the following assump-
tions to simplify the discussion to investigate inherent
computational complexity of the halftoning problem.
We take as an input image an N ×N real-valued ma-
trix A = (aij), 0 <= aij <= 1 for each (i, j) and output
a binary matrix B = (bij) of the same size. Usually,
the intensity level of “black” is 0 while that of “white”
is 1. For color images, we repeat the same halftoning
process three times for each of R (Red), G (Green), and
B (Blue) components.

We briefly describe several popular halftoning al-
gorithms with their variations.

2.1 Simple Thresholding

Given an N×N array A of real numbers between 0 and
1, we want to obtain a binary array B of the same size
which looks similar to A, where entry values represent
light intensities at corresponding locations. The most
naive method for obtaining B is simply to binarize each
input entry by a fixed threshold, say 0.5. It is simplest,
but the quality of the output image is worst since any
uniform gray region could become totally white or to-
tally black depending on the intensity levels.

2.2 Ordered Dither

Instead of using a fixed threshold over an entire image,
we could use different thresholds. A simple way of im-
plementing this idea is as follows: We prepare anM×M
matrix of integers from 1 to M2. This matrix (dither
array) is tiled periodically to cover the image. Each
pixel in the image is compared with the corresponding
threshold from the dither array to decide which color
should be put at that location. Figure 1 shows the
dither matrix given by Bayer [8].

2.3 Dither Algorithm

Ordered dither algorithm tries to keep the average in-
tensity level between input and output images by us-
ing many different thresholds. However, it is also very
easy to define an input image for which the algorithm
produces an output image which looks totally different

160
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

from the input. For example, if intensity level at each
pixel is only slightly smaller than the corresponding en-
try in the dither matrix, the output image becomes to-
tally black. Dither algorithm to be described preserves
the average intensity level. It is achieved if the number
of white dots in an output image is about the same as
the sum of intensity levels in the input image.

The algorithm is as follows. We first compute the
total sum of intensity levels of all pixels (matrix ele-
ments) and round it to its nearest integer k. Then, we
partition the image plane into two or four disjoint re-
gions and distribute k white dots according to the sums
of intensity levels in the corresponding regions. Ties are
resolved arbitrarily. We iterate this process recursively
until a region is partitioned into pixels.

2.4 Error Diffusion

The dither algorithm is designed to preserve the average
intensity level between input and output images. There
is another standard algorithm called “error diffusion”
that also possesses the same property by propagating
the quantization errors to unprocessed neighboring pix-
els according to some fixed ratios. More precisely, pixels
are processed in a raster order, from left to right and
top to bottom. Each pixel level is compared with a
fixed threshold, 0.5 and round it up if it is greater than
or equal to the threshold and round it down otherwise.
The quantization error caused by the rounding is dif-
fused over the pixels around it with fixed ratios. For
example, if a pixel level is 0.7, it is rounded up to 1
and the error −0.3 is diffused to the unprocessed pixels
nearby. The ratios suggested by Floyd and Steinberg
in their paper [18] are shown in Fig. 2:

We can also distribute error over wider region. One
such pattern is given in Fig. 3.

This method certainly preserves the average inten-

1 33 9 41 3 35 11 43
49 17 57 25 51 19 59 27
13 45 5 37 15 47 7 39
61 29 53 21 63 31 55 23
4 36 12 44 2 34 10 42
52 20 60 28 50 18 58 26
16 48 8 40 14 46 6 38

64 32 56 24 62 30 54 22

Fig. 1 8× 8 dither matrix by Bayer.

• 7/16
3/16 5/16 1/16

Fig. 2 Diffusion ratios in error diffusion by floyd and steinberg.

• 7/48 5/48
3/48 5/48 7/48 5/48 3/48
1/48 3/48 5/48 3/48 1/48

Fig. 3 Diffusion ratios by Jarvis-Judice-Ninke [23].

sity level because the rounding error is distributed to
neighboring pixels. When the process terminates, the
difference between the sums of intensity levels in the
input and output images is at most 0.5.

This method not only preserves the average inten-
sity level but also gives excellent image quality in many

Fig. 4 Output images: Simple thresholding, ordered dither,
and error diffusion (color images).

ASANO: DIGITAL HALFTONING
161

34 48 40 32 29 15 23 31
42 58 56 53 21 5 7 10
50 62 61 45 13 1 2 18
38 46 54 37 25 17 9 26
28 14 22 30 35 49 41 33
20 4 6 11 43 59 57 52
12 0 3 19 51 63 60 44
24 16 8 27 39 47 55 36

Fig. 5 Matrix used for dot diffusion.

cases, but it tends to produce visible artifacts in an
area of uniform intensity, which are caused by the fixed
error-diffusing coefficients.

Figure 4 shows output images of simple threshold-
ing, ordered dither and error diffusion. Theoretically
the simple thresholding is too bad, but it can produce
meaningful pictures in many cases. Its serious draw-
back is poor reproduction ability of details. Ordered
dither is as fast as the simple thresholding and pro-
duces reasonable pictures, and thus it is popularly used
in cheap printers. Its drawback is visual artifacts due
to regular patterns. Error diffusion is much slower than
those algorithms, but it is much superior in the quality
of output images. It is unfortunate to produce visible
artifacts in a region with uniform intensity.

2.5 Dot Diffusion

Yet another drawback of error diffusion is its serial na-
ture. Since the last pixel (at the lower right corner
of an image) is affected by the first pixel (at the up-
per left corner), it is an inherently serial process, hard
to be parallelized. Dot diffusion algorithm proposed
by Knuth [24] tries to parallelize error diffusion. This
algorithm uses a matrix just like a dither matrix. An
example of such a matrix is shown in Fig. 5. The matrix
entries represent the order of processing. The matrix is
tiled periodically to cover the image. First, we binarize
all the pixels numbered 1 and propagate rounding errors
to their neighboring unprocessed pixels. This process
can be done in parallel. Then, we round all the pixels
numbered 2, and so on. It is easy to choose unprocessed
pixels. To round pixels numbered i, unprocessed pixels
are those neighboring pixels of numbers greater than i.
The pixel whose number is locally highest cannot dis-
tribute its rounding error over neighboring pixels. Such
a pixel is called a “baron.” The matrix of Fig. 5 has two
barons. We could design a matrix which has only one
baron, but it is known that it would not lead to good
results in experiments [24].

3. Variation of Known Algorithms with
Related Problems

3.1 Variation of Simple Thresholding

The serious drawback of the simple thresholding is poor

expression of intermediate intensity due to its indepen-
dent process at each pixel and its use of a fixed thresh-
old. One of the method to improve the expression is
to use random thresholds. Precisely, we generate white
Gaussian noise over an input image and use the noise
as threshold. This method is considered as variation
of ordered dither with a dither matrix with random
numbers. Thus, theoretically speaking, the expected
average intensity level of the output image is expected
to be equal to that of input image.

The same idea is popular in randomized algorithms
under a different name, i.e., randomized rounding [36],
[43], [44], in which a real number x, 0 <= x <= 1, is
rounded up with probability x. It is one of the standard
techniques in randomized algorithms. Unfortunately,
experimental results due to our implementation of the
algorithm are not so satisfactory.

3.2 Variation of Ordered Dither Algorithm

The previous subsection has described a rounding al-
gorithm using variable random numbers as thresholds
to generalize the simple thresholding using one fixed
threshold. We can use a table of random numbers in-
stead of generating a random number for each pixel.
Dither matrix corresponds to this table of random num-
bers. Small table size tends to generate visible arti-
facts. So, the largest possible table size would be bet-
ter. In fact, there is an algorithm along this idea, which
is known as a blue-noise mask algorithm [33], [50], [51],
[56] in general. This algorithm uses a large dither ma-
trix (blue-noise mask) of size, say 256× 256.

Properties of Dither Matrix
The performance of the ordered dither algorithm

heavily depends on a dither matrix used. Then, how
can we define an optimal dither matrix? The dither
matrix depicted in the previous subsection is defined
as follows [25].

First, starting from a 1 × 1 matrix D0 = [1], we
recursively define Dk(k = 1, 2, . . .) as follows:

Dk =
[
4Dk−1 − 3Uk−1 4Dk−1 − Uk−1

4Dk−1 4Dk−1 − 2Uk−1

]
.

Here, Uk is a 2k × 2k square matrix consisting of all 1s.
We have known how to construct the dither ma-

trix. Then what is a merit to use this dither matrix? In
other words, does it optimize anything? If the purpose
were only to distribute numbers 1 through 22k over the
2k × 2k matrix, there would be a number of different
ways. Imagine an artificial image of gradually increas-
ing intensity from left to right. During the transition
from dark to bright, the number of white dots should
gradually increase. This means that for any number i
between 1 and 22k those entries having numbers greater
than i must be as uniformly distributed as possible in
the dither matrix. The uniformity can be measured in

162
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

several different ways. One measure is based on the
ratio of the minimum pairwise distance against the di-
ameter of the maximum empty circle. Another possible
measure is based on the notion of discrepancy which is
related to the difference between the area and the rel-
ative number of white dots.

The above regular grid-like construction of the
dither matrix is optimal in the former measure since it
is constructed under the notion of incremental Voronoi
insertion. An optimal dither matrix under the former
measure is designed as follows. Before construction we
have to note that dither matrix is used to cover an en-
tire image by repeatedly arranging the matrix. First
we choose an arbitrary entry, say, the upper left corner
of the matrix, to assign number 1. Because of the peri-
odicity, it means that we have placed points numbered
1 on regular grids (8i, 8j), i, j = 0, 1, The entry 2
must be placed at a grid point farthest from the points
numbered 1. Such a place coincides with a Voronoi
vertex of the Voronoi diagram (see Fig. 6) for the set of
points numbered 1. Similarly, the location of the entry
3 should be chosen among the Voronoi vertices for the
Voronoi diagram of the set of points numbered 1 or 2.
This strategy is called “incremental Voronoi insertion”
which is rather easy to be implemented. If we resolve
ties appropriately we obtain the dither matrix.

Unfortunately, this dither matrix is not good
enough in practice. What is wrong? The measure may
be wrong. That is, the measure based on the ratio
between the minimum pairwise distance and the ra-
dius of the maximum empty circle may not be good
enough. The latter measure based on discrepancy sug-
gested above seems to be more promising. In the mea-
sure we take a number of regions of the same area. If
points are uniformly distributed, every such region con-

Fig. 6 Voronoi diagram.

tains roughly the same number of points in it. In the
discrepancy measure we can take regions of arbitrary
shapes. The former measure based on the minimum
pairwise distance is obtained if we take a family of cir-
cular regions. In this sense the discrepancy measure is
a generalization of the former measure.

To define the discrepancy measure, we introduce a
family F of regions over an image. For each region R in
F , let A(R) denote the area of R and card(R) denote
the number of points in R. Then, we take the difference

D(R) = |n ·A(R)− card(R)|,
as the discrepancy for the region R, assuming that the
area of the whole image is 1.

Consider a regular pattern in which n points are
placed in a

√
n ×

√
n grid. Take a rectangular region

R defined by two rows of points. Then, the area of the
rectangle is (1/

√
n)×1 = 1/

√
n. If we locate the rectan-

gle so that the two sides exactly coincide with two rows
of points, we have card(R) = 2

√
n. Otherwise, it con-

tains only one of rows of points, and so card(R) =
√
n.

Thus, we have D(R) = |n/√n − 2
√
n| = √

n in the
former case and D(R) = |n/

√
n −

√
n| = 0 in the lat-

ter case. In fact, we can prove that the maximum
value of D(R) is O(

√
n). Furthermore, it is known

that it remains O(
√
n) when n points are randomly dis-

tributed. However, there are deterministic algorithms
which achieves the discrepancy O(log n). Refer to the
textbooks by Chazelle [15] and Matoušek [31].

Packing Problem
The problem of distributing a specified number of

points as uniformly as possible is closely related to the
so-called packing problem in which we are required to
place a given number of congruent disks within a unit
square so that the radius of those disks is largest possi-
ble. It is known that this problem is equivalent to that
of placing a given number of points within a unit square
so that their pairwise minimum distance is maximized.
In fact, denoting by rk the largest radius of k congru-
ent disks within a unit square and by dk the largest
possible minimum pairwise distance between k points
within a unit square, we have

rk =
dk

2dk + 2
.

The packing problem is very interesting in itself
and in fact it has a long history (see for a survey [41]).
The first non-trivial result was reported in 1960s. Dur-
ing the last three decades the development in this field
has been steady but there was no break-through. Very
recently Nurmera and Österg

o
ard presented surprising

results [39]. Using a computer-aided proof technique,
they proved the optimality of the circle packing pat-
terns up to 27 circles. In addition, they provided best
packing patterns up to 50 circles [38]. More recently,
Casado-Garcia-Szabó-Csendes find more optimal solu-
tions and better packing results up to 100 circles [13],

ASANO: DIGITAL HALFTONING
163

[14].

Rotation of Dither Matrix
Another related problem comes from the human

perception. An interesting feature of human percep-
tion is that horizontal and vertical patterns are more
sensitive to human eyes than skewed patterns [40]. This
fact suggests us of rotating a dither matrix to have bet-
ter results. Then, the problem is how to design such a
rotated pattern consisting of M2 elements. This is not
so easy since a rotated pattern must be tiled to cover
the entire image and the area (number of entries) is
fixed. Figure 7 illustrates how a rotated dither matrix
covers the entire plane.

We shall explain how to design a pattern which
satisfies the following conditions:
(1) area condition: The rotated matrix must have
the same number of entries (or grid points) as that of
the original matrix, and those grid points form a con-
nected cluster without any hole.
(2) tiling condition: The rotated matrix must be
tiled to cover the entire grid plane, that is, the entire
plane must be tiled without any gap by repeating the
corresponding pattern.
(3) angle condition: The rotated matrix must be
bounded by four digital line segments. The angles of
those segments from the axes should be close enough to
given angles. Furthermore, the angle between two such
segments should be almost perpendicular.

The most important observation behind the
scheme for rotation is the following Pick’s theorem [35].
[Pick’s Theorem] The area of any simple polygon P
in a grid (not necessarily convex) whose vertices are
lattice points is given by

area(P) = Lin(P) + Lbd(P)/2− 1,

where Lin(P) denotes the number of grid points in the
interior of the polygon P and Lbd(R) that of grid points
on the boundary.

Fig. 7 Tiling the entire grid by a pattern.

Our objective is to design a rotated square regionR
consisting of M2 grid points rotated approximately by
an angle θ. We have four vertices denoted by A,B,C
and D, as shown in Fig. 8. Among the four vertices
only the vertex A is included in the rotated pattern.
Since this is a tiling pattern, the other three vertices
become the positions at which the A corner of the pat-
tern R is located. The rotated square R has four sides,
AB,AC,BD and CD. The grid points on the lower
sides AB and AC are included into the rotated pattern
R while those grid points on the upper sides BC and
CD are not. Here note that by symmetry the number
of grid points on the lower sides is equal to that of grid
points on the upper sides. See Fig. 8 for illustration.

Then, the number of grid points included in the
rotated pattern R is given by the sum of the number
of grid points lying in the interior of the rotated square
R = ABCD, half the number of grid points on the four
sides excluding the vertices, and 1 for the vertex A.
Thus, by the Pick’s theorem, the number of grid points
in the rotated square pattern R is

Lin(R) +
1
2
(Lbd(R)− 4) + 1

= Lin(R) +
1
2
Lbd(R)− 1

= area(R).

Now, given a size of a rotated pattern (the number
of grid points) and an angle θ, we can construct such a
rotated pattern as follows:

Designing a Rotated Pattern

(1) Find four integers a, b, c, and d such that

ad+ bc = M2,

b

a
∼=

c

d
∼= tan θ.

(2) Determine a quadrangle R = ABCD such that

1. The bottom, right, left, and top vertices of R
are A,B,C, and D.

2. The coordinates of the vertices B,C,D are de-
termined by (xA+a, yA+ b), (xA − c, yA+d),
(xA − c+ a, yA + d+ b), respectively.

Fig. 8 A tiling pattern R = ABCD and four parameters a, b, c,
and d defining it.

164
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

3. The grid points on the lower side are included
in R.

4. The grid points on the upper side are not in-
cluded in R.

5. Among the four vertices, only the bottom ver-
tex A is included in R.

Lemma 3.1: The rotated pattern R designed above
satisfies the three conditions mentioned above.

Proof
Area Condition is satisfied since the area of the ro-
tated pattern R is

(a+ c)(b+ d)− ab− cd = ad+ bc.

Tiling Condition: The pattern can tile the entire
grid. When we translate R so that the A corner co-
incides with the location of the vertex B, the side AC
of the translated pattern coincides with the side BD of
the pattern in the original location. By the definition
of the rotated pattern, they coincide with each other
and those grid points on the side are included only in
the translated pattern. It is just the same for the other
sides. Finally, there is no collision of vertices since we
have chosen only one vertex among the four vertices.
Angle condition: We can choose the four parame-
ters a, b, c, d so that the slopes of the sides AB and CD
are roughly equal to tan θ and those of the sides AC
and BD are roughly equal to tan(θ − π/2). Thus, we
can choose the best possible parameter values among
those values satisfying the area condition. ✷

Blue-noise Mask: a Huge Dither Matrix
One way to remove the artifact texture pattern of

the Ordered dither algorithm is to rotate the dither
matrix. There is another way. Just use a huge dither
matrix of size, say, 256×256. If we carefully design such
a huge dither matrix, artifact textures are not visible
anymore. The problems are how to design such a huge
dither matrix and the large storage requirement.

Such a huge dither matrix is generally referred to
as a blue-noise mask. Important is to remove periodic-
ity. Consider a dither matrix of size 256× 256. When
we have 256 intensity levels, each number between 1
and 256 appears 256 times in the matrix. For each
number p between 1 and 256, those entries numbered
1 through p should be distributed as uniformly as pos-
sible. A desired pattern is not a regular one but some-
what random-looking pattern as is explained using the
notion of discrepancy. There are several ways to incor-
porate randomness. One such method is the one called
“void-and-cluster” algorithm [51].

The algorithm starts with a random distribution of
points and gradually tries to reform the pattern for uni-
form distribution. There are two factors to break uni-
formity: cluster parts in which many points are located
closely to each other and void parts in which points are
sparsely distributed. An idea to achieve uniform distri-
bution is to remove a point in a cluster to put it at the

center of a void.
Such an operation is well supported in computa-

tional geometry. Given n points, the Voronoi diagram
is constructed in O(n log n) time [42]. When a point is
surrounded by many points, its associated Voronoi re-
gion tends to be small. Thus, cluster parts are found by
checking areas of Voronoi regions. On the other hand,
void parts correspond to sparse regions. Such locations
are found as centers of large empty circles with no point
contained. A largest empty circle can be found in linear
time in two ways, one based on linear programming [10]
and the other on randomization [42].

3.3 Variation of Dither Algorithm

A standard dither algorithm iteratively partitions an
image into four parts by orthogonal lines. Partitions by
orthogonal lines may produce visible artifacts because
of the sensitivity of the human visual system. One way
to resolve the problem is to use non-orthogonal line for
partition, or to use a rotated tiling pattern.

3.4 Variation of Error Diffusion

Error diffusion is one of the most successful algorithms
for digital halftoning and thus a number of variations
of the algorithm have been proposed so far.

One drawback of the error diffusion algorithm is
to generate artifact textures in a region of uniform in-
tensity. We could remove such textures by introducing
randomness in the diffusion ratios, but then it would
cause blurring effect. One way to resolve this problem
is based on region segmentation. That is, we distin-
guish those pixels in uniform intensity areas from those
near edges or parts characterized by drastic change of
intensity levels. In uniform areas we diffuse rounding
errors in a random manner and in edge parts we use the
conventional ratios or diffuse error only along directions
of edges [52].

Another idea to remove textures is to replace the
raster scan by a different order of scanning pixels. In
other words, we scan pixels in a different order. Such
orders are characterized by “space-filling curves” which
visit every pixel exactly once.

The idea of using space-filling curves for digital
halftoning is not new. Velho and Gomes [53] use space-
filling curves for cluster-dot dithering. Zhang and Web-
ber [57] give a parallel halftoning algorithm based on
space-filling curves. Peano curves are also used [55].
Asano, Ranjan and Roos [7] formulate digital halfton-
ing as a mathematical optimization problem and ob-
tain an approximation algorithm based on space-filling
curves. Asano [2] diffuses rounding errors along a ran-
dom space-filling curve. So, the digital halftoning tech-
niques based on space-filling curves seem to be promis-
ing.

Figures 9 show several representative space-filling

ASANO: DIGITAL HALFTONING
165

curves which are recursively defined.
A serious drawback of the traditional space-filling

curves is a severe constraint on image sizes, that is,
most of them are usually applied only to squares and
also feasible image sizes are quite discrete. Another
drawback is that their regularity causes some inherent
visible artifact textures. It seems to be hard to resolve
these problems as far as we rely on recursively defined
space-filling curves.

There are two algorithms for generating random
space-filling curves. One of them is based on random
spanning tree of a lattice graph [2] (see Fig. 10) and the
other is based on successive local changes of a curve [3].
Especially, Asano-Katoh-Tamaki-Tokuyama[3] defines
a local transformation of a space-filling curve into an-
other and discusses whether any two space-filling curves
can be mutually transformed when their entrance and
exit are fixed. More precisely, the following theorem is
established.

Theorem 3.2: Given two space-filling curves with
the same entrance and exit on a rectangular grid, we
can transform one from the other by applying local
transformations O(n3) times, where n is the number
of grid points, i.e., the length of the curve.

Another theoretical results on grammatical defini-

(a) Hilbert curve. (b) Sierpinski curve.

(c) Raster scan. (d) Serpentine rack.

Fig. 9 Representative space-filling curves.

(a) Spanning tree. (b) Traverse along
the tree.

Fig. 10 Maze which defines a random space-filling curve.

tions of space-filling curves and some other applications
are seen in the literature [45].

4. Digital Halftoning as a Combinatorial
Problem

4.1 Human Visual System

In the conventional halftoning algorithms their output
images have been evaluated by human eyes in many
cases and there are very few studies for quantitative
evaluation of the quality of output images. There are
many studies on image quality in computer vision (see
e.g., [34]) while most of them are for continuous-tone
images and not for binary images. In the Direct Bi-
nary Search [1] an operation to flip pixel values between
0 and 1 so that the difference between average inten-
sity levels in small regions is minimized between input
and output images. Geist et al. [19], who introduced
a mathematical framework into digital halftoning, uses
simulated annealing technique for optimization. An-
other algorithm considering human visual system is also
proposed [29].

A criterion common to those studies is the follow-
ing. LetA = (aij)i,j=1,...,N be an input continuous-tone
image. Each matrix element aij represents an intensity
between 0 and 1 at a pixel (i, j). The index i cor-
responds to the row index and j does to the column
index, as usual. For simplicity we assume an N × N
square matrix and denote the number of matrix ele-
ments (pixels) by n, i.e., n = N2.

An output image is a binary matrix B = (bij)
where each bij = 0, 1. An output image should look
like an input image. When we look at a pixel, what
we perceive is not the intensity level of the pixel but
average intensity level around the pixel. Thus, if we
computed the sum or squared sum of average intensity
levels at all pixels and took their difference between in-
put and output image, it would be a good criterion to
determine the similarity between the two images [29],
[34], [54]. It is known as Frequency Weighted Mean
Square Error (FWMSE). Formally, with a weight ma-
trix V = (v|k||l|), k, l = −M, . . . , 0, . . . ,M , we compute
the following sum:

W (A,B) =
∑

(i,j)∈[1,N]2

[
M∑

k=−M

M∑
l=−M

v|k||l|ai+k,j+l

−
M∑

k=−M

M∑
l=−M

v|k||l|bi+k,j+l

]2

.

Here, V = (v|k||l|), k, l = −M, . . . , 0, . . . ,M is an im-
pulse response that approximates the frequency char-
acteristics of the human visual system and M is some
small constant, say 3. An example of the matrix V is
the following:

166
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

V =

1 0.8 0.5 0.2
0.8 0.8 0.5 0.2
0.5 0.5 0.5 0.2
0.2 0.2 0.2 0.2

 .

With the distance measure between input and out-
put images, our goal is to find a binary image B that
minimizes the distance W (A,B) to a given input image
A.

4.2 Optimization Criterion

We can rewrite the above optimization criterion by in-
troducing a family of regions F = {Rij}, where Rij is
a square region centered at (i, j), i.e.,

Rij = {(i+ k, j + l)|k, l = −M, . . . , 0, . . . ,M}.

Defining A(Rij) and B(Rij) for a region Rij by

A(Rij) =
M∑

k=−M

M∑
l=−M

v|k||l|ai+k,j+l, and

B(Rij) =
M∑

k=−M

M∑
l=−M

v|k||l|bi+k,j+l,

our objective is to

minimize W (A,B) =
∑

Rij∈F
[A(Rij)−B(Rij)]2.

To analyze the computational complexity of digi-
tal halftoning as a combinatorial problem, we further
simplify the criterion with the following assumptions.
(1) First we neglect frequency characteristics of the hu-
man visual system, in other words, we assume that ev-
ery weight vkl is 1. Then, we can replace the weighted
average in each region just by the sum in the region.
(2) For the time being we replace the sum of squared
difference by the sum of difference, or by the maxi-
mum difference, that is, L2-metric by L1-metric or L∞-
metric. Later, we generalize it to that of Lp-metric.
(3) We generalize regions to compute the difference. We
allow not only square regions but rectangular regions
and even sets of pixels which do not form connected
regions. In other words, we treat regions just as sets of
pixels. Therefore, a family of regions is considered as a
part of input.

To have a general description of the problem, we
denote the set of all pixels by Gn:

Gn = {(1, 1), (1, 2), . . . , (N,N)}
= {p1, p2, . . . , pn, }

where n = N2 is the total number of pixels. Each
region in a given family is a subset of Gn. Hereafter a
family of regions is denoted by a symbol F .

Let A = A(Gn) be a set of all [0, 1] matrices with
the index setGn and B = B(Gn) be its subset consisting

of all {0, 1} matrices. For a region R in a family F , the
sum of elements of A and B in R are denoted by A(R)
and B(R), respectively:

A(R) =
∑
pi∈R

api , and B(R) =
∑
pi∈R

bpi .

Now, given a family F , the distances DistF1 (A,A′)
and DistF∞(A,A′) between two images A and A′ in A
is defined by

DistF1 (A,A′) =
∑
R∈F

|A(R)−A′(R)|, and

DistF∞(A,A′) = max
R∈F

|A(R)−A′(R)|.

Now, given a [0, 1]-matrix A as an input image,
the digital halftoning problem is defined as that of
finding a {0, 1}-matrix B that minimizes the distance
DistF1 (A,B) or DistF∞(A,B) to A.

4.3 Variation of Problems

The most interesting problem is to find an optimal bi-
nary image, but we are also interested in finding a rea-
sonable solution. More precisely, given an input image
A, a family F of regions, and some number d, we are
interested in finding a binary image B that satisfies

|A(R)−B(R)| < d

for every region R in F . If we have a polynomial-time
algorithm for determining the existence of such a bi-
nary image, we can obtain an optimal solution in the
DistF∞ distance in polynomial time in n, the number of
pixels, and m = |F|. We are also interested in finding
an approximate solution with some performance guar-
anteed.

In summary, problems we consider in this paper
are
(1) Optimal Digitization to find an optimal binary
matrix for a given real-valued matrix and a family of
regions,
(2) Feasible Digitization to determine whether there
is any binary matrix satisfying all the constraints asso-
ciated with regions in a given family F , and
(3) Approximate Digitization to give an approxi-
mate binary matrix with some performance guaranteed.

5. One-Dimensional Problem

5.1 Problem Definition

We shall begin with a basic case for the rounding
problem. We take a [0, 1]-valued one-dimensional ar-
ray A = (ai)i=1,...,n instead of a two-dimensional ar-
ray as an input, and a binary array B = (bj)j=1,...,n

of the same size as an output. Accordingly, a fam-
ily F of regions is a family of subsets of the index set

ASANO: DIGITAL HALFTONING
167

Gn = {1, . . . , n}. A basic family is the one of inter-
vals in the entire interval [1, n], which are regarded as
subsets consisting of consecutive indices. Among them,
the most basic family of intervals is that of all intervals
of length 2.

5.2 Feasibility Problem

We first consider the feasibility problem, which is for-
mally described as follows:

[Feasibility Problem] Given a [0, 1]-valued array
A = (ai)i=1,...,n of length n and a family F of all the
subintervals of length 2 of [1, n], determine whether
there is any binary array B of the same length such
that

|A(I) −B(I)| < 1

holds for any interval I in F .
Fortunately, the answer to the above question is

always affirmative and in fact it is easy to find such a
binary array in linear time. An algorithm is as follows:

[1D-Error Diffusion]
e = 0;
for i = 1 to n do{

if ai + e < 0.5 then bi = 0; else bi = 1;
e = ai + e− bi;

}
Let ei be the quantization error generated after

rounding ai in the above algorithm. Then, we can prove
by induction that each error e is between −0.5 and
0.5. Thus, for any interval I of length 2 the difference
between A(I) and B(I) is bounded by 1, that is, |A(I)−
B(I)| < 1. Furthermore, the same inequality holds
even for a family of all intervals of length k, 1 <= k < n.

The bound 1 is almost tight because we also have
the following interesting observation [4].

Lemma 5.1: For a family F of all intervals of length
k >= 2 there exists an input sequence A = (ai) for which
there is no binary sequence B attaining

max
I∈F

|A(I)−B(I)| < 1− 1
n− 1

. (1)

For k = 2, given a sequence (0, 1/(4p − 1), (4p −
3)/(4p − 1), (4p − 5)/(4p − 1), . . . , (2p − 2)/(4p −
1), 2p/(4p− 1)), the best bound is (4p− 2)/(4p− 1) =
1− 1/(4p− 1).

Another interesting result is known about the
number of feasible solutions. Recall that our con-
straint is that the rounding error |A(I) − B(I)| is
bounded by 1 for any interval I in a given family F .
How many different roundings satisfying the constraint
exist? Sadakane, Takki-Chebihi, and Tokuyama [46]
proved the following theorem that says there are at
most n+ 1 different roundings independently on k.

Theorem 5.2: Given a [0, 1]-valued array A = (aj)
of size n and an integer k < n, there are at most n+ 1
integer-valued array B = (bi) of the same size such that∣∣∣∣∣

∑
j∈R

aj −
∑
j∈R

bj

∣∣∣∣∣ < 1

for all intervals of length k.

5.3 Optimization Problem

We have seen that the feasibility problem is solved in
linear time. Then, what about the optimization prob-
lem?
[L∞-Optimization Problem] Given a [0, 1]-valued
array A = (ai)i=1,...,n of length n and a family F of all
subintervals of length 2 of [1, n], find a binary array B
of the same length that minimizes

max
I∈F

|A(I)−B(I)|.

This problem is also easily solved based on dy-
namic programming. In fact, we can solve a gener-
alized problem for a family of all intervals of length k.
An algorithm known as the Viterbi’s algorithm is one
such algorithm which runs in O(2kn) time and O(2kn)
space [7]. It is also possible to reduce the space com-
plexity from O(2kn) to O(n + 2k√n) without increas-
ing the running time [7]. Anyway, the running time is
polynomial in n while exponential in k, the length of
intervals.

A natural question is whether there is an algo-
rithm of polynomial complexity both in n and k. Such
polynomial algorithms are presented by the authors [4].
Precisely, two algorithms are proposed. Algorithm 1
runs in O(n1.5 log2 n) time and O(n) space, while Al-
gorithm 2 does in O(k2n logn) time and O(nk) space.
Algorithm 1 is advantageous for a large k value and Al-
gorithm 2 is better if k < n1/4. The basic idea of the
algorithms is a procedure to detect a negative cycle in
a network.

5.4 Generalization on Families

We could generalize the optimal quantization problems
1-2 in two ways. First we consider generalization of
families of intervals. That is, we allow intervals of dif-
ferent lengths. One basic family is that of intervals of
the form [1, i], that is, Fed = {[1, 1], [1, 2], . . . , [1, n]}.
Another one is associated with a tree structure. That
is, the whole interval [1, n] is partitioned into two (non-
intersecting) subintervals, and each of the subintervals
is also partitioned into two smaller intervals in a recur-
sive manner. This operation naturally corresponds to a
tree. For simplicity, this tree has all entries 1 through n
in its leaves. A family of intervals defined in this man-
ner is denoted by Ftree. See Fig. 11 for an example.

168
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

Fig. 11 A family of intervals of tree structure.

For the family Fed, the 1D-error diffusion gives us
a feasible solution, which is also optimal in many cases.

5.5 More General Framework

We have seen that the L∞-optimization problem in the
one-dimensional case is solved in polynomial time in
the array size if a family F of subsets of Gn is a set of
intervals in [1, n]. What is the reason for it? To explain
the reason we reformulate the problem in the form of
linear programming.

We are interested in the L1-optimization problem
instead of the L∞-optimization, which is described as
follows:
minimize

∑
Ii∈F |

∑
j∈Ii

aj −
∑

j∈Ii
bj |

subject to 0 <= aj <= 1, j = 1, . . . , n, and
bj = 0, 1, j = 1, . . . , n.
If we introduce new variables yi = B(Ii) and con-

stants ci = A(Ii) which depend only on input values,
the problem can be restated by
minimize

∑
Ii∈F |yi − ci|

subject to yi =
∑

j∈Ii
bj, i = 1, . . . ,m = |F|, and

bj = 0, 1, j = 1, . . . , n.
The constraints concerning the variables yi are rep-

resented in a matrix form:

(−I, C(Gn,F))Y = 0,

where I is an identity matrix and Y =
(y1, . . . , ym, bp1 , . . . , bpn)T , and C(Gn,F) = (cij) is the
incidence matrix defined by

cij =
{

1 if bpj ∈ Ii

0 otherwise.

The objective function is decomposed into m
piecewise-linear functions by a standard conversion
technique depicted in Fig. 12. That is, we break the
function |yi − ci| at integral points, �ci� and �ci�
so that the new function passes through the points
(�ci�, |�ci� − ci|) and (�ci�, |�ci� − ci|). Note that this
conversion does not change the value of the objective
function of an optimal solution since we are interested
in its values at integers. Let fi(yi) be the resulting
function. Then, the LP relaxation of the problem is of
the form:

Fig. 12 Conversion of the convex objective function into a
piecewise linear convex function.

minimize
∑

Ii∈F fi(yi)
subject to (−I, C(Gn,F))Y = 0.
The most fundamental observation behind the ar-

guments hereafter is the following theorem [22], [47]

Theorem 5.3 (Hoffman and Kruskal 1956): Let C
be a totally unimodular matrix and let B be an in-
tegral vector. Then the polyhedron P := {x|Ax <= B}
is integral.

Based on the theorem, our linear program has an
integer solution if the incidence matrix C(Gn,F) is to-
tally unimodular, where a matrix C is totally unimod-
ular if the determinant of each square submatrix of C
is equal to 0, 1, or −1.

Totally unimodular matrices have several inter-
esting properties characterized in the following theo-
rem [37]:

Theorem 5.4: The following statements are equiva-
lent:
1. C is totally unimodular.
2. The transpose of C is totally unimodular.
3. (C, I) is totally unimodular.
4. A matrix obtained by deleting a unit row (column)
of C is totally unimodular.

5. A matrix obtained by multiplying a row (column)
of C by −1 is totally unimodular.

6. A matrix obtained by interchanging two rows
(columns) of C is totally unimodular.

7. A matrix obtained by duplicating columns (rows)
of C is totally unimodular.

8. A matrix obtained by a pivot operation on C is
totally unimodular.

An m×n (0, 1) matrix is called an interval matrix
if in each column the 1’s appear consecutively; that is,
if cij = ckj = 1 and k > i+1, then cli = 1 for all l with
i < l < k. When we have a family of intervals, then
the associated incidence matrix is characterized by the
consecutive 1s’ property in rows, not in columns, it is
totally unimodular since the transposition preserves the
total unimodularity. Formally the following theorem is
known [37], [47]:

Theorem 5.5: Interval matrices are totally unimod-
ular.

ASANO: DIGITAL HALFTONING
169

This theorem gives us an answer to our question
on why the optimization problem on one-dimensional
arrays for a family of intervals is solved in polynomnial
time. The incidence matrix associated with a family
of intervals is characterized by consecutive 1’s property
on rows, and thus its transpose is an interval matrix.
Thus, by the facts 2 and 3 in the Theorem 5.4 and
Theorem 5.5 we can conclude that our incidence matrix
is totally unimodular.

Here is a small example. Let Gn = {1, 2, 3} and
F = {S1 = {1, 2}, S2 = {1, 3}, S3 = {2}}. The inci-
dence matrix finds totally unimodular since it satisfies
the consecutive 1’s property for a permutation (3, 1, 2).

On the other hand, there is no permutation giv-
ing the consecutive 1’s property for a family F ′ =
{{1, 2}, {1, 3}, {2, 3}}. In fact, the determinant of the
corresponding 3×3 matrix is−2, and thus the incidence
matrix is not totally unimodular. This small example
suggests that even one-dimensional version of the opti-
mization problem may have no polynomial-time algo-
rithm.

The bound (1) on the maximum rounding error is
sharpened in a more general framework. A pair (Gn,F)
is considered as a hypergraph. Then, it is called uni-
modular if the incidence matrix associated with (Gn,F)
is totally unimodular. We have just seen that a hyper-
graph induced by a family of intervals is unimodular.
As is stated above, the problem of minimizing the max-
imum rounding error can be formulated as an integer
programming problem, and the unimodularity implies
that its LP relaxation has an integral solution. A clas-
sical theorem of Ghouila-Houri [20] implies that totally
unimodularity is a necessary and sufficient condition
for the existence of a rounding with the maximum error
less than 1. Moreover, the following sharpened result
is given by Doerr [16]:

Theorem 5.6: If (Gn,F) is a unimodular hyper-
graph, there exists a rounding B = (bj) of A = (aj)
satisfying∣∣∣∣∣

∑
j∈R

aj −
∑
j∈R

bj

∣∣∣∣∣ <= min
{
1− 1

n+ 1
, 1− 1

m

}
(2)

for every R ∈ F , where m = |F|.

This theorem also holds for two-dimensional
rounding, and this bound is sharp. Furthermore, such
roundings can be computed efficiently [16].

5.6 Generalization on Metric

So far we have been interested in the objective function
of the form maxIi∈F |yi − ci| or

∑
Ii∈F |yi − ci|, which

corresponds to L∞ and L1 metrics, respectively. A nat-
ural extension of the objective function is the following
one based on Lp metric:

[∑
Ii∈F

|yi − ci|p
]1/p

,

where p is an integer >= 1. When p is finite, we can
replace the objective function by∑

Ii∈F
|yi − ci|p.

It is easy to see that this is a separable convex
function. Now, we can apply the ideas of Minoux [32]
and Hochbaum-Shanthiskumar [21] to replace |yi − ci|p
by a piecewise linear convex continuous function fi(yi)
which is equal to |yi − ci|p for each integral value of yi

in [0, |Ii|].
Polynomial-time solvability of our problem for Lp

metric is based on the following theorem [21]:

Theorem 5.7: [Hochbaum and Shanthikumar 1990]
Nonlinear separable convex optimization problem
min{

∑n
i=1 fi(xi) | Ax >= b} on linear constraints with

a totally unimodular matrix A can be solved in poly-
nomial time.

5.7 Algorithms Based on Network Flow

The observation in the previous subsection gives us a
new light to our problem. However, those observations
do not lead to lower-degree polynomial time algorithms.
To have such algorithms, we reduce the optimization
problem to that of finding a minimum-cost network
flow.

To begin with, we shall consider a family of all in-
tervals of length k, k >= 2, that is, F = {I1 = [1, k], I2 =
[2, k + 1], . . . , In−k+1 = [n − k + 1, n]}. We define a
network associated with Gn and F as follows. For each
interval Ii, i = 1, . . . , n−k+1, we create a node vi. We
have two kinds of edges, forward edges and backward
edges. For each i = 1, . . . , n−k we have a forward edge
ei = (vi, vi+1), which corresponds to the ith interval Ii.
Each backward edge is associated with an element of
an input array. The backward edge fi associated with
the ith element ai is directed from va to vb where Ia

is the first interval containing the index i and Ib is the
last one containing i. See Fig. 13.

For each forward edge ei associated with the ith
interval [i, i+ k − 1] we define

F (ei) =
i+k−1∑

j=i

aj ,

and for each backward edge fj associated with the jth
element aj we define

F (fj) = aj .

Using these values we define capacity cap(e) and
cost cost(e) for each edge e:

170
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

cap(e) = [�F (e)�, �F (e)�] and
cost(ei) = �F (ei)�−�F (ei)�, for each forward edge

ei, and
cost(fj) = 0, for each backward edge fj .

Now, it is easy to find a feasible flow in this net-
work. A flow defined by F (e) on every edge e is a
feasible flow since it trivially satisfies the capacity con-
straints and flow conservation law. Due to integrality
of the capacity of each edge, we can guarantee the exis-
tence of an integer solution satisfying the capacity con-
straint. This feasible flow gives us a feasible solution
to our rounding problem, that is, given an input array
A = (a1, . . . , an) and a family F of intervals on [1, n],
we can find a binary arrayB such that |A(I)−B(I)| < 1
for any interval I ∈ F .

Moreover, we can also solve the optimization prob-
lem by taking the costs of edges into accounts. What is
required is to find a minimum-cost network flow in the
network associated with an input array and a family
of intervals. Using the scaling algorithm by Edmonds
and Karp [17], we can find an optimal rounding in time
O(|E| logU(|E|+ |V | log |V |)) for a network with node
set V and edge set E and the largest integral capacity
U . In our case, |V |, |E| and U are all O(n), and thus
we have an O(n2 log2 n)-time algorithm.

The idea of a minimum-cost network flow is ex-
tended to other families of intervals. An easy exam-
ple is a family of intervals {[1, 2], [1, 3], [1, 4], . . . , [1, n]}.
An example of the corresponding network is shown in
Fig. 14. It is easily shown that there is a feasible flow in
the network as above. This guarantees the existence of
a feasible rounding as the 1D-Error Diffusion finds one
such rounding. Error Diffusion algorithm only guar-
antees that a solution obtained is always a feasible so-
lution for rounding, but the framework we have just
established gives us an optimal rounding in polynomial
time in the array size.

We have also introduced a family Ftree of intervals
with a tree structure. It is also easy to define a network
for this family. The family is obtained by recursively
partitioning an interval into two disjoint subintervals
until we reach unit intervals, which form leaves of the
tree. Tree edges are directed from the root to the leaves.

Fig. 13 A network for a family of all intervals of the same
length.

Then, we create another node and draw an edge from
every leaf. Finally, we draw an edge from the last node
to the root of the tree. We associate each tree edge
ei for an interval Ii with the value F (ei) =

∑
j∈Ii

aj

as before to define its capacity by [�F (ei)�, �F (ei)�].
For each edge ej incident to a leaf [j, j] or aj, we set
F (ej) = aj . Costs of tree edges are defined as before
and costs of remaining edges are defined to be none.
An example of the corresponding network is shown in
Fig. 15.

5.8 Generalized Intervals

So far we have implicitly assumed a natural index or-
dering, that is, from 1 to n, and defined intervals on
the ordering. However, there is no reason to fix the
index order. We could consider any index order (or
a permutation of (1, . . . , n)). It is easy to see that
the whole arguments so far in this section are not af-
fected by this change. This observation is important
because it suggests us to have more than one fam-
ily of intervals. To begin with we shall consider two
different index orderings Σ1 = (σ1(1), . . . , σ1(n)) and
Σ2 = (σ2(1), . . . , σ2(n)). Then, for each ordering we
can define a family of intervals F1 and F2. Surpris-
ingly, we can combine two optimization problems for
the two families.

Suppose that two families F1 and F2 are both de-

Fig. 14 A network for a family of intervals {[1, i], i = 1, . . . , n}.

Fig. 15 A network for a family of intervals with a tree
structure.

ASANO: DIGITAL HALFTONING
171

Fig. 16 A network for two tree structures.

Fig. 17 A network for two space-filling curves.

fined by tree structures. Let T1 and T2 be the trees
associated with F1 and F2, respectively. We direct the
edges in the two trees in an opposite way, that is, from
root to leaves in T1 and from leaves to root in T2. Then,
we connect the corresponding leaves with edges of no
cost. Finally, we connect the two roots by an edge with
no cost. The resulting network is shown in Fig. 16.

Now, it may be obvious that the same arguments
hold for the network. This construction also sug-
gests another important application to two-dimensional
rounding. Although it is described in detail in the fol-
lowing section, the two-dimensional rounding is in gen-
eral more difficult than the one-dimensional rounding.
This is the reason why space-filling curves are applied
to two dimensional rounding by converting the problem
from 2D to 1D. As is shown in [7], a polynomial-time
algorithm for rounding a one-dimensional array is ap-
plied to halftone a two-dimensional image. However,
the framework just described above suggests us to op-
timize roundings along two space-filling curves simul-
taneously. See Fig. 17.

In the same manner we can combine two tree struc-
tures defined on different index orderings. We have seen
a network defined for a family consisting of two differ-

Fig. 18 A network for a family defined by two interval sets
with tree structures on different index orderings.

ent tree structures in Fig. 16. They are defined on the
same index ordering, but this time we define two tree
structures on different index orderings. Thus, the part
connecting two trees are different. See Fig. 18.

6. Two-Dimensional Problem

6.1 Basic Observation

The main difference from the one-dimensional (1D) case
is, of course, connectivity of elements. In the 1D case
the connectivity of elements is defined by continuity in
a given index order and a set of connected elements
forms an interval on the ordering. On the other hand,
in the 2D case, the index ordering is usually fixed and
thus connectivity among elements is defined adjacency
in the matrix (or plane). Given an N ×N input real-
valued matrix A = (aij), we define the index set Gn

by

Gn = {(1, 1), (1, 2), . . . , (N,N)}
= {p1, p2, . . . , pn},

where n = N×N denotes the total number of elements
as before.

Then, a family F of regions over the N × N grid
is specified as a subset of Gn. Given a family F on Gn,
the incidence matrix C(Gn,F) = (cij) is defined by

cij =
{

1 if pi ∈ Rj ,
0 otherwise

The polynomial-time solvability of the optimiza-
tion problem depends on total unimodularity of the
incidence matrix. This is just the same as in the 1D
case. Now we have a question: what family of regions
is characterized by a totally unimodular incidence ma-
trix? In the 1D case the consecutive 1’s property is a
good property to characterize totally unimodular ma-
trices and that is why we have considered a family of

172
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

intervals. In the 2D case, if we ordered all the elements
in a sequence, then we could define intervals on the
sequence. An important difference here is that each el-
ement could be contained in many intervals in the one-
dimensional case while it is hard in the 2D case. Fixed
an index ordering, one element could be contained in
many intervals. Fixing an index ordering means con-
sidering some space-filling curve on the image plane.
If we have a raster order, we cannot have an interval
with two-dimensional spread. We could have intervals
corresponding to k×k regions for any k >= 1 by just ar-
ranging the pixels (matrix elements) so that the whole
sequence is partitioned into disjoint subsequences, each
forming a 2D region of area k2. So, a family of inter-
vals of the same length is meaningful in the 1D case
but not in the 2D case because shifting one position in
the 2D pixel sequence does not preserve 2D shapes of
the corresponding regions. This is the difficulty in the
2D case.

6.2 Some Special Cases

To the author’s knowledge the first result on matrix
rounding is the following theorem [9], [11], [12]:

Theorem 6.1: [Baranyai 1974] Given a real-valued
matrix A = (aij) and a family F of regions consisting
of all rows, all columns and the whole matrix, there
exists an integer-valued matrix B = (bij) such that
|
∑

(i,j)∈R aij −
∑

(i,j)∈R bij | < 1 holds for every R ∈ F .
Here is a simple example to explain the proposi-

tion. An input is a 3× 3 matrix A:

A =

 0.4 0.4 0.7

0.9 0.3 0.8
0.4 0.3 0.5

 .

For this matrix, we can define a network G as fol-
lows. G has two sets of nodes, one for all rows and the
other for all columns. Let r1, r2, and r3 be three nodes
for rows 1, 2, and 3. Similarly, let c1, c2, and c3 be those
for all columns. In addition to them, it has two special
nodes s and t. Then, for each row i, i = 1, 2, 3 we draw
an edge from s to ri and associate the corresponding
row sum

∑3
j=1 Aij with the edge. Similarly, for each

column j, j = 1, 2, 3 we draw an edge from cj to t and
associate the corresponding column sum

∑3
i=1 Aij with

the edge. We also connect all pairs of (ri, cj) and asso-
ciate the matrix element Aij with the edge. Finally, we
draw an edge from t to s and associate the total sum∑3

i=1

∑3
j=1 Aij with the edge. See Fig. 19.

If we determine the capacity of each edge by the
floor and ceiling values of its associated value, the graph
defined above is a network flow graph. It is also easy
to see that a set of associated values defines a feasible
flow on the network. Then, the integrality property of
the network flow, we can guarantee the existence of an
integer flow that satisfies the capacity constraint. This

Fig. 19 A network corresponding to a matrix.

integer flow gives us a binary matrix we want.
In general, the rounding error is highly dependent

on the family F of regions.
The following theorem is well-known [12]:

Theorem 6.2: Given a [0, 1]-valued matrix of size
n = N ×N and a family of all rectangular regions over
the matrix, for any binary matrix B of the same size
the maximum rounding error maxR∈F |A(R)−B(R)| is
O(log3 n) and Ω(logn). The same bounds hold for the
maximum rounding error for the family of all rectan-
gular regions containing the left-upper corner entry of
the matrix.

For a family Fk of all k×k square regions over the
N ×N matrix, we have the following theorem [6]:

Theorem 6.3: The maximum rounding error with re-
spect to Fk is O(log3 k) and Ω(log k). Indeed, these
bounds also hold for the union ∪k

j=1Fj.

It is combinatorially attractive to give better
bounds for a small fixed constant k, and the problem
seems to be highly nontrivial even for k = 2. A negative
result is known [4].

Theorem 6.4 (Asano-Matui-Tokuyama 2000):
Given a [0, 1]-valued matrix A, a family F of all 2 × 2
regions over the matrix, and an arbitrary small number
ε > 0, the problem of determining whether there is a
binary matrix B of the same size such that the maxi-
mum rounding error maxR∈F |A(R)−B(R)| is greater
than 1− ε or less than 1/2 + ε is NP-hard.

A positive result is also known [6].

Theorem 6.5: [Asano-Tokuyama 2001] Given a
[0, 1]-valued matrix A and a family F of all 2 × 2 re-
gions over the matrix, there is a binary matrix B of
the same size such that the maximum rounding error
maxR∈F |A(R)−B(R)| is bounded by 5/3.

Although no algorithm is given in the literature [6],
it is not so hard to derive a strongly polynomial-time
algorithm for finding such an approximate solution.

The above result may look rather easy. In fact, it
is trivial to achieve the error bound 2 since error caused
by the simple thresholding is 0.5 for each pixel and thus
the total error in any 2 × 2 region is at most 2. Thus
the improvement obtained in the theorem is only 1/3.

There is yet another observation concerning

ASANO: DIGITAL HALFTONING
173

bounds on the maximum rounding error. The maxi-
mum rounding error can be 0 since we may have an
integer-valued matrix as an input. Then, how large
can the maximum rounding error be? One non-trivial
bound is 1. That it, there is an input matrix for which
the maximum rounding error must be at least 1 for any
possible rounding. Suppose we have a matrix consist-
ing of 1/2 and 0 and a graph representing adjacency of
non-zero elements has a simple cycle of odd length (see
Fig. 20 for an example). To make the rounding error in
each 2 × 2 square region containing two 1/2 elements
less than 1, the corresponding region in an output ma-
trix must have exactly one 1 in it. But it is impossible
if the length of the cycle is odd. Thus, the rounding er-
ror must be at least 1 in this case, and we can achieve
the bound.

These results can be compared with the perfor-
mance of the error diffusion algorithm which propagates
rounding error at a pixel (i, j) to unprocessed pixels in
its neighborhood as follows:

• α
β γ δ

Then, the performance of the algorithm is de-
scribed by

Theorem 6.6: Given a [0, 1]-valued matrix A and a
family Fk of all k × k regions over the matrix, there
is a binary matrix B of the same size such that the
maximum rounding error maxR∈F |A(R) − B(R)| is
bounded by k + (k − 1)(γ + δ). Moreover, there is an
instance A such that the maximum rounding error ex-
ceeds k + (k − 1)(γ + δ) − ε for any ε > 0 if we apply
the error diffusion algorithm.

When k = 2, the rounding error is 2+γ+ δ, which
is 2.375 for the standard error diffusion algorithm with
γ = 5/16 and δ = 1/16. This implies that the error
diffusion may be worse than the simple thresholding in
the sense of the worst rounding error.

6.3 Optimization Algorithms

The Baranyai’s theorem only guarantees the existence
of the feasible solution to the rounding problem. How-
ever, applying the minimum-cost flow argument in the
previous section, we can solve the optimization version

Fig. 20 A matrix containing an odd cycle.

of the problem in the theorem, that is, we can find in
polynomial-time an integer-valued matrix that not only
satisfies all the constraints in the theorem but also op-
timizes some criterion associated with rounding errors.

There is another interpretation of the theorem us-
ing the notion of total unimodularity. In this case the
family of regions consists of all rows, all columns, and
the whole matrix. To prove that the incidence ma-
trix associated with this family is totally unimodular,
we introduce network matrices which is defined as fol-
lows [47], [48]:

Let D = (V,A) be a directed graph and let T =
(V,A0) be a directed tree on V . Let M be the A0 ×A-
matrix defined by, for a = (v,w) ∈ A and a′ ∈ A0:

Ma′,a

=

+1 if P (v,w, T) passes through a′ forwardly;
−1 if P (v,w, T) passes through a′ backwardly;
0 if P (v,w, T) does not pass through a′.

Here, P (v,w, T) denotes the unique v − w path in T .
Matrices arising in this way are called network matrices.
It is known that network matrices are totally unimod-
ular. More precisely see the following theorem:

Theorem 6.7: Network matrices have the following
properties:
1. They are closed under row and column deletions
and duplications.

2. They are closed under multiplication of a column
by −1.

3. If A is a network matrix, then (A, I) is a network
matrix.

4. They are closed under pivoting.
5. They are totally unimodular.

The incidence matrix associated with the family of
all rows, all columns, and the whole matrix is in fact a
network matrix. Given an N ×N matrix A, we build a
graph D(A) by the complete bipartite graph KN,N as-
sociated with N rows and N columns with two special
vertices s and t with edges connecting s to all row ver-
tices and t to all column vertices. A small example is
shown in Fig. 21. The, we build a tree T (A) defined by
the same vertex set and the edges from s to all column
vertices and those from all row vertices to t. Then, the
matrix M defined by D and T is a network matrix by
the theorem. Now, delete the columns for the graph
edges from s to row vertices and from column vertices
to t. Then, the resulting matrix remains a network
matrix, and it coincides with the incidence matrix as-
sociated with the family of all rows, all columns, and
the whole matrix.

Another useful observation is the following:

Theorem 6.8: The node-edge incidence matrix of a
bipartite graph is totally unimodular.

This theorem implies that a family of regions de-

174
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

fined by two different partitions of an image plane in-
duces a totally unimodular incidence matrix. Hereafter,
a family of regions is called a unimodular family if its
associated incidence matrix is totally unimodular. For-
mally, a family F = {R1, R2, . . . , Rm} is called a parti-
tion family (or a partition) of Gn if

⋃m
i=1 Ri = Gn and

Ri ∩Rj = ∅ for any Ri |= Rj in F . A k-partition family
is a family of regions on a matrix which is a union of k
different partitions of Gn.

A family F of regions on a grid Gn is a laminar
family if one of the following holds for any pair Ri and
Rj in F : (1) Ri ∩ Rj = ∅, (2) Ri ⊂ Rj and (3) Rj ⊂
Ri. The family is also called a laminar decomposition
of the grid Gn. In general, a k-laminar family is a
family of regions on a matrix which is a union of k
different laminar families. Laminar families have a nice
property [5]:

Theorem6.9 (Asano-Katoh-Obokata-Tokuyama2002):
A 2-laminar family is unimodular.

A connected region over a matrix is called a tile if
we can cover the matrix by repeated use of the region
without any overlap. A tile is represented by speci-
fying its components in a general form. For example,
a 2 × 2-tile with its upper left corner at even entry
(an entry such that the sum of its row and column
indices is even) over an N × N matrix is represented
by T1 = {(2i, 2j), (2i, 2j + 1), (2i + 1, 2j), (2i + 1, 2j +
1)}i,j=0,...,(N−1)/2.

Direct applications of Theorem 6.9 lead to various
unimodular families of regions. The family of regions
defined in Baranyai’s theorem is a 2-laminar family.
Also, take any 2−partition family consisting of 2 × 2
regions on a matrix. For example, take all 2×2 regions
with their upper left corners located in even points
(where the sums of their row and column indices are
even). The set of all those regions defines two partition
families Feven and Fodd where Feven (resp. Fodd) con-

(a) graph D.

(b) tree T .

Fig. 21 (a) A graph D associated with the family of regions in
the Baranyai’s theorem, and (b) a tree T with the same vertex
set.

sists of all 2 × 2 squares with their upper left corners
lying at even (resp. odd) rows (see Fig. 22). Since any
2× 2 region is partitioned into two 2× 1 regions, with
these 2×2 regions and 2×1 regions we have a 2-laminar
family.

A 3−partition family is not unimodular in gen-
eral. However, there are some families which are not
2-laminar but unimodular: For example, the set of all
rectangular rigid submatrices of size 2 (i.e., domino
tiles) is a 4-partition family, but it is unimodular.

6.4 Approximation Algorithm

In this section we consider upper bounds for the gener-
alized maximum rounding error of a real-valued matrix.
Formally, we define a distance DistFp (A,A′) between
two [0, 1]-matrices A and A′ of the same size and a
positive integer p by

DistFp (A,A′) =

[∑
R∈F

|A(R)−A′(R)|p
]1/p

.

What we are interested in is upper bounds on the Lp-
Discrepancy bound.
Lp-Discrepancy Bound:
Given a [0, 1]-matrix A ∈ A, a family F of subsets
of Gn, and a positive integer p, investigate upper and
lower bounds of

D(Gn,F , p) = sup
A∈A

min
B∈B

DistFp (A,B).

The pair (Gn,F) defines a hypergraph on Gn, and
D(Gn,F ,∞) is called the inhomogeneous discrepancy
of the hypergraph [12]. Abusing the notation, we call
D(Gn,F , p) the (inhomogeneous) Lp-discrepancy of the
hypergraph, and also often call DistFp (A,B) the Lp-
discrepancy measure of (quality of) the output B with
respect to F .

A recent result for a unimodular family is the fol-
lowing [5].

Theorem 6.10: If F is unimodular and p <= 3, for
any A ∈ A we have

min
B∈B

DistFp (A,B) <=
1
2
|F|1/p.

For the case p > 3, we have the following [5]:

Fig. 22 2-partition family of 2× 2 regions.

ASANO: DIGITAL HALFTONING
175

Theorem 6.11: If F is unimodular and p > 3, for
any A ∈ A we have

min
B∈B

DistFp (A,B)

<= (pp/(p+1)p+1+2p(p−1)/(p+1)p+1)1/p|F|1/p.

The method described above does not work for a
non-unimodular case. A simple but interesting family
defining a non-unimodular hypergraph is the family of
all 2×2 regions of A. The known upper bound is merely
5
3 |F|1/p [6]. The following result is obtained [5].

Theorem 6.12: For any A ∈ A(Gn), and a family F
of 2× 2 regions of the matrix, (1) we have

min
B∈B

DistF1 (A,B) <=
3
4
|F|,

and (2) we can find in polynomial time a {0, 1}-valued
matrix B such that∑

R∈F
|A(R)−B(R)|<=

∑
R∈F

|A(R)−B∗(R)|+ 9
16

|F|,

where B∗ is the (unknown) optimal solution.

Fig. 23 Experimental results for “Wool.” Output image by
error diffusion algorithm (above) and that by the algorithm based
on the minimum-cost network flow (below).

This is the first result concerning the performance
of an approximation algorithm for the matrix rounding
problem.

7. Experimental Evaluation

Most of the rounding algorithms described in this pa-
per have been implemented. Among them, the matrix
rounding algorithm based on the minimum-cost net-
work flow is implemented using the library functions
in LEDA [27] and compared with the error diffusion
algorithm in the quality of output images. The data
used for the experiments are Standard high precision
picture data created by the Institute of Image Elec-
tronics Engineers of Japan, which include four standard
pictures called, “Bride,” “Harbor,” “Wool,” and “Bot-
tles.” They are color pictures of 8 bits each in RGB.
Their original picture size is 4096 × 3072. In their ex-
periments they are scaled down to 1024 × 768 in or-
der to shorten the running time of the program. Fig-
ure 23 show experimental results for “Wool” to com-
pare our algorithm with error diffusion. See Figs. 24–
26 for other examples. The algorithm has been imple-
mented using a 2-laminar family defined by two tiles

Fig. 24 Experimental results for “Harber.”

176
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

Fig. 25 Experimental results for “Bride.”

among ones depicted in Fig. 27. Comparing the qual-
ity of output images between error diffusion and the
algorithm, the algorithm produces images better in the
sense of discrepancy. Although a low discrepancy image
does not always mean a better image in human-eyes’
criterion, the outputs are often favorite with humans
if we use the Lp measure (in our experiment, p = 1).
This is quite interesting, since it is difficult to have such
a nice-looking output by using the L∞ measure in the
experiments.

8. Concluding Remarks

This paper surveys recent studies on the optimization-
based evaluation of digital halftoning algorithms.

Fig. 26 Experimental results for “Bottles.”

(a) (b) (c)

Fig. 27 Three different partitions of the image plane (a) by
2 × 2 squares, (b) vertically shifted 2 × 2 squares, and (3) cross
patterns consisting of 5 pixels.

There are a lot of open problems that are interest-
ing from both of theory and practice. However, the
most important open problem might be to find the
best mathematical criterion which is faithful to the hu-

ASANO: DIGITAL HALFTONING
177

man visual system and simultaneously leads to some
polynomial-time algorithm.

Acknowledgment

The author expresses his sincere thanks to Takeshi
Tokuyama (Tohoku Univ.), Koji Obokata (JAIST),
Naoki Fujikawa (former JAIST student), Tomomi Mat-
sui (Tokyo Univ.), Naoki Katoh (Kyoto Uni.), Hisao
Tamaki (Meiji Univ.), Hiroshi Nagamochi (Toyohashi
Univ. Tech.), and Nobuaki Usui (Fujitsu Lab.) who
are coauthors of the author’s papers on digital halfton-
ing. He also would like to thank Hiro Ito (Kyoto Univ.),
David Mount (Maryland Univ., U.S.A.), Masashi Kiy-
omi (Tokyo Univ.), and Koji Nakano (JAIST).

The work has been partially supported by the Sci-
entific Grant-in-Aid by the Ministry of Education, Cul-
ture, Sports, Science and Technology of Japan and the
Kayamori Foundation of Informational Science and Ad-
vancement.

References

[1] M. Analoui and J.P. Allebach, “Model-based halftoning
by direct binary search,” Proc. SPIE/IS&T Symposium
on Electronic Imaging Science and Technology, vol.1666,
pp.96–108, 1992.

[2] T. Asano, “Digital halftoning algorithm based on random
space-filling curve,” IEICE Trans. Fundamentals, vol.E82-
A, no.3, pp.553–556, March 1999.

[3] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama, “Con-
vertibility among grid filling curves,” Proc. ISAAC98,
Springer LNCS 1533, pp.307–316, 1998.

[4] T. Asano, T. Matsui, and T. Tokuyama, “Optimal round-
ings of sequences and matrices,” Nordic Journal of Com-
puting, vol.7, no.3, pp.241–256, Fall 2000.

[5] T. Asano, K. Obokata, N. Katoh, and T. Tokuyama, “Ma-
trix rounding under the Lp-discrepancy measure and its
application to digital halftoning,” Proc. ACM-SIAM Sym-
posium on Discrete Algorithms, pp.896–904, San Francisco,
2002.

[6] T. Asano and T. Tokuyama, “How to color a checker-
board with a given distribution — Matrix rounding achiev-
ing low 2 × 2-discrepancy,” Proc. ISAAC01, pp.636–648,
Christchurch, 2001.

[7] T. Asano, D. Ranjan, and T. Roos, “Digital halftoning al-
gorithms based on optimization criteria and their experi-
mental evaluation,” IEICE Trans. Fundamentals, vol.E79-
A, no.4, pp.524–532, April 1996.

[8] B.E. Bayer, “An optimum method for two-level rendition of
continuous-tone pictures,” Conference Record, IEEE Inter-
national Conference on Communications, vol.26, pp.11–15,
1973.

[9] Z. Baranyai, “On the factorization of the complete uniform
hypergraphs,” in Infinite and Finite Sets, ed. A. Hanaj, R.
Rado and V.T. Sós, Colloq. Math. Soc. J’anos Bolyai 10,
pp.91–108, 1974.

[10] M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwartzkopf, Computational Geometry: Algorithms and
Applications, Springer-Verlag, 1997.

[11] B. Bollobás, Combinatorics, Cambridge University Press,
1986.

[12] J. Beck and V.T. Sös, “Discrepancy theory,” in Handbook

of Combinatorics Volume II, ed. R.Graham, M. Grötschel,
and L Lovász, Elsevier, 1995.

[13] L.G. Casado, I. Garcia, P.G. Szabó, and T. Csendes, “Pack-
ing equal circles in a square I—Problem setting and bounds
for optimal solutions,” in New Trends in Equilibrium Sys-
tems, pp.191–206, Kluwer Academic Publishers, Boston,
2000.

[14] L.G. Casado, I. Garcia, P.G. Szabó, and T. Csendes, “Pack-
ing equal circles in a square II—New results for up to
100 circles using the TAMSASS-PECS algorithm,” in New
Trends in Equilibrium Systems, pp.207–224, Kluwer Aca-
demic Publishers, Boston, 2000.

[15] B. Chazelle, The Discrepancy Method: Randomness and
Complexity, Cambridge University Press, 2000.

[16] B. Doerr, “Lattice approximation and linear discrepancy
of totally unimodular matrices — Extended abstract,”
SIAM-ACM Symposium on Discrete Algorithms, pp.119–
125, 2001.

[17] J. Edmonds and R.M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” J. ACM,
vol.19, pp.248–264, 1972.

[18] R.W. Floyd and L. Steinberg, “An adaptive algorithm for
spatial gray scale,” SID 75 Digest, Society for Information
Display, pp.36–37, 1975.

[19] R. Geist, R. Reynolds, and D. Suggs, “Markovian frame-
work for digital halftoning,” ACM Trans. Graphics, vol.12,
no.2, pp.136–159, 1993.

[20] A. Ghoulia-Houri, “Characterisation des matrices totale-
ment unimodulaires,” C.R. Acad/ Sci. Paris, vol.254,
pp.1192–1194, 1962.

[21] D.S. Hochbaum and J.G. Shanthikumar, “Nonlinear sepa-
rable optimization is not much harder than linear optimiza-
tion,” J. ACM, vol.37, no.4, pp.843–862, 1990.

[22] A.J. Hoffman and J.B. Kruskal, “Integral boundary points
of convex polyhedra,” in Linear Inequalities and Related
Systems, ed. H.W. Kuhn and A.W. Tucker, pp.223–246,
Princeton Univ. Press, Princeton, NJ, 1956.

[23] J.F. Jarvis, C.N. Judice, and W.H. Ninke, “A survey of
techniques for the display of continuous-tone pictures on
bilevel displays,” Computer Graphics and Image Process-
ing, vol.5, pp.13–40, 1976.

[24] D.E. Knuth, “Digital halftones by dot diffusion,” ACM
Trans. Graphics, vol.6, no.4, pp.245–273, 1987.

[25] Kodera ed., Practical Design and Evaluation of Halftoned
Images, Trikepps, 2000.

[26] D.L. Lau and G.R. Arce, Modern Digital Halftoning,
Marcel Dekker, New York, 2001.

[27] LEDA homepage: http://www.algorithmic-solutions.com/
as html/products/products.html.

[28] J.O. Limb, “Design of dither waveforms for quantized visual
signals,” Bell Syst. Tech. J., vol.48, no.7, pp.2555–2582,
1969.

[29] Q. Lin, “Halftone image quality analysis based on a human
vision model,” Proc. SPIE, vol.1913, pp.378–389, Feb. 1993.

[30] B. Lippel and M. Kurland, “The effect of dither on lumi-
nance quantization of pictures,” IEEE Trans. Commun.,
vol.COM-6, pp.879–888, 1971.

[31] J. Matoušek, Geometric Discrepancy, Springer, 1991.
[32] M. Minoux, Solving Integer Minimum Cost Flows with

Separable Cost Objective Polynomially, Mathematical Pro-
gramming Study 26, pp.237–239, 1986.

[33] T. Mitsa and K.J. Parker, “Digital halftoning technique
using a blue-noise mask,” J. Opt. Soc. Am., A/vol.9, no.11,
pp.1920–1929, 1992.

[34] M. Miyahara, K. Kotani, and V.R. Algazi, “Objective pic-
ture quality scale (PQS) for image coding,” IEEE Trans.
Commun., vol.46, no.9, pp.1215–1226, Sept. 1998.

178
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

[35] R. Morelli, “Pick’s theorem and Todd class of a toric vari-
ety,” Adv. Math., vol.100, pp.183–231, 1993.

[36] R. Motwani and P. Raghavan, Randomized Algorithms,
Cambridge University Press, 1995.

[37] G.L. Nemhauser and L.A. Wolsey, Integer and Combina-
torial Optimization, Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley & Sons, 1999.

[38] K.J. Nurmera and Österg̊ard, “Packing up to 50 equal cir-
cles in a square,” Discrete Comput. Geom., vol.18, pp.111–
120, 1997.

[39] K.J. Nurmera and Österg̊ard, “More optimal packings of
equal circles in a square,” Discrete Comput. Geom., vol.22,
pp.439–457, 1999.

[40] V. Ostromoukhov, R.D. Hersh, and I. Amidror, “Rotated
dispersed dither: A new technique for digital halftoning,”
Proc. SIGGRAPH ’94, pp.123–130, 1994.

[41] R. Peikert, D. Würtx, M. Monagan, and C. de Groot,
“Packing circles in a square: A review and new results,”
in System Modelling and Optimization (Proc. 15th IFIP
Conf., Zürich, 1991), ed. P. Kall, Lecture Notes in Con-
trol and Information Sciences, vol.180, pp.45–54, Springer-
Verlag, Berlin, 1992.

[42] F.P. Preparata and M.I. Shamos, Computational Geome-
try: An Introduction, Springer-Verlag, 1990.

[43] P. Raghavan, Randomized rounding and discrete ham-
sandwitch theorems, Ph.D. Thesis, Univ. of California,
Berkeley, 1986.

[44] P. Raghavan and C.D. Thompson, “Randomized rounding,”
Combinatorica, vol.7, pp.365–374, 1987.

[45] T. Roos, T. Asano, D. Ranjan, E. Welzl, and P. Widmayer,
“Space filling curves and their use in the design of geometric
data structures,” Theoretical Computer Science, vol.181,
pp.3–15, 1997.

[46] K. Sadakane, N. Takki-Chebihi, and T. Tokuyama, “Com-
binatorics and algorithms on low-discrepancy roundings of
a real sequence,” Proc. 28th ICALP, Springer LNCS2076,
pp.166–177, 2001.

[47] A. Schrijver, Theory of Linear and Integer Programming,
Wiley-Interscience Series in Discrete Mathematics, John
Wiley & Sons, 1986.

[48] W.T. Tutte, “Lectures on matroids,” J. Research of the
National Bureau of Standards (B), vol.69, pp.1–47, 1965.

[49] R. Ulichney, Digital halftoning, MIT Press, 1987.
[50] R.A. Ulichney, “Dithering with blue noise,” Proc. IEEE,

vol.76, no.1, pp.56–79, 1988.
[51] R. Ulichney, “The void-and-cluster method for dither array

generation,” IS&T/SPIE Symposium on Electronic Imag-
ing Science and Technology, Proc. Conf. Human Vision, Vi-
sual Processing and Digital Display IV, ed. Allebach, SPIE
vol.1913, pp.332–343, John Wiley, 1993.

[52] N. Usui and T. Asano, “Binary-coding pattern creating
method and apparatus,” Patent no.9951700, 1998.

[53] L. Velho and de M. Gomes, “Digital halftoning with space
filling curves,” Proc. SIGGRAPH ’91, pp.81–90, 1991.

[54] P.W. Wong, “A mixture distortion criterion for halftones,”
Proc. IS&T/OSA Optics and Imaging in the Information
Age, pp.187–191, 1996.

[55] I.H. Witten and M. Neal, “Using peano curves for bilevel
display of continuous-tone images,” IEEE Comput. Graph.
Appl., pp.47–52, 1982.

[56] M. Yao and K.J. Parker, “Modified approach to the con-
struction of a blue noise mask,” J. Electronic Imaging, vol.3,
no.1, pp.92–97, 1994.

[57] Y. Zhang and R.E. Webber, “Space diffusion: An improved
parallel halftoning technique using space-filling curves,”
Proc. SIGGRAPH ’93, pp.305–312, 1993.

Tetsuo Asano received the B.E.,
and M.E., and Ph.D. degrees in Engineer-
ing from Osaka University in 1972, 1974,
and 1977, respectively. He is currently a
professor of JAIST (Japan Advanced In-
stitute of Science and Technology). His
research interest includes Computational
Geometry, Discrete Algorithms, Combi-
natorial Optimization and their applica-
tions. Dr. Asano is a Fellow of ACM and a
member of IEEE, SIAM, IPSJ, and ORS.

He is a member of the editorial boards of Discrete and Computa-
tional Geometry, Computational Geometry: Theory and Appli-
cations, International Journal of Computational Geometry and
Applications, etc.

