
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Behavioral Specification of Imperative

Programming Languages

Author(s)
NAKAMURA, Masaki; WATANABE, Masahiro; FUTATSUGI,

Kokichi

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E89-A(6): 1558-1565

Issue Date 2006-06-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4702

Rights

Copyright (C)2006 IEICE. Masaki NAKAMURA,

Masahiro WATANABE, Kokichi FUTATSUGI,, IEICE

TRANSACTIONS on Fundamentals of Electronics,

Communications and Computer Sciences, E89-A(6),

2006, 1558-1565.

http://www.ieice.org/jpn/trans_online/

Description

1558
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.6 JUNE 2006

PAPER Special Section on Papers Selected from ITC-CSCC 2005

A Behavioral Specification of Imperative Programming Languages∗

Masaki NAKAMURA†a), Member, Masahiro WATANABE††, and Kokichi FUTATSUGI†, Nonmembers

SUMMARY In this paper, we give a denotational semantics of impera-
tive programming languages as a CafeOBJ behavioral specification. Since
CafeOBJ is an executable algebraic specification language, not only exe-
cution of programs but also semi-automatic verification of programs prop-
erties can be done. We first describe an imperative programming language
with integer and Boolean types, called IPL. Next we discuss about how
to extend IPL, that is, IPL with user-defined types. We give a notion of
equivalent programs, which is defined by using the notion of the behavioral
equivalence of behavioral specifications. We show a sufficient condition
for the equivalence relation of programs, which reduces the task to prove
programs to be equivalent.
key words: semantics of imperative programs, behavioral specification,
CafeOBJ

1. Introduction

Since software written by imperative programming lan-
guages (C, Java, etc) are widely used in various fields, it
is important for the safety of our social life to give a for-
mal semantics to imperative programs and to verify desired
properties. There are three kinds of semantics of impera-
tive programs: denotational semantics, such as D. Scott and
C. Strachey’s denotational semantics in which a program de-
notes a partial function from inputs to outputs [7], axiomatic
semantics, such as Hoare logic in which a triple of a pre-
condition, a program and a postcondition is used [6], and
operational semantics, which describes a way of executing
programs. Recently, an algebraic denotational semantics of
imperative programs has been proposed [4]. It showed that
algebraic specifications are very useful to describe and ver-
ify imperative programs. After that, Hidden algebra, an ex-
tension of classical algebra, has been proposed [3], [5]. A
specification based on Hidden algebra, called a behavioral
specification, treats both system description and data de-
scription in a same framework rigorously and easily. In this
paper we describe an behavioral specification for an alge-
braic semantics of an imperative programming language.

In the next section we introduce CafeOBJ algebraic

Manuscript received September 5, 2005.
Manuscript revised December 27, 2005.
Final manuscript received February 14, 2006.
†The authors are with the School of Information Science, Japan

Advanced Institute of Science and Technology, Nomi-shi, 923-
1292 Japan.
††The author is with Production Engineering Research Labora-

tory, Hitachi, Ltd., Yokohama-shi, 244-0817 Japan.
∗This paper was presented at Session TD3: Computer Systems

& Applications (2) 3 of ITC-CSCC 2005.
a) E-mail: masaki-n@jaist.ac.jp

DOI: 10.1093/ietfec/e89–a.6.1558

specification language, which supports behavioral specifi-
cations and a rewrite engine to verify properties of a spec-
ification semi-automatically [2], [8]. In Sect. 3, we give a
behavioral specification for a semantics of imperative pro-
grams. The imperative language we describe is called IPL.
IPL has fundamental sentences of imperative programs: as-
signments, conditionals, iterations. We give a syntax and a
semantics of IPL. In Sect. 4, we discuss about executability
of IPL and verification of properties of programs written in
IPL. We formalize equivalence relation on programs and
show an efficient sufficient condition for program equiva-
lence. In Sect. 5, we give a way to define user-defined types
to IPL. By using this, we can introduce a kind of classes
of object-oriented languages to IPL. In Sect. 6, we discuss
about related works, and conclude our work in Sect. 7.

2. Preliminaries: CafeOBJ in a Nutshell

CafeOBJ specifications are divided into those with the tight
denotation and the loose denotation: they are used to de-
scribe abstract data types and systems behaviors respec-
tively.
Specification for data description A specification with the
tight denotation is described as mod!{...}. Sorts, operations,
equations, conditional equations are declared as [...], op
(ops), eq, and ceq, respectively. A model of a CafeOBJ
specification is an algebra where sorts and operations inter-
preted as carrier sets and operations on the sets, and each
equation should hold. A model of a specification with the
tight denotation is an initial algebra (or an initial model).
An initial model is a model which has the unique morphism
to any other model. Since initial models are isomorphic,
essentially there is only one initial model. Each carrier set
of the initial model has only elements defined in the speci-
fication (no junk), and only elements which are equivalent
in the specification are equivalent in the initial model (no
confusion).

Example 2.1: The following is a specification of integers:
an example of specifications with the tight denotation.
mod! INTEGER{

[Int]

op 0 : -> Int

op s : Int -> Int

op p : Int -> Int

eq p(s(I:Int))= I.

eq s(p(I:Int))= I.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

NAKAMURA et al.: A BEHAVIORAL SPECIFICATION OF IMPERATIVE PROGRAMMING LANGUAGES
1559

}

Since mod! stands for the tight denotation, INTEGER denotes
only the initial model, that is, the set of integers, where terms
0, sn(0) and pn(0) correspond to integers 0, n and −n respec-
tively. Note that any term of Int, which may have both s
and p, equals to 0, sn(0) or pn(0), e.g. s(p(s(0))) = s(0).

Behavioral specification As opposed to tight specifications,
the model of a specification with the loose denotation, de-
scribed by mod*, is the set of all algebras satisfying the
axiom (equations). A behavioral specification is a specifi-
cation with the loose denotation which has a hidden sort
(*[...]*) and behavioral operations (bop or bops). A
non-hidden sort is called a visible sort. In a system descrip-
tion by a behavioral specification, a hidden sort denotes a
set of states of the system and visible sorts denote data types
used in the system. Behavioral operations are divided into
observations and actions. The system is hidden, which
means it cannot be observed and modified directly. Only
observations can observe it and only actions can modify it.
In other words, the models of a behavioral specification are
those satisfying a behavior defined by the observations and
the actions. The style of a behavioral specification is object-
oriented as opposed to the data-oriented classical algebraic
specification style. In OO terminology, observations corre-
spond to attributes and actions correspond to methods.

Example 2.2: The following is a specification of a buffer:
an example of behavioral specifications.
mod* BUFFER{

pr(INTEGER)

[Buf]

op init : -> Buf

bop val : Buf -> Int

bops up dn : Buf -> Buf

eq val(init) = 0 .

eq val(up(X:Buf)) = s(val(X)).

eq val(dn(X:Buf)) = p(val(X)).

}

BUFFER denotes a buffer which can keep an integer, where
the specification for integers is imported by pr(INTEGER).
An observation val observes an integer kept by the buffer. A
constant init stands for an initial buffer with 0. An action
up (or dn) increases (or decreases) the integer one by one.
Since mod* stands for the loose denotation, the denotation of
BUFFER is the set of all models, i.e. all possible implemen-
tations satisfying it, e.g. implementation by arrays, stacks,
etc.

3. Specification of Imperative Programs

The language described in this paper is called IPL. We call
the hidden sort of a behavioral specification of IPL Seman-
tic system. The observations are references of the value of
an expression, and the actions are execution of a program.
It is a variant of D .Scott and C .Strachey’s denotational se-
mantics [7].

Syntax of IPL is defined by EXP and PGM.
mod! EXP{

pr(VAR + EQ-INT)

[Var Int < Exp]

[Bool < Tst]

op _+_ : Exp Exp -> Exp

op _*_ : Exp Exp -> Exp ...

op _=_ : Exp Exp -> Tst ...

op not_ : Tst -> Tst

}

EXP describes a syntax of integer and Boolean expression by
importing CafeOBJ built-in specifications INT and BOOL†.
Sort declaration [Var Int < Exp] means that Exp of the
integer expression is defined as a super sort of Var and Int.
Thus, a variable (or an integer) is an expression. Operations
+, *, etc are constructors of integer expressions. Similarly,
Sort Tst of the Boolean expression is a super sort of Bool.
For example, X + 7 and X + 1 > Y are examples of inte-
ger expressions and Boolean expressions respectively.
mod! PGM{

pr(EXP)

[BPgm < Pgm]

op _:=_ : Var Exp -> BPgm

op _;_ : Pgm Pgm -> Pgm {assoc}

op if_then_else_fi : Tst Pgm Pgm -> Pgm

op while_do_od : Tst Pgm -> Pgm

}

PGM describes a syntax of programs. Assignments are basic
programs, e.g. X := X + 1. When P1 and P2 are programs
and T is a Boolean expression, then P1 ; P2 (composi-
tions)††, if T then P1 else P2 fi (conditionals) and
while T do P1 od (iterations) are programs.

Semantics of IPL is defined through Semantic sys-
tem. For a given state of Semantic system, each integer (or
Boolean) expression has its value, observed by bop [] :
Sys Exp -> Int (or bop [] : Sys Tst -> Bool) .
S[E] denotes the value of an expression E at a state S of
Semantic system. Roughly speaking an observation by E is
calculation of E. E.g. S[1 + 2 + 3] is 6 for each S. S[1
+ X * 3] is 7 for each S where Variable X is assigned to 2,
i.e. S[X] = 2. Applying programs changes a state of the
system. It corresponds to an action bop ; : Sys BPgm

-> Sys. State “S ; P” means the result of applying Pro-
gram P to State S.

The following is a specification for a semantics of IPL:
mod* SEM{

†INT is a built-in specification with Sort Int, integer constants
(1, 2, . . .) and operations (+, -, . . .). EQ-INT is an extension of INT,
where an equality predicate =i= on Int is added. QID is a built-
in specification with Sort Oid and quoted identifiers (’X, ’Y, . . .).
VAR is an extension of QID, where Sort Qid is renamed Var and
an equality predicate =v= on Var is defined. Roughly speaking,
the equality predicates are defined as follows: i1 =i= i2 (or v1 =v=
v2) is reduced into true if the arguments are same after reducing
them. Otherwise false.
††An operation attribute assoc means the operation is associa-

tive, i.e. (P ; Q) ; R = P ; (Q ; R). Parentheses can be omit-
ted, like P ; Q ; R.

1560
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.6 JUNE 2006

pr(PGM) *[Sys]*

bop _[_] : Sys Exp -> Int

bop _[_] : Sys Tst -> Bool

bop _;_ : Sys BPgm -> Sys

var S : Sys .

var I : Int .

var B : Bool

eq S[I] = I .

eq S[E1 + E2] = (S[E1]) + (S[E2])

eq S[E1 = E2] = (S[E1]) =i= (S[E2])

eq S[B] = B .

eq S[not T] = not S[T]

eq S ; (X := E1)[X] = S[E1] .

ceq S ; (X := E1)[Y] = S[Y] if not X=v=Y .

beq S ; (P1 ; P2) = (S ; P1) ; P2 .

bceq S ; if T then P1 else P2 fi = S ; P1

if S[T].

bceq S ; if T then P1 else P2 fi = S ; P2

if not S[T].

bceq S ; while T do P1 od = (S ; P1) ;

while T do P1 od if S[T] .

bceq S ; while T do P1 od = S if not S[T] .

}

The axiom part (a set of equations) is divided into
two parts: that for expressions (from eq S[I] = I to eq
S[not T] = not S[T]) and that for programs (the oth-
ers)†. The value of an expression is equivalent to a term
which is composed of integers and the values of variables.
For example,
S[X + (2 * 3)]

= S[X] + S[2 * 3]

= S[X] + S[2] × S[3]
= S[X] + 2 × 3
= S[X] + 6.

If we know the values of all variable, each expression
is equivalent to an integer value. For example, if S[X] = 7
then S[X + (2 * 3)] = 13.

Consider first two equations of the axiom for programs,
which define a semantics of assignment programs. S ; (X
:= E) stands for the result of applying X := E to State
S. The equations describe the value S ; (X := E)[Y] for
each variable X. The first equation means that it equals to
the value of E of the original state S when X = Y. The second
equation means that it equals to the value of Y of the origi-
nal state S when X � Y. Equation S ; (P1 ; P2) = (S ;
P1) ; P2 means that a sequence of programs is executed
from the front. Next two conditional equations define a se-
mantics of conditionals. The value of the condition part T at
S is evaluated first, and then P1 is executed if it is true, other-
wise P2 is executed. The last two equations are for iteration
programs. If S[T] is true then S ; while T do P1 od is
equivalent to (S ; P1) ; while T do P1 od. Next (S
; P1)[T] should be checked. Until S[T] is false, P1 is ex-
ecuted again and again, i.e. a state S is updated to the new
state S ; P1 repeatedly.

4. Execution and Verification

Because CafeOBJ is an executable algebraic specification
language, we can execute programs of IPL. Execution of
CafeOBJ is done according to term rewriting [1]. In the
execution stage, each equation is regarded as a left-to-right
rewrite rule, and an input term is reduced into a term which
has no redex (which is a subterm a rewrite rule can be ap-
plied).

The following is an example of program executions
which calculate 210.
SEM> reduce S ;

’X := 10 ;

’Y := 1 ;

while (not ’X = 0)

do

(’Y := ’Y * 2);

(’X := ’X - 1)

od

[’Y]

-- reduce in SEM : (((S ; (’X := 10...

...

1024 : NzNat

We can do not only execution of programs but also ver-
ification of some desired properties semi-automatically. Be-
fore showing an example of verification, we give a property
which helps us to do verification, especially those for pro-
gram equivalence.

One of the special features of a behavioral specification
is the notion of the behavioral equivalence.

Definition 4.1: [3] The states s1 and s2 are behaviorally
equivalent, denoted by s1 ∼ s2, if and only if they can
not be distinguished by any observations and actions, i.e.
o(a1(· · · an(s1) · · ·)) = o(a1(· · · an(s2) · · ·)) for each observa-
tion o and sequence of actions a1, . . . , an.

The behavioral equivalence of IPL means the equiva-
lence relation of states of Semantic system. By using the no-
tion of the behavioral equivalence we define an equivalence
relation for programs. A program is regarded as a function
taking a state and returning a new state. Thus, programs are
equal when the result states of applying the programs are
equal.

Definition 4.2: Programs p1 and p2 are equal, denoted by
p1 ≈ p2, if and only if s; p1 ∼ s; p2 for each state s.

Verifying given programs to be equal directly is hard
since we should consider all expressions and sequences of
programs. According to the definitions, to prove programs
equal, i.e. p1 ≈ p2, we should check S; p1; P1; · · ·; Pn[E] =
S; p2; P1; · · ·; Pn[E] for any expression E, sequence of basic

programs P1, . . . , Pn, state S. To reduce the task we show the
following useful sufficient condition.

†beq (bceq) stands for a (conditional) behavioral equation,
which will be explained later.

NAKAMURA et al.: A BEHAVIORAL SPECIFICATION OF IMPERATIVE PROGRAMMING LANGUAGES
1561

Theorem 4.3: In SEM, s1 ∼ s2 if and only if s1[X] = s2[X]

for each variable X . Thus, p1 ≈ p2 if and only if (S; p1) [X]
= (S; p2) [X] for each variable X and state S.

To prove Theorem 4.3, we introduce the notion of be-
havioral congruence relations [3], [5].

Definition 4.4: [3] A binary relation R on states is behav-
iorally congruent if and only if
(1) s R s′ ⇒ o(s) = o(s′) for each observation o.
(2) s R s′ ⇒ a(s) R a(s′) for each action a.

Proposition 4.5: [3] s R s′ ⇒ s ∼ s′.

Now we prove Theorem 4.3 through Proposition 4.5.
Proof of Theorem 4.3: The latter part is trivial if the former
part holds. We prove that s1 ∼ s2 ⇔ ∀X.s1[X] = s2[X].
[⇒]: Trivial

[⇐]: We show that s1 R s2
def⇐⇒ ∀X.s1[X] = s2[X] is be-

haviorally congruent.
(1) Each observation can be written as [E] or [T] for an
integer expression E and a Boolean expression T. We first
prove ∀E.s1[E] = s2[E] by the structural induction on E.
Base Case :

When E is a variable X, it is trivial from the assumption.
When E is an integer I, s1[I] = I = s2[I].
Induction Step :

In the case of E = E1 + E2,
s1[E]

= s1[E1 + E2]

= s1[E1] + s1[E2]

= s2[E1] + s2[E2] from I.H.
= s2[E1 + E2]

= s2[E] .
The other cases (E = E1 * E2, etc) are similar to this

case. Next we show ∀T.s1[T] = s2[T] by the structural
induction on T where T is an arbitrary Boolean expression.
The proof is similar to the case of E. In the case of T = E1 =
E2,
s1[T]

= s1[E1 = E2]

= s1[E1] =i= s1[E2]

= s2[E1] =i= s2[E2] from the case of E
= s2[E1 = E2]

= s2[T] .
In the case of T = not(T1),
s1[T]

= s1[not(T1)]

= not s1[T1]

= not s2[T1] from I.H.
= s2[not(T1)]

= s2[T] .
(2) Each action can be written as ; Y := E for a vari-
able Y and an integer expression E. We show ∀X. (s1;

Y := E)[X] = (s2; Y := E)[X] under the assumption of
∀X.s1[X] = s2[X].
If X = Y, then
(s1;(X := E))[X]
= s1[E]

= s2[E] from (1)
= (s2;(X := E))[X]
If X � Y, then
(s1;(Y := E))[X]
= s1[X]

= s2[X] from the assumption
= (s2;(Y := E))[X]
Thus, R is behaviorally congruent, and s1 ∼ s2. �

Thanks to Theorem 4.3 we can verify the equivalence
of programs by CafeOBJ easily, which is one of the signif-
icant benefits of this paper since the existing algebraic se-
mantics [4] does not treat equivalence of programs well.

Verification of CafeOBJ specification is done by de-
scribing a proof score which consists of
open SP

op c1 : -> Elt . · · · . op ci : -> Elt .

eq l1 = r1 . · · · . eq l j = r j .

red t1 . · · · . red tk .

close

where SP is a name of a module where the proof is done.−−−−−→
l j = r j and �tk are an antecedent and a consequent of the proof
respectively†. Terms �l j,�r j and �tk may have constant opera-
tions �ci as bound variables in the proof. Thus, the mean-
ing of this proof score is an implication ∀c1, . . . , ci ∈ Elt.
l1 = r1 ∧ · · · ∧ l j = r j ⇒ t1 ∧ · · · ∧ tk. If the CafeOBJ sys-
tem returns true for each reduction, then the proposition is
guaranteed to be correct.

More complicated verification can be obtained by com-
bining implication propositions. A case splitting of a proof
of P is done by separating P into Q ⇒ P and ¬Q ⇒ P. A
use of lemma to prove a proposition P is done as follows:
find a suitable proposition (lemma) Q, prove Q, and prove
Q ⇒ P after proving Q. The following is a way to prove
∀I ∈ Int.P(I) by the induction on the structure of terms:
open INTEGER

red P(0)
op i : -> Int .

eq P(i) = true .
red P(s(i)).
red P(p(i)).
close

First reduction is the base case and the remaining part is the
induction step.

Whether a suitable proof score can be described or not
is depending on the ability of the verifier. The CafeOBJ sys-
tem is a tool to support that task. From the experience, diffi-
culty of describing a proof score depends on a property of a
proposition to be proved rather than the size of the proposi-
tion (or a program). Only one reduction may verify a large
proposition. Thousands of lines may be needed to prove a
simple proposition.

Example 4.6: Figure 1 is a verification of equivalence of
two swap programs defined differently. The swap programs
are exchange the value of Variable ’X into the value of Vari-

†We often write a sequence of a1, . . . , an as �oi.

1562
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.6 JUNE 2006

input
open SEM .

ops swap1 swap2 : -> Pgm .

eq swap1 = (’T := ’X) ; (’X := ’Y) ; (’Y := ’T) .

eq swap2 = (’X := ’X + ’Y) ; (’Y := ’X - ’Y) ; (’X := ’X - ’Y) .

op s : -> Sys . op z : -> Var .

eq z =v= ’X = false . eq z =v= ’Y = false . eq z =v= ’T = false .

...

red s ; (swap1 ; ’T := 0) [’X] == s ; (swap2 ; ’T := 0) [’X] .

red s ; (swap1 ; ’T := 0) [’Y] == s ; (swap2 ; ’T := 0) [’Y] .

red s ; (swap1 ; ’T := 0) [’T] == s ; (swap2 ; ’T := 0) [’T] .

red s ; (swap1 ; ’T := 0) [z] == s ; (swap2 ; ’T := 0) [z] .

close

output
-- opening module SEM.. done.__*

-- reduce in %SEM : (s ; (swap1 ; (’T := 0))) [’X]...

true : Bool ...

-- reduce in %SEM : (s ; (swap1 ; (’T := 0))) [’Y]...

true : Bool ...

-- reduce in %SEM : (s ; (swap1 ; (’T := 0))) [’T]...

true : Bool ...

-- reduce in %SEM : (s ; (swap1 ; (’T := 0))) [z]...

true : Bool ...

Fig. 1 Verification of program equivalence.

able ’Y vice verse. Variable ’T is a temporary space for the
swap program. swap1 is a direct definition of the swap pro-
gram. swap2 is defined by using a mathematical property
over integers. This proof score tries to verify that swap1 ;
’T := 0 and swap2 ; ’T := 0 are equivalent programs.

State s and Variable z mean an arbitrary state and an
arbitrary variable in this proof score. Three equations stand
for the assumption that Variable z is different from each of
Variables ’X, ’Y and ’T.

By reduction command (red), we can do equational
reasoning. The first reduction tries to prove that the value of
’X of the state after applying the program swap1 ; ’T :=
0 to s is equivalent to that of swap2 ; ’T := 0. Note that
the last reduction tries to prove the same thing for Variable
z which is different from the other variables. All reductions
return true when loading this proof score into CafeOBJ
system. Thus four equations hold, which means that s ;
swap2 ; ’T := 0 [x] = s ; swap2 ; ’T := 0 [x]
for each state s and variable x. Therefore swap1 ; ’T :=
0 and swap2 ; ’T := 0 are equivalent from Theorem 4.3.

5. User-Defined Types

In this section we give a way to add user-defined types other
than integer and Boolean types. When a user desires to add a
new data type which can be described as a specification for a
data description (mod!{...}), it is described and is imported to
IPL, like pr(EQ-INT) in EXP. It is straightforward to define
such data types. In this section, we focus on a way to define

a kind of classes in object-oriented terminology†.
We explain a rough sketch to introduce Class Buffer

in IPL. We use BUFFER shown in Sect. 2.2 (with replac-
ing the imported module Integer into EQ-INT). A module
BVAR is a module of buffer variables, where B I is a buffer
variable for each integer I and there exists an equality pred-
icate =b=. BEXP, BPGM and BSEM are extensions of EXP, PGM
and SEM. In the following we only show the addition part.
mod! BEXP{ pr(VAR + BVAR + BUFFER) ...

op val : BVar -> Exp ...

}

mod! BPGM{ pr(BEXP) ...

ops up dn : BVar -> BPgm ...

}

mod* BSEM{ pr(BPGM) ...

bop _[_] : Sys BVar -> Buf ...

vars B1 B2 : BVar ...

eq S[val(B1)] = val(S[B1])

beq S ; up(B1) [B1] = up(S [B1]) .

bceq S ; up(B1) [B2] = S[B2] if B1 =b= B2 .

beq S ; dn(B1) [B1] = dn(S [B1]) .

bceq S ; dn(B1) [B2] = S[B2] if B1 =b= B2 .

...

eq S ; (up(B1)) [X:Var] = S[X] .

†Strictly speaking, the notion of a class is not included in “im-
perative programs.” However, we hope our method will be useful
to describe and verify practical programs. For that purpose, we
think introducing the object-oriented techniques in IPL is very im-
portant. The introducing a class is a first step for IPL to be an OO
language.

NAKAMURA et al.: A BEHAVIORAL SPECIFICATION OF IMPERATIVE PROGRAMMING LANGUAGES
1563

eq S ; (dn(B1)) [X:Var] = S[X] .

beq S ; X := E1 [B1] = S[B1] .

}

In BEXP, val is added, and val(B) is a new expres-
sion for each buffer variable B. In BPGM, new basic pro-
grams up(B) and dn(B) are added. In BSEM, the meaning
of those expressions and programs are defined. Semantics
are given through BUFFER. The first equation in BSEMmeans
that the value of “Expression” val(B1) is the integer kept in
“Buffer” S[B1]. The next two equations mean that the value
of “Buffer variable” B2 after applying “Program” up(B1) is
the buffer up (S[B2]) if B1 = B2, otherwise, it is S[B2] it-
self. Note that S[B2] is a buffer defined in BUFFER. The
meaning of Program dn(B1) is similar with that of up(B1).
The last three equations define the remaining cases. A basic
program up(B) (or dn(B)) does not change a value of “Inte-
ger variable” X and an assignment program does not change
a value of “Buffer variable” B1.

Example 5.1: The following proof score shows that the
value of an expression val (B 0) after applying a program
up (B 0) twice is 2 under the assumption that the observed
values of all buffer are init, which returns true.
open BSEM .

op s : -> Sys .

eq s [B I:Int] = init .

red s ; up(B 0) ; up(B 0) [val (B 0)] == 2 .

close .

We generalize the way to define a buffer class. We give
a way to introduce a class, which can be defined as a behav-
ioral specification, to IPL.

1. Assume a behavioral specification BSP, which has a
hidden sort H, observations �oi and actions �aj.

2. Define a specification HVAR of variables for H and im-
port HVAR and BSP to a specification of expressions
HEXP. In HEXP, declare operations oi : HVar → Exp
for each observation oi : H→ V in BSP, that means that
new expressions oi(h) are added to IPL where h is a
variable of HVAR.

3. In a specification of programs HPGM, declare operations
ai : HVar → Bpgm for each action ai : H → H in BSP,
that means that ai(h) is a basic program in IPL.

4. Lastly, declare equations to define semantics of those
expressions and programs in a specification of se-
mantics HSEM. For each expression oi(h), declare eq
S[oi(h)] = oi(S[h]). For each program ai(h), de-
clare beq S ; ai(h) [h] = ai(S[h]) and bceq S
; ai(h) [h′] = S[h′] if h =h= h′. In addition to
those equations, we need the following equations:
eq S ; ai(h) [X] = S[X] and beq S ; X := E1
[h] = S[h]. The former means that the value of “an
integer variable” X is unchanged by a program ai(h),
and the latter means that the value of a variable h of
HVar is unchanged by an assignment program.

We revise an equivalence relation on programs. After
introducing a class to IPL according to our methodology, a

new variable (of a class) is added. Thus Theorem 4.3 should
be reconsidered because only integer variables are consid-
ered as it is. It is modified as follows:

Theorem 5.2: In HS EM, s1 ∼ s2 if and only if s1[X] =

s2[X] for each integer variable X and s1[H] ∼ s2[H] for
each class variable H . Thus, p1 ≈ p2 if and only if (S; p1)
[X] = (S; p2) [X] for each integer variable X and state S
and (S; p1) [H] ∼ (S; p2) [H] for each class variable H and
state S.

Proof. Similar with the proof of Theorem 4.3. �
Note that observed values S[H] of class variables H

should be compared by a behavioral equivalence for the im-
ported behavioral specification BS P since they are of a hid-
den sort in BS P.

In BUFFER, we can easily prove that s1 ∼ s2 if and only
if val(s1) = val(s2). When the equivalence of each ob-
served values implies the behavioral equivalence in the im-
ported behavioral specification BS P, the following property
holds.

Theorem 5.3: If s1 ∼ s2 if and only if ∀oi.oi(s1) = oi(s2)
in BS P then in HS EM, p1 ≈ p2 if and only if (S; p1) [X]
= (S; p2) [X] for each integer variable X and state S and (S;
p1) [oi(H)] = (S; p2) [oi(H)] for each observation oi, class
variable H and state S.

Proof. Straightforward from Theorem 5.2. �
Now we try to prove the programs up(B 0); dn(B

0) and dn(B 0); up(B 0) to be equivalent. We open
BSEM, declare an arbitrary state s and label the above pro-
grams updn and dnup. We declare a trivial lemma, whose
proof is omitted, on integers.
open BSEM .

op s : -> Sys .

ops updn dnup : -> Pgm .

eq updn = up(B 0) ; dn(B 0) .

eq dnup = dn(B 0) ; up(B 0) .

eq p(s(I:Int)) = s(p(I)) .

First we try to prove the observed values of the expres-
sion val(B 0) after applying the programs to be equivalent.
red s ; updn[val(B 0)] == s ; dnup[val(B 0)].

Next we try to prove the observed values of the expres-
sion val(B i) after applying the programs to be equivalent
where B i stands for the all other buffer variable B i (� B0).
op i : -> Int .

eq i =i= 0 = false .

red s ; updn[val(B i)] == s ; dnup[val(B i)].

Lastly we try to prove the observed values of an arbi-
trary integer variable x after applying the programs to be
equivalent.
op x : -> Var .

red s ; updn [x] == s ; dnup [x] .

close

All reductions return true in CafeOBJ System. Thus we
can conclude those programs are equivalent from Theorem
5.3.

1564
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.6 JUNE 2006

Example 5.4: We can introduce arrays to IPL. The fol-
lowing is a behavioral specification of arrays.
mod* ARRAY{

pr(EQ-INT)

[Array]

op _[_] : Array Int -> Int

op _[_]=_ : Array Int Int -> Array

var A : Array

vars I J K : Int

ceq (A[I]= J)[K] = J if I =i= K .

ceq (A[I]= J)[K] = A[K] if not I =i= K .

}

An array A is indexed by integers and array elements
are also integers. A[I] is an integer of I-th element of A.
A[I]= J is an array where A[I] is changed into J and the
others are unchanged. The following is an example of exe-
cution.
Input:
open ARRAY .

op a : -> Array .

eq a[I:Int] = 0 .

red a[1] .

red (a[1]= 10)[1] .

close

Output:
-- opening module ARRAY.. done._*

-- reduce in %ARRAY : a [1]

0 : Zero

-- reduce in %ARRAY : (a [1] := 10) [1]

10 : NzNat

We re-define specifications EXP, PGM and SEM to add
an array expression and an array program to IPL. We name
those re-defined specifications AREXP, ARPGM and ARSEM as
follows:
mod! AREXP{ ...

pr(VAR + ARVAR + EQ-INT + ARRAY)

op _[_] : ArVar Exp -> Exp

...

}

mod! ARPGM{ ...

op _[_]=_ : ArVar Int Exp -> BPgm

...

}

mod* ARSEM{ ...

bop _[_] : Sys ArVar -> Array

vars A1 A2 : ArVar

...

eq S[A1[E1]] = (S[A1])[S[E1]] .

beq S ; (A1[I]= E1)[A1]

= (S[A1])[S[I]]= S[E1] .

bceq S ; (A1[I]= E1)[A2] = S[A2]

if not (A1 =a= A2) .

eq S ; (A1[I]= E1)[X] = S[X] .

beq S ; X := E1 [A1] = S[A1] .

}

The following is an example of execution on ARSEM.
For an array variable (A 1), first insert 1 into the first cell
(0), next insert the value of the first element plus 2 into the
second cell (1), lastly observe the second cell (1) of the re-
sult array, which should be 3.
select ARSEM .

ARSEM> red S ;

(A 1) [0]= 1 ;

(A 1) [1]= ((A 1)[0]) + 2

[(A 1) [1]] .

-- reduce in ARSEM : ((S ; (A 1 ...)))

...

3 : NzNat

6. Related Work

A specification of IPL is an algebraic semantics for impera-
tive programs. Our work has the following advantages over
other non-algebraic semantics for imperative programs.

Applicable: The specification does not fix a model (an im-
plementation). For example, a famous semantics using a
storage [7] restricts a target implementation into those using
a storage. Our model can be applied to all models (imple-
mentations) satisfying the axiom of our behavioral specifi-
cation.

Executable: Thanks to CafeOBJ rewrite engine based on
the term rewriting system, not only specifying imperative
programs but also executing them can be done. Moreover
we can verify a desired properties, especially equivalence of
programs, semi-automatically.

Readable: Equational specifications are easy to understand
since all definitions and verification are constructed by equa-
tions. We can easily review the result of a proof score. When
verification fails, it is easy to identify a reason of the failure
by tracing failed execution of the proof. The trace helps
us to discover a needed lemma, etc. Behavioral specifica-
tions describe only behaviors rather than detail structures.
Thus, specifications can be very simple and short. Almost
all specifications we have described for IPL are in the above
sections.

Extensible: As we showed in the section of user-defined
types, IPL can be extended by importing specifications.
That is one of the most important benefits of the module-
system of CafeOBJ specification languages. Besides the
user-defined types, as another proof of extensibility of IPL
we also succeeded to introduce concurrent programs to IPL,
by importing a specification of non-deterministic integers.

One of the most relevant researches to our work is al-
gebraic semantics of imperative programs by Goguen and
Malcom [4]. Main differences are (1) that we give the se-
mantics by using behavioral specifications (i.e. based on
Hidden algebra), and (2) that we propose a way to intro-
duce a kind of classes of OO languages to IPL. Most im-
portant advantage of our work is to formalize an equivalence

NAKAMURA et al.: A BEHAVIORAL SPECIFICATION OF IMPERATIVE PROGRAMMING LANGUAGES
1565

relation on programs by using the notion of the behavioral
equivalence, and to propose a sufficient condition (Theorem
4.3, 5.2, and 5.3) for program equations, which gives us a
way to prove program equivalence easily.

7. Conclusion

We gave an algebraic semantics of imperative programs
through Hidden algebra, that is, a behavioral specification
of IPL was given. We formalized an equivalence relation
on programs and proposed a property to reduce a task of
proving program equivalence. We also gave a way to intro-
duce a new class to IPL. In our specification, a class we can
treat is restricted, that means that only classes described as a
behavioral specification can be treated. A future work is to
give a way to introduce complete classes of OO languages,
in which we can describe message passing between objects,
etc.

References

[1] F. Baader and T. Nipkow, Term rewriting and all that, Cambridge Uni-
versity Press, 1998.

[2] R. Diaconescu and K. Futatsugi, CafeOBJ Report, World Scientific,
1998.

[3] R. Diaconescu and K. Futatsugi, “Behavioural coherence in object-
oriented algebraic specification,” The Journal of Universal Computer
Science, vol.6, no.1, pp.74–96, 2000.

[4] J. Goguen and G. Malcolm, Algebraic Semantics of Imperative Pro-
grams, MIT Press, 1996.

[5] J. Goguen and G. Malcolm, “Hidden agenda,” Theoretical Computer
Science, vol.245, no.1, pp.55–101, 2000.

[6] C.R.A. Hoare, “An axiomatic basis for computer programming,”
Communications of the Association for Computing Machinery,
vol.12, no.10, pp.576–580, 1969.

[7] D. Scott and C. Strachey, “Towards a mathematical semantics for
computer languages,” Proc. 21st Symposium on Computers and Au-
tomata, pp.19–46, 1971.

[8] A.T. Nakagawa, T. Sawada, and K. Futatsugi, CafeOBJ User’s Manual
– ver.1.4.2 –, http://www.ldl.jaist.ac.jp/cafeobj/, 1999.

Masaki Nakamura received his Ph.D. de-
gree from Japan Advanced Institute of Science
and Technology (JAIST) in 2002. Since 2002,
he has been an associate of School of Informa-
tion Science of JAIST. His current research in-
terests include term rewriting, algebraic specifi-
cation, verification systems, and formal method.

Masahiro Watanabe received his M.IS. de-
gree from Japan Advanced Institute of Science
and Technology in 2005. Since 2005, he has
been employed in Hitachi Ltd.

Kokichi Futatsugi is a professor at Grad-
uate School of Information Science, JAIST
(Japan Advanced Institute of Science and Tech-
nology), Ishikawa, Japan. His research inter-
est includes formal methods, software require-
ments and specifications, and specification lan-
guages. An important part of his research activi-
ties is done on CafeOBJ specification language.
He is a member of the advisory board of Jour-
nal of Higher-Order and Symbolic Computation
(www.wkap.nl/journals/hosc), and the editorial

board of Journal of Object Technology (www.jot.fm) and Journal of Ap-
plied Logic (www.elsevier.com/locate/jal).

