
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Self-Reconfigurable Multi-Layer Neural Networks

with Genetic Algorithms

Author(s)
SUGAWARA, Eiko; FUKUSHI, Masaru; HORIGUCHI,

Susumu

Citation
IEICE TRANSACTIONS on Information and Systems,

E87-D(8): 2021-2028

Issue Date 2004-08-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4701

Rights

Copyright (C)2004 IEICE. Eiko Sugawara, Masaru

Fukushi, Susumu Horiguchi, IEICE TRANSACTIONS on

Information and Systems, E87-D(8), 2004, 2021-

2028. http://www.ieice.org/jpn/trans_online/

Description



IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004
2021

PAPER Special Section on Reconfigurable Systems

Self-Reconfigurable Multi-Layer Neural Networks with Genetic
Algorithms

Eiko SUGAWARA†a), Student Member, Masaru FUKUSHI††, and Susumu HORIGUCHI†,††, Members

SUMMARY This paper addresses the issue of reconfiguring multi-
layer neural networks implemented in single or multiple VLSI chips. The
ability to adaptively reconfigure network configuration for a given appli-
cation, considering the presence of faulty neurons, is a very valuable fea-
ture in a large scale neural network. In addition, it has become neces-
sary to achieve systems that can automatically reconfigure a network and
acquire optimal weights without any help from host computers. How-
ever, self-reconfigurable architectures for neural networks have not been
studied sufficiently. In this paper, we propose an architecture for a self-
reconfigurable multi-layer neural network employing both reconfiguration
with spare neurons and weight training by GAs. This proposal offers the
combined advantages of low hardware overhead for adding spare neurons
and fast weight training time. To show the possibility of self-reconfigurable
neural networks, the prototype system has been implemented on a field pro-
grammable gate array.
key words: self-reconfiguration, multi-layer neural network, weight train-
ing by genetic algorithm, FPGA

1. Introduction

Neural networks (NNs) are an attractive solution in various
applications such as signal and image processing, robotics,
and real-time control when no algorithmic approach is avail-
able. Those applications often require real-time processing
by large scale NNs consisting a number of neurons. Ex-
amples of hardware NN systems can be found in [1]–[4].
In today’s advanced VLSI technology, large scale NNs can
be implemented into single or multiple chips; consequently,
high-speed, low-power, large scale NNs can be realized in
an extremely small area. Such integrated NNs are expected
to be used as embedded systems in practical applications in
the real world.

One of the major issues in realizing hardware imple-
mented large scale NNs for real-time processing is a recon-
figuration mechanism to change the network configuration.
The purpose of reconfiguration is to adapt NNs to a given
application, changing the number of neurons and their con-
nections (also referred to as links, alternatively), and acquir-
ing the optimal weights between neurons. In practical use,
the presence of faulty neurons should be also considered in
the reconfiguration phase, because it is almost impossible
for large scale NNs to guarantee all the neurons to be fault-

Manuscript received December 8, 2003.
Manuscript revised March 4, 2004.
†The authors are with the School of Information Science,

Japan Advanced Institute of Science and Technology, Ishikawa-
ken, 923–1211 Japan.
††The authors are with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980–8579 Japan.
a) E-mail: esugawa@jaist.ac.jp

free over the run-time and this condition will generate in-
correct calculation results. So far, those two tasks, namely
changing network configuration and acquiring the optimal
weights, have been studied as different approaches in the
area of NNs.

Changing the network configuration of NNs is known
as a reconfiguration scheme using redundant elements. The
purpose of reconfiguration here is to remove the influence
of faulty elements from the NNs, keeping the same number
of working neurons. To achieve reconfigurable NNs, some
redundant elements, such as neurons and their connections,
are incorporated into original NNs in advance so that they
can replace faulty elements [5]–[9]. This approach is effec-
tive; however, it requires a huge chip area to incorporate
redundant elements for large scale NNs.

Acquiring the weights of NNs is widely known as the
training problem of NNs. The purpose of the weight train-
ing approach is to update each weight by a training algo-
rithm so that the NNs can output optimal/near-optimal re-
sponses [10]–[13]. Usually, a back-propagation (BP) algo-
rithm or its modified algorithms are used for the weight
training of NNs. The main drawback of this approach is the
large computational cost, which is significantly increased
for updating a large set of weights. To reduce the compu-
tational cost, parallel processing [14], [15] and genetic algo-
rithms (GAs) [16]–[19] are employed for weight training.

When a large scale NN integrated on a chip is used
as an embedded system, it is necessary to achieve self-
reconfigurable NN that can automatically reconfigure the
NN and acquire optimal weights without any help from
host computers. Usually, in embedded systems there is
not enough space for a host computer and reconfiguration
time should be kept small. Murakawa et al. [20] devel-
oped a dynamic reconfigurable chip for NNs consisting of
a RISC processor and 15 digital signal processors (DSPs).
The RISC processor mainly executes the GA to evolve the
DSP functions and the interconnection among them to em-
ulate neural processing. However, self-reconfigurable ar-
chitecture for NNs has not studied sufficiently. To achieve
self-reconfigurable NNs, both mechanisms of reconfigura-
tion and weight training need to be implemented and built
into the original NNs.

In this paper, we propose an architecture for a self-
reconfigurable multi-layer NN employing both reconfigu-
ration with spare neurons and weight training by GAs. A
time multiplexing technique and a common bus architecture
are adopted in order to significantly reduce both the wiring



2022
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

area and the number of interconnections. GA is adopted
in order to achieve a lower computational cost for weight
training. This self-reconfigurable NN offers the combined
advantages of low hardware overhead for adding spare neu-
rons and fast weight training time. To show the possibility
of self-reconfigurable NNs, the prototype system is imple-
mented on a field programmable gate array (FPGA).

The rest of this paper is organized as follows: Section 2
describes the system architecture for the proposed reconfig-
urable multi-layer NN using spare neurons and GAs. Sec-
tion 3 presents a reconfiguration method and the detailed
procedures of function shifting and weight training by GAs.
Section 4 shows the effectiveness of weight training by GAs
in simple pattern recognition problem. Section 5 reports
the hardware implementation of the prototype NN and GA
training scheme on a commercial FPGA. Finally, Sect. 6
concludes the paper.

2. System Architecture

Throughout this paper, attention is focused on multi-layer
NNs since they have wide application areas, in particular, in
signal and image processing. For simplicity, we concentrate
on a three-layer NN, which is a multi-layer NN with a single
middle layer, but our approach can be extended to NNs hav-
ing more middle layers. Figure 1 shows a three-layer NN
example of a multi-layer NN. Each neuron in the middle
layer is connected with all neurons of its adjoining layers by
weighted links. Let us introduce the following denotations:

L: number of neurons in the input layer,
M: number of neurons in the middle layer,
N: number of neurons in the output layer,

Then we call the three-layer NN, which has L, M, and N
neurons in its respective layers, as an L-M-N network and
represent it as NN(L,M,N). In this network, the total num-
ber of connections is LM + MN, and adding one neuron to
the middle layer involves L+N additional interconnections.
This is why large scale L-M-N networks require a huge chip
area for implementing a large number of links.

In order to reduce the number of connections, we use
a common bus architecture and a time multiplexing tech-
nique. The main idea for reconfigurable multi-layer NNs is a
combination of changing network configuration and weight
training by GAs. Figure 2 shows the proposed reconfig-
urable multi-layer NN, which consists of two parts: an NN
with spare neurons and a weight training by GAs.

In the NN part in Fig. 2, each layer is connected via a
common bus and the output of a neuron is fed to all neurons
in the next layer by employing a time multiplexing tech-
nique. A selector, placed between each layer, chooses one
output of a selected neuron in the previous layer and simul-
taneously inputs it into all neurons in the next layer. Note
that each neuron in the input layer corresponds to an input
pin. Neurons in the middle and the output layers have reg-
isters to hold weights assigned by the weight controller. A
set of weights for each neuron is stored in the weight table.

Fig. 1 An example of multi-layer NN with a single middle layer.

Fig. 2 System architecture of fault tolerant multi-layer NN.

Some spare neurons are added to the middle and the output
layer to replace the function of faulty neurons in the same
layer. Let s and t be the number of spare neurons in the
middle and the output layers, respectively. Then physical
network constitution, which include spare neurons, is repre-
sented NN(L,M,N) = NN(l,m + s, n + t), where l, m, and
n are the number of neurons required for execution in each
layer. The structure of a spare neuron is the same as that
of an ordinary neuron. The number of spare neurons in the
middle and the output layers can change according to the re-
quirements of specific applications, therefore, it is possible
to reconfigure the NN to an arbitrary network size.

In the training part, weights at the middle and the out-
put layers are updated by a GA. In contrast to the well-
known BP algorithm, training time of GA is much faster
without reducing training accuracy [19]. The training part
consists of a GA processor and a chromosome memory. The
chromosome memory is a buffer to store chromosomes ob-
tained by GA execution. The best chromosome is stored in
the weight table of the NN part and used as the weights for
each neuron when the NN part is running.

Details of the faulty neuron replacement procedure and
training by GA are described in the next section.



SUGAWARA et al.: SELF-RECONFIGURABLE MULTI-LAYER NEURAL NETWORKS WITH GENETIC ALGORITHMS
2023

3. Reconfiguration of Neural Networks

3.1 Fault Model

The ability to adaptively reconfigure network configuration
for a given application, considering the presence of faulty
neurons, is a very valuable feature in a large scale NN. Here,
we define our fault mode. In this architecture, all neurons in
the middle and the output layers, and the associated parts
such as registers to hold weights and wiring to the neuron,
are assumed to be faulty. All of those faults can be treated as
faults of the associated neuron because their occurrence af-
fects calculation of neuron and results in outputting a wrong
value. The faulty neuron that we consider in this paper is
a neuron which outputs a value different from the expected
one. An expected output is that obtained when there is no
fault on neuron, its links, and weights. We assume that ex-
cept at the input layer, each neuron has a fault detection cir-
cuit which can detect faults associated with the neuron. One
simple way to realize such circuits may be replication of
whole function of a neuron to compare the outputs. How-
ever, a detailed discussion of the detection circuit is out of
the scope of this paper.

Actually, all neurons, connections, weights, and other
NN components are potentially faulty. The common busses,
shown by a bold line in Fig. 2, are assumed to be fault-
free. This assumption can be justified if those busses are
manufactured wide enough. Furthermore, we don’t con-
sider faults in weight tables and chromosome memory since
an appropriate fault tolerant method for memory arrays can
compensate for them. Weight controllers, selectors, and the
GA processor are also assumed to be fault-free since their
circuit area is quite small and the probability of their being
faulty is negligible.

3.2 Reconfiguration Method

In this paper, we define a self-reconfiguration for NNs as
(1) changing network configuration to remove faulty neu-
rons, and then (2) obtaining a set of weights for the new
network without any help from host computers. In our sys-
tem, function shifting is used to achieve the first part in the
self-reconfiguration scheme and weight training by GA is
used to achieve the the second part in that scheme.

Function shifting is a procedure of re-assigning
weights for replacing faulty neurons with spare neurons in
the same layer. It is used not only to remove the faulty
neurons but also to change the number of neurons in the
middle and the output layers. Weight training by GA is a
well-known technique to obtain weights for NN whose the
network configuration is fixed. We employ the same idea to
obtain weights for the NN whose faulty neurons are com-
pletely removed by function shifting.

By the ability of optimizing weights, a set of weights
for correct behavior may be obtained by weight train-
ing even when some faults exist. However, employ-

ing only weight training is not enough to achieve self-
reconfiguration, because there is a kind of fault such that
weight training scheme can not cope with. For example,
drift fault on a neuron needs hardware compensation [15]
because the output of the neuron change randomly. There-
fore, we combined weight training by GA with function
shifting, and implemented them in hardware together with
NN to achieve self-reconfiguration without any help from
host computers.

The procedure of our reconfiguration method is as fol-
lows:

1. All neurons are classified into faulty and non-faulty
neurons by a fault detection circuit.

2. The following processing is performed according to the
number of faulty neurons.

• If the number of spare neurons is greater than or
equal to that of faulty neurons, spare neurons are
used instead of faulty neurons and weights are re-
assigned from the weight table to each neuron.
The procedure is completed.
• If not, faulty neurons are completely removed

from the NN and weights for the new network are
trained by the GA.

Those procedures are performed whenever the system is ini-
tialized or faults are detected. Hence, neurons which were
detected as faulty due to the existence of transient faults can
be used again if the detection circuits defect no fault at a
later time.

This method has an advantage as follows; if the num-
ber of faulty neurons is less than that of spare neurons, it is
possible for fast reconfiguration without weight training by
GA. If not, the network configuration is changed by func-
tion shifting and the weights for newly network is obtained
by hardware GA.

3.3 Function Shifting

Since spare neurons are added to both layers separately, we
describe the replacement procedure for a certain layer, say
the middle layer. The same procedure can be applied to the
output layer. Several variables are defined to describe the
procedure of function shifting, as follows:

Definition 1 All neurons are addressed from the top to the
bottom of the middle layer. The address is referred to
as the physical ID and denoted as p, where 0 ≤ p ≤
m + s − 1.

Definition 2 All fault-free neurons have a logical ID from
the top to the bottom of the middle layer. Let l(p) be the
logical ID of the p-th neuron, where 0 ≤ l(p) ≤ m − 1.

Definition 3 Let state(p) be the state of the p-th neuron of
the middle layer, and be defined as follows:

state(p) =

{
0, (fault-free)
1, (faulty)



2024
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

Fig. 3 An example of function shifting.
(X: the faulty neuron)

Definition 4 Let f n(p) be the number of faulty neurons
from the top to the p-th neuron and be defined as fol-
lows:

f n(p) =
p∑

i=0

state(i)

Note that the number of faults is not the total number
of faulty neurons which exist in the middle layer.

Assume that all of the above variables are stored in each
neuron for function shifting.

The procedure of function shifting is as follows:

1. Initialize logical IDs of all neurons in the middle layer

l(p) = p.

2. Check the state of neurons and set each state(p).
3. Calculate each f n(p).
4. Set all logical IDs as follows:

l(p) =

{
p − f n(p), if state(p) = 0
0, otherwise

5. Obtain the corresponding weight with updated logical
IDs from weight table if l(p) < m.

Figure 3 shows an example of function shifting, when
the number of neurons and spares in a layer are 3 and 2,
respectively, namely, m = 3 and s = 2. In this example, the
function of faulty neuron (p=1) is shifted to the next neuron
(p=2). Our proposed NN can incorporate any number of
spare neurons, keeping the increase in chip area for wiring
small. Using spare neurons, the function shifting process
can achieve a fault-free layer as long as the number of faulty
neurons is less than or equal to that of spare neurons.

Note that valid weights are assigned to at most m neu-
rons in step 5 of the function shifting. Thus, our NN can
change the system size based on the requirements of spe-
cific applications.

3.4 Weight Training by GA

The procedure of weight training by a GA is described here.

Fig. 4 Chromosome-to-weight mapping.

A chromosome of the GA represents the set of weights of
an NN. Each chromosome is the list of real values, each of
which maps onto the set of weights of an NN as shown in
Fig. 4. Using genetic operators such as selection, crossover,
and mutation, the error between the actual output and the de-
sired output is made small. The genetic operators used are
roulette wheel selection, uniform crossover, and bit muta-
tion. The probability of crossover and mutation are respec-
tively set to 0.5 and 0.001. The execution of the GA finishes
when the end condition is satisfied, that is, the best fitness
value becomes 0.01 or the number of generation becomes
10,000. The procedure is as follows:

1. Generate initial chromosomes and evaluate their fitness
values.

2. The following processes are repeated until the end con-
ditions are satisfied.

a. Select two chromosomes from the current popu-
lation as parents, and reproduce descendants by
crossover operation.

b. Change bits of a chromosome randomly by muta-
tion operation.

c. Evaluate fitness values of newly generated chro-
mosomes.

To evaluate fitness values, the average error is calcu-
lated. Suppose there are n output nodes in an NN. The train-
ing set is {xp, tp|p = 1, . . . , P}, where xp and tp is a set of
input and desired output for pattern p, respectively, and P is
the number of training sets. Let zp be the actual output when
pattern p is input to the network. Then the corresponding er-
ror function (Ep) and the average error for all patterns (Ea)
are defined as

Ep =

n∑
i=1

(tp
i − zp

i )2. (1)

Ea =
1
P

P∑
p=1

Ep. (2)

When Ea becomes the minimum, the network is considered
to be in an optimal state. Then the fitness value of each
chromosome is evaluated using Eq. (1) and Eq. (2).



SUGAWARA et al.: SELF-RECONFIGURABLE MULTI-LAYER NEURAL NETWORKS WITH GENETIC ALGORITHMS
2025

Fig. 5 Block diagram of GA processor.

Fig. 6 Training patterns.

The block diagram of the GA processor is shown in
Fig. 5. Each unit of the GA processor is executed in pipeline
fashion. The init pop in Fig. 5 generates the initial pop-
ulation randomly and stores them in internal memory. The
sel ps selects two chromosomes (parents) from the inter-
nal memory. The cross, muta, and fitness in Fig. 5 are
circuits which execute crossover, mutation, and fitness eval-
uation, respectively. Random numbers used in the GA oper-
ations are generated by a random number generation circuit
(RNG). The results of the GA execution are stored in chromo-
some memory, as shown in Fig. 2, and then the best result is
used as a set of weights of an NN when it is running.

4. Performance Evaluation of Weight Training

In order to investigate the capability of weight training by
the GA, we applied it to NN for a simple pattern recognition
problem. The goal was to decide the type of a symbol when
one symbol was selected from an input pattern set and input
to the well trained neural network. Figure 6 illustrates the
input pattern set. The size of the input image is 5 × 5 and
each bit is either 0 or 1. The output of the network expresses
a specific symbol, that is, one of the four bits corresponding
to the recognized symbol becomes 1. First, weights of the
25-15-4 network are trained by the GA. Suppose no spare
neuron is now available in the network. The training pattern
is the set of four symbols and the desired outputs. Second,
pattern recognition is performed by the NN, using the ob-
tained weights, to evaluate the training time and the ratio of
correct answers.

Figures 7 (a)–(d) show the fitness convergence of the
best chromosome as a function of the number of genera-
tions. The figures illustrate fitness transitions when M =
15, 10, 5, and 2, respectively. All four figures show a com-
mon tendency, that is, when population size increases the
fitness value is improved, and when M decreases the fit-
ness value also deteriorates gradually. If M is more than
10, fitness values converge at about the 1000th generation
and become almost 0. This means that there is almost no
difference between the desired output and an actual output.
If M decreases to 5, small fitness values can be obtained at

(a) M = 15

(b) M = 10

(c) M = 5

(d) M = 2

Fig. 7 Fitness values over generations. (M: number of neurons in the
middle layer)



2026
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

Fig. 8 Correct answer rate as a function of M for 4 symbols.

Fig. 9 Correct answer rate as a function of M for 48 symbols.

the 2000th generation when population sizes are 40 and 50.
If M decreases to 2, no acceptable fitness is obtained be-
cause of the shortage of neurons in the middle layer. Thus,
fast training time to obtain small fitness value is achieved by
the GA, even if M decreases to 5 because of the occurrence
of faults.

Figure 8 shows the correct answer rates for pattern
recognition by the NN using the obtained optimal weights.
The correct rates are calculated by the same four symbols
used as training patterns. When population sizes are 40 and
50, a 100% rate can be achieved even if M is decreased to
4. Figure 9 illustrates the correct rates when the number of
input symbols is increased to 48 by adding a random 1 bit
error (1 bit reverse) to the original four symbols. Compared
to Fig. 8, it is seen that the correct rates are randomly re-
duced by the influence of errors. Nevertheless, correct rates
are over 90% when M is greater than 6 and the population
is greater than 40.

5. Hardware Implementation

5.1 FPGA System

To show the possibility of achieving the self-reconfiguration
for multi-layer NNs, which is an important feature for large
scale NNs in practical industrial applications, the proposed
reconfigurable multi-layer NN was designed and imple-

Fig. 10 FPGA board.

Fig. 11 Hardware cost of NNs.

mented on an FPGA. The prototype system was designed in
VHDL using the design tool “MAX+Plus II (Altera)” and
implemented on the FPGA board “P5E (Alitec)” (Fig. 10),
which has an FPGA capacity of about 100 K gates. The
hardware costs of the NN part and the training part of Fig. 2
were obtained from the report file of the design tool.

5.2 NN Part

The overall circuit and the behavior of the reconfigurable
NN were introduced in Sect. 2. Due to the small chip ca-
pacity, each neuron is designed to realize a simple function
rather than a complex and high performance function. Here,
each weight is 8-bit width and a step function is used as the
activation function.

We compare the hardware cost of two NNs: the NN
part of the proposed reconfigurable NN and an NN that has
no circuit for function shifting but the same network ar-
chitecture. Figure 11 shows the number of gates used by
those NNs, I which the x-axis represents network size and
the y-axis represents hardware costs. The number of gates
required to implement the 4-4-4, 8-8-8, 16-16-16, and 32-
32-32 networks are shown in the figure. In each network,
the hardware cost of NN with function shifting shows an in-
crease of about 20% as compared with NN without function
shifting. The difference between them corresponds to the
hardware cost of the function shifting. To perform the func-



SUGAWARA et al.: SELF-RECONFIGURABLE MULTI-LAYER NEURAL NETWORKS WITH GENETIC ALGORITHMS
2027

Fig. 12 Hardware cost of training part.

tion shifting, a counter, a weight acquisition circuit, and reg-
isters to hold physical ID, logical ID, the number of faulty
neurons, etc. were implemented. The hardware overhead
of function shifting is small if network size becomes large.
Note that the circuits for the function shifting are indepen-
dent of neuron operations. Therefore, the overhead becomes
quite small if each neuron has a complex circuit.

5.3 Training Part

The training part, consisting of the GA processor and chro-
mosome memory, is also implemented in the FPGA. The
block diagram of the GA processor is shown in Fig. 5.

Figure 12 shows hardware costs as a function of pop-
ulation size. CL in Fig. 12 means the length of a chromo-
some, namely, the number of weights. When population
size is doubled, the total hardware costs are almost doubled
because of the double-sized memory required to store chro-
mosomes. For the same reason, population size does not af-
fect the hardware cost of the GA processor at all, but when
CL increases from 4 to 8, the total hardware costs are almost
doubled. In this case, the size of some registers in the GA
processor is also doubled. However, the number of registers
is quite small and total hardware cost of the GA processor is
not increased significantly even if CL becomes large. There-
fore, the increase of the hardware cost of the training part is
heavily dependent on the chromosome memory. Thus, the
hardware cost of GA processor does not depend on the scale
of the NN.

As a prototype system, a small scale NN was imple-
mented under the limitation of FPGA capacity. Although
the NN and training parts were implemented separately, we
could confirm their correct behavior through the simulator
of the design software and actual signal observations by the
logic analyzer.

6. Conclusion

It is very useful for an NN to be able to reconfigure itself
and acquire optimal weights automatically without any help
of a host computer. In this paper, we proposed an archi-
tecture of a reconfigurable multi-layer NN employing both

reconfiguration with spare neurons and weight training by
GAs. The advantages of the proposed architecture are low
hardware overhead for adding spare neurons and fast weight
training time. Performance evaluation by the simple pattern
recognition shows that the fast and efficient training can be
achieved by GAs. The prototype system of the proposed re-
configurable NN was implemented on an FPGA and its cor-
rect behavior was confirmed. In future we will implement
the proposed architecture on a large FPGA for application
to real-world problems.

References

[1] M. Yasunaga, N. Masuda, M. Yagyu, M. Asai, M. Yamada, and
A. Masaki, “Design, fabrication and evaluation of a 5-inch wafer
scale neural network LSI composed of 576 digital neurons,” Proc.
IJCNN’90, pp.527–535, San Diego, 1990.

[2] Y. Hirai, T. Ochiai, and M. Yasunaga, “A neural network system
composed of 1000 neurons and one million 7-bit synapses,” IEICE
Trans. Inf. & Syst. (Japanese Edition), vol.J84-D-II, no.6, pp.1185–
1193, June 2001.

[3] H. Hikawa, “Hardware efficient three-valued multilayer neural net-
work with on-chip learning,” IEICE Trans. Inf. & Syst. (Japanese
Edition), vol.J81-D-II, no.12, pp.2811–2818, Dec. 1998.

[4] T. Kawashima, A. Ishiguro, and S. Okuma, “An architecture of
small-scaled neuro-hardware using probabilistically coded pulse
neurons,” Electrical Engineering in Japan, vol.139, no.4, pp.48–55,
2003.

[5] M.D. Emmerson and R.I. Damper, “Determining and improving the
fault tolerance of multilayer perceptions in a pattern-recognition ap-
plication,” IEEE Trans. Neural Netw., vol.14, no.5, pp.788–793,
1993.

[6] D.S. Phatak and I. Koren, “Complete and partial fault-tolerant neu-
ral networks,” IEEE Trans. Neural Netw., vol.6, no.2, pp.446–456,
1995.

[7] Y. Tohma and Y. Koyanagi, “Fault-tolerant design of neural net-
works for solving optimization problem,” IEEE Trans. Comput.,
vol.45, no.12, pp.1450–1455, 1996.

[8] C.P. Fuhrman, S. Chutani, and H.J. Nussbaumer, “Hard-
ware/software fault tolerance with multiple task modular redun-
dancy,” Proc. Int’l Symp. on Computers and Communications
(ISCC), pp.171–177, 1995.

[9] F. Distante, M.G. Sami, R. Stefanelli, and G. Storti Gajani, “Fault
tolerant charecteristics of the linear array architecture for WSI
implementation of neural nets,” Proc. IEEE Int’l Conf. on WSI,
pp.113–119, 1991.

[10] C. Khunasaraphan, K. Vanapipat, and C. Lursinsap, “Weight shifting
techniques for self-recovery neural networks,” IEEE Trans. Neural
Netw., vol.5, no.4, pp.651–658, 1994.

[11] Y. Tan and T. Yanya, “Fault-tolerant backpropagation model and
its generation ability,” Proc. Int’l Joint Conf. Neural Networks,
pp.2516–2519, 1993.

[12] D. Simon, “Distributed fault tolerance in optimal interpolative nets,”
IEEE Trans. Neural Netw., vol.12, no.6, pp.1348–1357, 2001.

[13] N.C. Hammadi, T. Ohmameuda, K. Kaneko, and H. Ito, “Fault toler-
ant constructive algorithm for feedforward neural networks,” Proc.
Pacific Rim Int’l Symp. on Fault-Tolerant Systems, pp.215–220,
1997.

[14] U.A. Muller, B. Baumle, P. Kohler, A. Gunzinger, and W.
Guggenbuhl, “Achieving supercomputer performance for neural net
simulation with an array of digital signal processors,” Parallel Com-
puting, vol.14, no.3, pp.329–346, 1998.

[15] K. Yamamori, T. Abe, and S. Horiguchi, “Theoretical perfor-
mance evaluation of parallel back-propagation algorithms,” Proc.
Int’l Conf. on PDPTA, pp.1095–1102, 1998.



2028
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

[16] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

[17] D. Whitley and T. Hanson, “Optimizing neural network using faster,
more accurate genetic search,” Proc. Int’l Conf. on Genetic Algo-
rithms (ICGA-89), pp.391–396, 1989.

[18] D. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms,” Proc. Int’l Joint Conf.on Artificial Intel-
ligence (IJCAI-89), pp.762–767, 1989.

[19] H. Kitano, “Empirical studies on the speed of convergence of neural
network training using genetic algorithms,” Proc. National Conf. on
Artificial Intelligence, vol.2, pp.789–795, 1990.

[20] M. Murakawa, S. Yoshizawa, I. Kajitani, X. Yao, N. Kajihara, M.
Iwata, and T. Higuchi, “The GRD Chip: Genetic reconfiguration of
DSPs for neural network processing,” IEEE Trans. Comput., vol.48,
no.6, pp.628–638, 1999.

Eiko Sugawara received the M.S. degree in
Information Science from the School of Infor-
mation Science at JAIST (Japan Advanced In-
stitute of Science and Technology) in 2001. She
is currently working towards the Ph.D. degree
at Graduate School of Information Science in
JAIST. Her research interests are reconfigurable
systems and neural network hardware systems.

Masaru Fukushi received the M.S.degree
from Hirosaki University in 1997 and a Ph.D
in Information Science from the School of In-
formation Science at JAIST (Japan Advanced
Institute of Science and Technology) in 2002.
He is currently a research associate in the
Graduate School of Information Sciences, To-
hoku University. His research interests are
dependable multi-processor systems, reconfig-
urable systems and parallel image processing.

Susumu Horiguchi received his M.E and
D.E degrees from Tohoku University in 1978
and 1981, respectively. He is currently a full
professor in the Graduate School of Information
Science, Tohoku University. He was a visiting
scientist at the IBM Thomas J. Watson Research
Center from 1986 to 1987 and a visiting pro-
fessor at The Center for Advanced Studies, the
University of Southwestern Louisiana and at the
Department of Computer Science, Texas A&M
University in the summers of 1994 and 1997. He

was also a professor in the Graduate School of Information Science, JAIST
(Japan Advanced Institute of Science and Technology). He has been in-
volved in organizing many international workshops, symposia and confer-
ences sponsored by the IEEE, IEICE and IPS. His research interests have
been mainly concerned with interconnection networks, parallel comput-
ing algorithms, massively parallel processing, parallel computer architec-
tures, VLSI/WSI architectures, and Multi-Media Integral Systems. Prof.
Horiguchi is a senior member of the IEEE Computer Society, and a mem-
ber of the IPS, and IASTED.


