
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Statistical Analysis Driven Synthesis of

Application Specific Asynchronous Systems

Author(s) OHASHI, Koji; KANEKO, Mineo

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E90-A(3): 659-669

Issue Date 2007-03-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4703

Rights

Copyright (C)2007 IEICE. Koji Ohashi, Mineo

Kaneko, IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E90-A(3), 2007, 659-669.

http://www.ieice.org/jpn/trans_online/

Description



IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.3 MARCH 2007
659

PAPER

Statistical Analysis Driven Synthesis of Application Specific
Asynchronous Systems

Koji OHASHI† and Mineo KANEKO†a), Members

SUMMARY In this paper, we propose an effective asynchronous data-
path synthesis system to optimize statistical performance of asynchronous
systems. The proposed algorithm is a heuristic method which simultane-
ously performs scheduling and resource binding. During the design pro-
cess, decisions will be made based on the statistical schedule length analy-
sis. It is demonstrated that asynchronous datapaths with the reduced mean
total computation time are successfully synthesized for some datapath syn-
thesis benchmarks.
key words: asynchronous system, scheduling, binding, statistical analysis

1. Introduction

As a VLSI system becomes larger and a clock period be-
comes shorter, it becomes difficult to control a digital cir-
cuit by a global clock under the fluctuation of datapath de-
lays and clock skew. Asynchronous design is considered as
a promising alternative, since it is free from such a global
clock. Also it has the potential to achieve low power con-
sumption, higher average-case performance, and higher re-
liability [1]. To design a cost effective high performance
asynchronous system for a specified application, optimiza-
tion of a datapath in the register transfer level is an important
design step. Scheduling and resource binding (assignment)
are major subtasks in datapath synthesis not only for syn-
chronous systems but also for asynchronous systems [2]–
[4].

Mercury [2] is known as a synthesis system of asyn-
chronous datapaths. Since the execution time of each op-
eration in an asynchronous system is not fixed and must
be treated as a variable, scheduling is defined as a task to
determine the sequence of operations by adding “resource
edges” to a data dependency graph. In [2], schedule (i.e. set
of resource edges) is explored in branch-and-bound fashion,
and Asynchronous-Left-Edge algorithm is applied to each
schedule to obtain resource binding. In [3], a new filter
(called “one direction”) has been proposed and applied to
Mercury. One direction is a heuristic pruning based on the
sequentialization of ALAP schedule. By using this filter, the
design space explored by Mercury is reduced, and datapaths
are synthesized efficiently. However the computation time
is still exponential to the input size because of the nature of
the branch-and-bound method. In [4], the assignment space

Manuscript received July 3, 2006.
Final manuscript received November 24, 2006.
†The authors are with the School of Information Science, Japan

Advanced Institute of Science and Technology, Nomi-shi, 923-
1292 Japan.

a) E-mail: mkaneko@jaist.ac.jp
DOI: 10.1093/ietfec/e90–a.3.659

exploration based synthesis system has been proposed. It
explores the assignment solution space using Simulated An-
nealing (SA), and each solution visited in SA is evaluated
by its schedule length obtained by assignment constrained
scheduling. Similar to [2], the execution time of each oper-
ation is treated as a variable, and the scheduling problem is
transformed into the problem to decide the sequence of op-
erations and data assigned to the same resource by adding
“disjunctive arcs” to a dependence graph. The system in [4]
also takes a long time for larger instances because of the
nature of SA based exploration of the solution space.

On the other hand, as the feature size becomes smaller,
the density of devices and wires becomes higher and the op-
eration speed becomes higher, delay variations due to local
supply noises, local variations of temperature, crosstalks be-
tween wires, local manufacturing imperfections, etc., cannot
be neglected. For a synchronous system, the effect of delay
variations is masked by the clock period and delay margins.
For an asynchronous system, it affects the total computation
time of an application directly.

In this paper, we propose a new asynchronous datap-
ath synthesis system to synthesize asynchronous datapaths
having the minimum statistical execution time of a specified
application. The important features of this work include the
following points. (i) Statistical performance (statistical ex-
ecution time), instead of deterministic performance, is cho-
sen as the objective for datapath optimization, and a syn-
thesis algorithm is developed toward this purpose. (ii) Ex-
isting methods [2]–[4] are based on the branch-and-bound
exploration or the SA based exploration of a solution space,
and hence they consume too much time to apply to large
instances. To apply to large applications and to find solu-
tions successfully, we develop a heuristic algorithm which
can work in polynomial time of the input size.

The rest of this paper is organized as follows. Sec-
tion 2 is devoted to an overview of asynchronous schedule.
Section 3 shows the statistical schedule length analysis. Sec-
tion 4 presents our asynchronous datapath synthesis system
with the statistical makespan analysis. Section 5 shows ex-
perimental results, and finally Sect. 6 gives conclusions.

2. Preliminaries

2.1 Asynchronous Datapath

In a synchronous system, the start of each operation is con-
trolled by a FSM, in which the transition of a state is trig-

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



660
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.3 MARCH 2007

Fig. 1 Handshaking between a controller and a datapath.

gered by a clock signal. Hence, we can control the start
of each operation by assigning each operation to one of the
states of a FSM, and a schedule is usually considered as a
mapping from operations to Z (integers).

In contrast, in an asynchronous system, no clock signal
is used, and each operation starts under a handshake pro-
tocol between a controller and a datapath. Figure 1 shows
an example of handshaking between a controller and a dat-
apath. The controller knows, by receiving control signals
ack a and ack b, that necessary data have been prepared. A
control signal req is sent from a controller to registers Reg
a and Reg b, and the data are sent out from the registers to
the functional unit FU. The data are then processed in FU,
and the output data is written in the register Reg c. Then a
control signal ack c is sent from the register to the controller.

In the above case, the start of an operation is triggered
by the event that all required input data have been prepared.
Note that, generally, we can add some other events besides
data dependency to trigger the execution of an operation if
it is necessary. Thus, in such an asynchronous framework,
synchronous scheduling, such as Force-directed scheduling
[5], List scheduling [6], and improved synchronous schedul-
ing [7] (i.e., start time assignment) cannot be used.

2.2 Scheduling Graph and Scheduling Problem

In this subsection, we will briefly summarize representation
models and asynchronous schedule.

A target application algorithm to be implemented is
first transformed into a directed graph G = (VG, AG), which
is called a “dependence graph.” VG is the union of the set VO

of operations and the set VD of data, and AG is the union of
the set AO of arcs from operations to data and the set AI of
arcs from data to operations. Auxiliary operations oinit and
oquit are introduced for identifying primary input and pri-
mary output data explicitly. Figure 2(a) shows an example
of the dependence graph.

A graph which represents precedence constraints be-
tween operations will be called a “scheduling graph” GS =

(VS , AS ). The precedence relations in GS come from two
different sources, one is the mandatory precedence relation
specified by the structure of a target application algorithm,
and the other is the optional precedence relation brought by
scheduling. The arcs representing the latter are called “dis-
junctive arcs” in this paper. VS is the set of the starts and the

(a) (b)

Fig. 2 Dependence graph (a) and its scheduling graph (b).

(a) (b)

Fig. 3 Disjunctive arcs induced by functional unit assignment.

ends of operations, and we denote the start node and the end
node of each operation oi as os

i and oe
i , respectively. AS is the

set of arcs which represent precedence constraints between
nodes in VS . The weight of an arc (os

i , o
e
i ) corresponds to the

execution time of operation oi, which is denoted by ε(oi).
For the other arcs, the weights of them are 0. Figure 2(b)
shows a scheduling graph constructed from the dependence
graph in Fig. 2(a).

The disjunctive arcs are introduced in GS to avoid a
collision between operations or between data. That is, if two
operations oi and oj are assigned to the same functional unit,
then one lifetime precedes the other. This constraint can be
represented by adding either an arc (oe

i , o
s
j) (Fig. 3(a)) or an

arc (oe
j, o

s
i ) (Fig. 3(b)) to GS . Similarly if two data di and dj,

which are generated by operations oi and oj, respectively,
are assigned to the same register, then one lifetime precedes
the other. The constraint reflecting this register assignment
can be represented by adding either arcs (sx(oi)e, oe

j) for ev-
ery operations sx(oi) (Fig. 4(a)) or arcs (sy(oj)e, oe

i ) for every
operations sy(oj) (Fig. 4(b)) to GS , where sx(oi) and sy(oj)
are operations using data di and data dj as their inputs, re-
spectively.

As a result, a set of disjunctive arcs (or a resultant
scheduling graph itself in a wide sense), which can resolve
constraints imposed from resource assignment, is consid-
ered as an asynchronous schedule, because, by designing
a controller according to the resultant scheduling graph, op-
erations can be executed correctly without the conflict of
lifetimes in as soon as possible manner under precedence
relations given by the scheduling graph.

Note that, for every pair of operations oi and oj which
are assigned to the same functional unit, we need to decide



OHASHI and KANEKO: STATISTICAL ANALYSIS DRIVEN SYNTHESIS OF APPLICATION SPECIFIC ASYNCHRONOUS SYSTEMS
661

(a) (b)

Fig. 4 Disjunctive arcs induced by register assignment.

which one of the alternative disjunctive arcs is added to GS .
Also for every pair of data di and dj which are assigned to
the same register, we need to decide which one of the al-
ternative sets of disjunctive arcs is added to GS . Different
decisions yield different sets of disjunctive arcs (i.e., dif-
ferent schedules), and to find an optimum set is our assign-
ment constrained scheduling problem. The optimality of the
schedule depends on the evaluation of the schedule. Statisti-
cal schedule length as an evaluation method of the schedule
will be described in Sect. 3, and a scheduling method will be
shown in Sect. 4.3.

3. Statistical Schedule Length Analysis

Not only to evaluate a final schedule but also to make deci-
sions in a scheduling process, we need to evaluate a sched-
ule (equivalently, a scheduling graph) in some way. In
the conventional evaluation phase [2]–[4], they introduce
a specious constant delay for the execution time of each
operation, such as typical delay, maximum delay or mini-
mum delay, and compute typical (maximum or minimum)
makespan by using typical (maximum or minimum) execu-
tion delay. If there is no random delay variation between
modules and delays of all modules vary uniformly, the above
constant delay model seems to be an acceptable way to han-
dle delay variations. However, due to local supply noise, lo-
cal variations of temperature, crosstalks between wires, lo-
cal manufacturing imperfections, etc., functional delay and
transmission delay can vary easily, and the calculation of
minimum, typical, and maximum total computation time
based on the constant delay model is unacceptable for those
random delay variations.

In [8], a statistical schedule length analysis for eval-
uating a schedule during asynchronous datapath synthesis
has been proposed. The statistical delay analysis handles
correlations induced by three different sources; (1) correla-
tion between delays on different modules and nets, (2) re-
convergent paths in a scheduling graph, and (3) resource
sharing (depends on resource binding).

In this paper, the execution time ε(oi) is modeled by
a stochastic variable having normal distribution as done in
[8]–[10], and the schedule length of a schedule is also con-
sidered to be distributed randomly. In what follows, the

weight of each arc e in AS is denoted by w(e), and the normal
distribution of w(e) is denoted by N(µ(e), σ2(e)), where µ(e)
and σ2(e) are the mean and the variance of the distribution,
respectively. For two arcs ei and e j in AS , the correlation
coefficient between w(ei) and w(e j) is denoted by ρ(ei, e j).

The statistical schedule length analysis in [8] is sum-
marized as follows, in which lti(v) denotes the longest path
length from oinit to v passing through the ith incoming arc of
v, li(v) denotes the longest path length from oinit to v passing
through one of 1st to ith incoming arcs of v, and l(v) denotes
the longest path length from oinit to v, that is l(v) = l f (v)(v),
where f (v) is the in-degree of v.
Algorithm: Statistical Schedule Length Analysis
Step 1: Depending on the binding, µ(e) and σ2(e) are as-
signed to each arc e in GS . In addition, ρ(ei, e j) is assigned
to every pair of arcs ei and e j.

Step 2: All nodes in GS are sorted in topological order.
Step 3: If l(oquit) is computed, then the mean E

[
l(oquit)

]
and the variance V

[
l(oquit)

]
are outputted. Otherwise, a

node v is selected from GS in topological order.
Step 4: If v = oinit, we set E[l(v)] = V[l(v)] = 0 and the cor-
relation coefficients R[l(v), l(v)] = 1 and R[l(v), w(e)] = 0
for each arc e ∈ AS , respectively, and go to Step 3.
Otherwise, for each incoming arc of v ei = (ui, v) (i =
1, 2, · · · , f (v)), we compute lti(v). Using the probabilistic
equivalent of lti(v) = l(ui)+w(ei) (“add” operation), we cal-
culate the mean E[lti(v)] and the variance V[lti(v)] of lti(v) as
follows.

E
[
lti(v)
]
= E[l(ui)] + µ(ei),

V
[
lti(v)
]
= V[l(ui)] + σ

2(ei)

+ 2
√

V[l(ui)]σ2(ei)R[l(ui), w(ei)].

Step 5: For each node x ∈ VS whose l(x) has been already
computed, we calculate correlation coefficient R

[
lti(v), l(x)

]
between lti(v) and l(x) as follows.

R
[
lti(v), l(x)

]
=

√
V[l(ui)]R[l(x), l(ui)] + σ(ei)R[l(x), w(ei)]√

V
[
lti(v)
] .

Note that we set R[l(x), l(ui)] = 1, if x = ui.
Similarly, for each arc y ∈ AS we calculate correlation
coefficient R

[
lti(v), w(y)

]
between lti(v) and w(y) as follows.

R
[
lti(v), w(y)

]
=

√
V[l(ui)]R[l(ui), w(y)] + σ(ei)ρ(ei, y)√

V
[
lti(v)
] .

where ρ(ei, y) is the correlation coefficient between w(ei)
and w(y) of arcs ei and y in AS .

Step 6: Instead of li(v) = max[lt1(v), lt2(v), · · · , lti(v)], we re-

cursively calculate li(v) = max
[
li−1(v), lti(v)

]
for i ≥ 2



662
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.3 MARCH 2007

and l1(v) = lt1(v). Using the probabilistic equivalent of

li(v) = max
[
li−1(v), lti(v)

]
(“max” operation), the mean

E[li(v)] and the variance V[li(v)] of li(v) are calculated as
follows.

E[li(v)]

= E[li−1(v)]Φ(α) + E[lti(v)]Φ(−α) + aϕ(α),

V[li(v)]

=
(
E2[li−1(v)] + V[li−1(v)]

)
Φ(α)

+
(
E2[lti(v)] + V[lti(v)]

)
Φ(−α)

+
(
E[li−1(v)] + E[lti(v)]

)
aϕ(α) − E2[li(v)],

α =
E[li−1(v)] − E[lti(v)]

a
,

a =

√√√√√√√√√√√ V[li−1(v)] + V[lti(v)]

−2
√

V[li−1(v)]
(√

V[l(ui)]R[li−1(v), l(ui)]

+σ(ei)R[li−1(v), w(ei)]
) ,

where ϕ(x) and Φ(x) are the probability density function
and the cumulative distribution function of a stochastic
variable x having the normal distribution, respectively.
In addition, the correlation coefficients R[li(v), l(x)] and
R[li(v), w(y)] between li(v) = max

[
li−1(v), lti(v)

]
and l(x) of

each node x whose l(x) has been already computed and
w(y) of each arc y, respectively, are calculated as follows.

R[li(v), l(x)]

=

√
V[li−1(v)]R[li−1(v), l(x)]Φ(α)

+
√

V[lti(v)]R[lti(v), l(x)]Φ(−α)
√

V[li(v)]
,

R[li(v), w(y)]

=

√
V[li−1(v)]R[li−1(v), w(y)]Φ(α)

+
√

V[lti(v)]R[lti(v), w(y)]Φ(−α)
√

V[li(v)]
.

By computing E[li(v)], V[li(v)], R[li(v), l(x)] and R[li(v),
w(y)] recursively, we have the mean E[l(v)] = E[l f (v)(v)]
and the variance V[l(v)] = V[l f (v)(v)] of l(v), correlation
coefficients R[l(v), l(x)] = R[l f (v)(v), l(x)] between l(v) and
l(x) of each node x whose l(x) has been already computed,
and correlation coefficients R[l(v), w(y)] = R[l f (v)(v), w(y)]
between l(v) and w(y) of each arc y. Go to Step 3. �

This algorithm selects a node v in topological order of
the precedence relation given by GS , and computes the mean
E[l(v)] and the variance V[l(v)] of the longest path length l(v)
using “add” and “max” operations. In Step 6, to obtain a,
we need the correlation coefficient R

[
li−1(v), lti(v)

]
between

li−1(v) and lti(v) as follows.

R
[
li−1(v), lti(v)]

]
=

√
V[l(ui)]R[li−1(v), l(ui)]
+σ(ei)R[li−1(v), w(ei)]√

V[lti(v)]
.

(a) (b)

Fig. 5 Datapath (a) and scheduling graph (b).

Thus correlation coefficients R
[
lti(v), l(x)

]
and R

[
lti(v), w(y)

]
in Step 5 and R[li(v), l(x)] and R[li(v), w(y)] in Step 6 are also
computed.

As a demonstrative example, consider the mean
E[l(oquit)] and the standard deviation

√
V[l(oquit)] of the

longest path length l(oquit) of the sink oquit in Fig. 5(b). Fig-
ure 5(a) shows an example of a datapath, i.e., three opera-
tions and six data in Fig. 2(a) are assigned to two functional
units FU1 and FU2, and five registers Reg1, Reg2, Reg3,
Reg4, and Reg5, respectively. Figure 5(b) shows an ex-
ample of the scheduling graph for the datapath in Fig. 5(a),
which is obtained by adding two disjunctive arcs (oe

1, o
s
2) and

(oe
1, o

e
2) to the scheduling graph in Fig. 2(b). The delays of

functional units FU1 and FU2 in Fig. 5(a) are modeled by
the normal distribution N(9, 13.44). Now operations o1 and
o2 are assigned to the same functional unit FU1, and we
set the correlation coefficient ρ(e1, e2) between w(e1) and
w(e2) for arcs e1 = (os

1, o
e
1) and e2 = (os

2, o
e
2) to 1. The

other correlation coefficients are set to 0. Then, E[l(oquit)]
and
√

V[l(oquit)] obtained by the Monte Carlo simulation are
26.96 and 8.12, respectively. The results of the statistical
delay analysis are 27.02 and 8.15, respectively, and they are
close to the results of the Monte Carlo simulation. On the
other hand, if the above correlations are ignored, the results
are 27.23 and 6.09, respectively. Thus, for accurate compu-
tation, we cannot ignore these correlations even for such a
small instance.

By using this statistical delay analysis, in this paper, we
define statistical ASAP instantiation SASAP(v) as the mean
E[l(v)] of the longest path length l(v) from a source node oinit

to a node v. On the other hand, statistical ALAP instantiation
SALAP(v) is defined as a constant T minus the mean E[l(v)]
of the longest path length l(v) from a sink node oquit to a
node v, where the directions of arcs in GS are reversed.

4. Asynchronous Datapath Synthesis with Statistical
Makespan Analysis

4.1 Motivation

The statistical schedule length depends not only on delay
variations of modules and the correlations induced by vari-
ous sources but also on resource assignment and schedule (a



OHASHI and KANEKO: STATISTICAL ANALYSIS DRIVEN SYNTHESIS OF APPLICATION SPECIFIC ASYNCHRONOUS SYSTEMS
663

selection of disjunctive arcs) strongly. Figure 6 shows a sim-
ple example of the statistical schedule length, which varies
depending on functional unit assignment. The scheduling
graph under the assumption that operations o1 and o2 are
assigned to FU1 and FU2, respectively, is shown in Fig. 6
(a). Now we will consider functional unit assignment of o3

to one of the allocated modules (i.e., FU1 and FU2). Fig-
ure 6 (b) shows the scheduling graph having the unambigu-
ous sequence o1o3 on FU1 in the case where o3 is assigned
to FU1. Similarly, Fig. 6 (c) shows the scheduling graph
having the sequence o2o3 on FU2 in the other case. Then,
these statistical schedule length l(oquit) in Figs. 6(b) and (c)
are N(18.57, 42.65) and N(20.07, 36.03), respectively. (We
have used the same delays and correlation coefficients with
the example shown in Sect. 3.) The mean total computation
time E[l(oquit)] varies from 18.57 to 20.07 depending on the
functional unit assignment. Note that, under the constant
delay model, both of the typical total computation times in
Figs. 6(b) and (c) are 18. Therefore we need to perform care-
fully resource assignment and scheduling for statistical per-
formance optimization.

For statistical performance optimization problems, our
basic strategy is to simultaneously perform scheduling and
resource assignment, which is based on assignment driven
approach. Roughly speaking, existing methods [2]–[4] are
also categorized into “simultaneous scheduling and resource
assignment” with constant delay analysis, but they consume
much time because of their branch-and-bound based or sim-
ulated annealing based exploration of solution space. If
statistical delay analysis shown in Sect. 3, instead of con-
stant delay analysis, is incorporated into the conventional
asynchronous datapath synthesis systems, they consume
more time than the original systems (the time complexity
of the statistical delay analysis algorithm proposed in [8] is
Θ(|AS |2) while the complexity of constant delay analysis is
O(|AS |)). Thus we propose a heuristic method so that it can
generate a solution quickly even if the statistical delay anal-
ysis is incorporated.

(a) (b) (c)

Fig. 6 The statistical schedule length affected by functional unit assign-
ment.

4.2 Proposed Algorithm

In this paper we propose a synthesis system, which can gen-
erate asynchronous datapaths having good statistical perfor-
mances. Now, we consider the problem to find a datapath
and a schedule with minimum mean total computation time
(i.e., minimum E[l(oquit)]) with maximum total computation
time Tmax ≤ TM under given set of available modules and
constant TM (the upper bound of maximum total compu-
tation time Tmax). Note that Tmax is computed using max-
imum execution time of each operation. Note also that the
choice of E[l(oquit)] is not essential, but the choice of statisti-
cal measure is. Actually, other performance measures, such
as E[l(oquit)]+3

√
V[l(oquit)], E[l(oquit)] plus interconnection

complexity between modules, etc., would be candidates for
the objective function.

Figure 7 shows the proposed algorithm (SAS). Basi-
cally, one operation (data) which is not assigned yet, and
one functional unit (register) from given available modules
are selected, and the operation (register) is assigned to the
functional unit (register). Then the unambiguous sequences
of operations and data, which are induced by this resource
assignment, are fixed. The above procedure will be repeated
until all operations and data are assigned to functional units
and registers. Finally all unresolved disjunctive arcs are

Algorithm: Statistical Analysis driven Synthesis (SAS)

Input: A dependence graph G, a set of available modules, and TM .

Output: A datapath and a schedule.

Step 1: Construct an initial scheduling graph GS from a dependence graph
G.

Step 2: Compute statistical ASAP instantiation SASAP and statistical
ALAP instantiation SALAP, and calculate the statistical range
SALAP(os

i ) − SASAP(os
i ) of each operation oi and the statistical range

SALAP(oe
j) − SASAP(oe

j) of each data d j which is generated by the
operation o j.

Step 3: Find the operation having the smallest statistical schedule range
among operations which are not assigned to functional units yet. If
all operations are assigned to the functional units, find the data hav-
ing the smallest statistical schedule range among data which are not
assigned to registers yet.

Step 4: For the selected operation (data), evaluate the mean total com-
putation time E[l(oquit)] and Tmax for each possible assignment of
the operation (data) to one of available functional units (registers),
and find the best functional unit (register) which achieves minimum
E[l(oquit)] while Tmax ≤ TM is maintained.

If the best functional unit (register) achieves minimum E[l(oquit)] =
∞, output “FAIL.”

Step 5: The operation (data), which is selected in Step 3, is assigned to the
functional unit (register) which is selected in Step 4. Then, the un-
ambiguous sequences of operations and data, which are induced by
this resource assignment, are fixed, and the corresponding disjunc-
tive arcs are added to GS .

If all operations and data are assigned to functional units and regis-
ters, respectively, then go to Step 6. Otherwise go to Step 2.

Step 6: Fix all unresolved disjunctive arcs by assignment constrained
scheduling, and then output a datapath and a schedule.

Fig. 7 Statistical analysis driven synthesis algorithm.



664
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.3 MARCH 2007

fixed.

4.3 Module Assignment and Assignment Constrained
Scheduling

As shown in Fig. 6, the statistical schedule length strongly
depends on resource assignment and schedule (a selection of
disjunctive arcs). In Step 4 of SAS, we will repeatedly eval-
uate the statistical schedule length for different assignment
of a selected operation (data) to an available functional unit
(register), and find the best module. During this process,
we use the concept of assignment constrained scheduling.
That is, the evaluation of E[l(oquit)] is done by temporar-
ily solving the assignment (partial assignment) constrained
scheduling problem, which is described as follows. Given
GS , TM, and (partial or full) resource assignment, find a set
of disjunctive arcs with respect to all pairs of operations as-
signed to the same functional unit and all pairs of data as-
signed to the same register such that the resultant scheduling
graph achieves the minimum E[l(oquit)] and Tmax ≤ TM over
all feasible sets of disjunctive arcs.

In order to solve this problem, we use an extended ver-
sion of the assignment constraint scheduling in [4]. The
assignment constrained scheduling algorithm is shown in
Fig. 8. The scheduling algorithm incrementally adds dis-
junctive arcs induced from specified resource assignment to
GS . The choice of disjunctive arcs is done in two ways, one
is mandatory and the other is heuristic.

(A) Unambiguous sequence

With respect to a pair of operations oi and oj which
are assigned to the same functional unit, if addition
of the disjunctive arc (oe

j, o
s
i ) forms a positive cycle in

the scheduling graph, we call oio j as the unambigu-
ous sequence. If oio j is the unambiguous sequence, we
choose the disjunctive arc (oe

i , o
s
j) and discard (oe

j, o
s
i ).

The unambiguous sequence of data is defined in a
similar way, and if did j is the unambiguous sequence
of data di and dj, we choose (sx(oi)e, oe

j) and discard
(sy(oj)e, oe

i ), where oi generates di, oj generates dj,
sx(oi) uses di as input, and sy(oj) uses dj as input.

(B) Heuristics

If neither oio j(did j) nor ojoi(djdi) is the unambiguous
sequence, we choose disjunctive arcs in the following
heuristic way.

First we compute SL(oi, oj)(SL(di, dj)) as follows.

SL(oi, oj) = σALAP(os
j) − σASAP(oe

i ),

SL(di, dj) = σALAP(oe
j) −max

x

[
σASAP(sx(oi)

e)
]
,

where oj generates dj and sx(oi) uses di as input.
Note that ASAP instantiation σASAP(v) is defined as
the longest path length from oinit to v under the max-
imum execution time for each operation. On the other

Algorithm: Assignment Constrained Scheduling

Input: A scheduling graph GS , (partial or full) resource assignment, and
TM .

Output: E[l(oquit)] and the list of disjunctive arcs when it is specified.

Step 1: Calculate maximum total computation time Tmax on GS . If a pos-
itive cycle is detected or Tmax > TM , output E[l(oquit)] = ∞ and
terminate.

Step 2: If disjunctive arcs between every pair of operations (data) assigned
to the same functional unit (register) are fixed, compute E[l(oquit)] on
GS and terminate with output E[l(oquit)]. When it is specified, output
also the list of disjunctive arcs.

Step 3: If there exist the unambiguous sequences of operations (data) as-
signed to the same functional unit (register), then add the correspond-
ing disjunctive arcs to GS and go to Step 1.

Step 4: Based on the heuristic rule, fix the sequence of one pair of oper-
ations (data) which are not scheduled. Then add the corresponding
disjunctive arcs to GS and go to Step 1.

Fig. 8 Assignment constrained scheduling algorithm.

hand, ALAP instantiation σALAP(v) is defined as a con-
stant T minus the longest path length from oquit to v
under the maximum execution time for each operation,
where the directions of arcs in GS are reversed. (Use of
SASAP andSALAP instead ofσASAP andσALAP(v) is also
possible. Here we use σASAP and σALAP(v) because
of its low computational complexity and the request of
Tmax ≤ TM .)

Then we find minimum SL(a, b) and fix the sequence
ba. That is, we add the corresponding disjunctive arcs
to GS .

Once disjunctive arcs between every pair of operations
(data) assigned to the same functional unit (register) are
fixed, then E[l(oquit)] on GS is computed by the statistical
schedule length analysis.

When the assignment constrained scheduling is called
at Step 4 in the first loop of SAS, it receives an ini-
tial scheduling graph constructed from a given dependency
graph without any disjunctive arcs, and incrementally adds
disjunctive arcs induced from specified resource assignment
to the scheduling graph. When the scheduling algorithm is
called in the following time of Step 4 or in Step 6, it starts
with the scheduling graph which has several disjunctive arcs
added in Step 5 of SAS. These disjunctive arcs (i.e., a partial
schedule) mean the unambiguous sequences of operations
and data induced by resource assignment which has been al-
ready fixed in SAS. The scheduling algorithm called in SAS
takes a previously fixed partial schedule into account, and
it runs more efficiently than a scheduling algorithm with-
out taking any partial schedule into account. Note that GS

in the assignment constrained scheduling is local data, and
the modification on GS done in the assignment constrained
scheduling does not affect the scheduling graph GS in SAS.

The time complexity of the scheduling algorithm is
evaluated as follows. Step 2 needs O(|VG |3) because the
longest past length of every pair of nodes is computed us-
ing Floyd’s algorithm in order to detect positive cycles and



OHASHI and KANEKO: STATISTICAL ANALYSIS DRIVEN SYNTHESIS OF APPLICATION SPECIFIC ASYNCHRONOUS SYSTEMS
665

the unambiguous sequences. Step 4 and 5 are computed in
O(|VG |2). Since these processes are repeated until all oper-
ations and data are scheduled (at most O(|VG |2)), the total
time complexity is O(|VG |5).

4.4 Computational Complexity

The computational complexity of the proposed algorithm is
evaluated as follows. To select one operation (data) in Step
2, the statistical range of operations and data are computed
by the statistical delay analysis, and the computation time
is O(|AG |2). To select one module in Step 4, the statisti-
cal schedule length for different assignments (at most M) of
a selected operation (data) is evaluated by assignment con-
strained scheduling, where M is the number of given avail-
able modules, and the time complexity of the assignment
constrained scheduling is O(|VG |5). Hence the computation
time is O(M · |VG |5). Step 5 needs O(|VG |5) because the as-
signment constrained scheduling is partly used. Since these
processes are repeated until all operations and data (at most
|VG |) are assigned, the total time complexity is O(M · |VG |6).

5. Experiments

The proposed algorithm is implemented using C program
language on a 1 GHz Pentium III personal computer. The
algorithm is applied to three datapath synthesis benchmarks;
four-order all-pole lattice filter (which contains 11 additions,
4 multiplications, 16 variables, and 4 constants), fifth-order
elliptic wave filter (which contains 26 additions, 8 multipli-
cations, 35 variables, and 8 constants), and twice unfolded
fifth-order elliptic wave filter in which two original itera-
tions are combined as a new single iteration (which contains
52 additions 16 multiplications, 69 variables, and 16 con-
stants).

Table 1 Experimental results for four-order all-pole lattice filter. Fast module set Add1: N(7.5, 0.69),
Mul1: N(16, 2.78). Slow module set Add2: N(15, 2.78), Mul2: N(43.5, 23.36). [2] and [3] don’t use the
hierarchical approach. [2], [3] and [4] generate optimal solutions in terms of the minimization of Ttypi.

[2] [3] [4] [8] Ours
Add1 Mul1 Reg TM Corr Ttypi E time Ttypi E time Ttypi E time E time E time

[ns] [ns] [ns] [s] [ns] [ns] [s] [ns] [ns] [s] [ns] [s] [ns] [s]
0.0 63.90 63.90 65.25 63.63 1 63.63 ≤1

4 2 6 82 0.3 62 63.60 ≤1 62 63.60 ≤1 62 64.72 ≤1 63.39 1 63.39 ≤1
0.6 63.60 63.60 64.72 63.39 1 63.39 ≤1
0.9 62.62 62.62 63.05 62.55 1 62.55 ≤1
0.0 72.41 72.41 72.88 70.89 1 71.69 ≤1

2 2 6 92 0.3 69.5 71.96 ≤1 69.5 71.96 ≤1 69.5 72.32 ≤1 70.65 1 71.33 ≤1
0.6 71.32 71.32 71.62 70.37 1 70.87 ≤1
0.9 70.40 70.40 70.55 69.92 1 70.17 ≤1

Add2 Mul2 Reg TM Corr Ttypi E time Ttypi E time Ttypi E time E time E time
[ns] [ns] [ns] [s] [ns] [ns] [s] [ns] [ns] [s] [ns] [s] [ns] [s]

0.0 151.46 151.46 154.90 151.07 1 151.07 ≤1
4 2 6 196 0.3 147 150.75 ≤1 147 150.75 ≤1 147 153.63 ≤1 150.44 1 150.44 ≤1

0.6 149.86 149.86 152.03 149.55 1 149.62 ≤1
0.9 148.47 148.47 149.56 148.24 1 148.35 ≤1
0.0 169.45 169.45 170.39 166.99 1 166.99 ≤1

2 2 6 216 0.3 162 168.21 ≤1 162 168.21 ≤1 162 169.00 ≤1 163.53 1 166.15 ≤1
0.6 166.67 166.67 167.27 163.12 1 165.11 ≤1
0.9 164.30 164.30 164.60 162.83 1 163.52 ≤1

For comparison purposes, datapaths and schedules are
also synthesized by using asynchronous datapath synthesis
systems in [2]–[4] and [8]. Systems in [2]–[4] find datap-
aths and schedules with minimum typical total computation
time Ttypi with Tmax ≤ TM . On the other hand, the system
in [8] synthesizes datapaths and schedules with minimum
mean total computation time E[l(oquit)] with Tmax ≤ TM by
SA based exploration of assignment solution space with the
statistical delay analysis. All synthesis results are evaluated
by the Monte Carlo simulation, and we obtain the mean of
the total computation time.

5.1 Results

Tables 1, 2, and 3 show the results (column E) obtained
with several different specifications of the numbers of adders
(Add1 and Add2), multipliers (Mul1 and Mul2) and reg-
isters (Reg) and the upper bound of maximum total com-
putation time TM for each benchmark. TM is set to the
minimum Tmax under given available modules for the four-
order all-pole lattice filter and the fifth-order elliptic wave
filter. For the twice unfolded fifth-order elliptic wave filter,
we could not find (guarantee) the minimum Tmax, and we
use the smallest Tmax found so far as TM . The column of
“time” shows runtime in seconds. We use the module li-
brary in [10], and model the delays of Add1, Add2, Mul1,
and Mul2 with N(7.5, 0.69), N(15, 2.78), N(16, 2.78), and
N(43.5, 23.36), respectively. If two operations oi and oj are
assigned to the same functional unit, we set the correlation
coefficient ρ(ei, e j) = 1 between w(ei) and w(e j) for two arcs
ei = (os

i , o
e
i ) and e j = (os

j, o
e
j) in a scheduling graph GS .

Otherwise the correlation coefficient is set to 0.0, 0.3, 0.6,
or 0.9, which is shown in the column of “Corr.”

As we can see from the column E, our system always
provides better solutions than [2]–[4]. Unfortunately, our



666
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.3 MARCH 2007

Table 2 Experimental results for fifth-order elliptic wave filter. Fast module set Add1: N(7.5, 0.69),
Mul1: N(16, 2.78). Slow module set Add2: N(15, 2.78), Mul2: N(43.5, 23.36). [2] and [3] use the
hierarchical approach, and set the maximum block size at 15. For two instances (Add1(Add2)=3,
Mul1(Mul2)=3, Reg=13, TM=174(412)), [2] and [3] generate optimal solutions in terms of the min-
imization of Ttypi. For the other instances, all solutions generated by [2] or [3] within 24 hours are not
comparable ones to ours. For the latter set of instances, [2] and [3] don’t halt within 24 hours if the
maximum block size is greater than 15. [4] generates optimal solutions in terms of the minimization of
Ttypi for all instances.

[2] [3] [4] [8] Ours
Add1 Mul1 Reg TM Corr Ttypi E time Ttypi E time Ttypi E time E time E time

[ns] [ns] [ns] [s] [ns] [ns] [s] [ns] [ns] [s] [ns] [s] [ns] [s]
0.0 134.68 134.68 137.24 132.32 72 132.42 7

3 3 13 174 0.3 131.5 134.01 22 131.5 134.01 11 131.5 136.22 19 132.20 56 132.22 7
0.6 133.20 133.20 134.97 131.92 93 132.00 7
0.9 133.20 133.20 133.07 131.60 59 131.72 7
0.0 - - 137.20 136.08 200 136.51 8

2 2 13 184 0.3 - - 1941 - - 386 131.5 136.10 26 135.19 225 135.45 8
0.6 - - 134.75 133.75 258 134.55 8
0.9 - - 132.83 132.33 170 132.63 8
0.0 - - 168.75 167.71 200 167.71 7

2 1 13 218 0.3 - - > 24h - - > 24h 165.5 168.01 31 167.23 786 167.23 8
0.6 - - 167.14 166.77 93 166.77 8
0.9 - - 166.02 165.95 122 165.96 8

Add2 Mul2 Reg TM Corr Ttypi E time Ttypi E time Ttypi E time E time E time
[ns] [ns] [ns] [s] [ns] [ns] [s] [ns] [ns] [s] [ns] [s] [ns] [s]

0.0 311.59 311.59 319.65 310.53 68 310.53 7
3 3 13 412 0.3 309 311.11 21 309 311.11 13 309 317.65 16 309.83 59 309.87 7

0.6 310.73 310.73 315.34 309.55 59 309.70 7
0.9 310.41 310.41 312.18 309.40 60 309.55 7
0.0 - - 318.33 316.02 225 318.03 9

2 2 13 432 0.3 - - 1924 - - 384 309 316.69 14 313.68 119 315.97 8
0.6 - - 314.73 314.20 182 314.21 8
0.9 - - 311.80 310.66 150 311.72 8
0.0 - - 425.84 425.80 185 425.80 9

2 1 13 564 0.3 - - > 24h - - > 24h 423 425.28 33 425.21 132 425.26 8
0.6 - - 424.67 424.67 130 424.67 8
0.9 - - 423.79 423.79 98 423.79 7

results cannot be compared with the results of [2], [3] for
larger benchmarks, since [2] and [3] do not produce compa-
rable solutions within 24 hours on our PC environment. On
the other hand, [4] generates datapaths and schedules with
minimum Ttypi for four-order all-pole lattice filter and fifth-
order elliptic wave filter.

For the case of small target algorithms or small number
of functional units, the performance difference between dat-
apaths designed by our system and a conventional one seems
not so large. However, our system tends to generate better
solutions than a conventional one in the mean total com-
putation time, when the size of a target algorithm becomes
larger, or the number of functional units becomes larger. Es-
pecially, Table 3 shows solutions with the maximum 2.14%
reduced mean total computation time by comparison with
[4]. Also it shows our system runs about 35.12 ∼ 147.57
times faster than [4].

The effect of the variance of the delay is tested in the
next experiment. Now we use Add3: N(15, 1.34), Mul3:
N(43.5, 11.68) as a small variance module set, where each
variance is set as half of the variance of Add2 or Mul2. We
also use Add4: N(15, 5.46) and Mul4: N(43.5, 46.72) as
a large variance module set, where each variance is set as
double of the variance of Add2 or Mul2. Tables 4, 5, and

6 show the results for each benchmark. Our system tends
to generate better solutions in the mean total computation
time, when the variance of the delay of each module be-
comes larger. Table 5 shows solutions with the maximum
4.57% reduced mean total computation time by comparison
with [4].

On the other hand, our system always provides compa-
rable solutions to [8], and [8] cannot produce any solution
for larger benchmarks within 24 hours on our PC environ-
ment. Thus our system runs faster than existing synthesis
systems of asynchronous datapath, and it can find near opti-
mum solutions in most cases.

5.2 Comments on Synthesis Systems in [2] and [3]

To obtain datapaths and schedules with minimum Ttypi, [2]
uses redundant edge filter and minimum latency filter, and
[3] uses these filters and one direction filter. However, by
only those filters, we cannot find a feasible solution within
24 hours for the fifth-order elliptic wave filter and the twice
unfolded fifth-order elliptic wave filter. In addition to those
filters, the hierarchical approach in [2] is a powerful tech-
nique for reducing the solution space. The hierarchical ap-
proach randomly groups operations of the same type into



OHASHI and KANEKO: STATISTICAL ANALYSIS DRIVEN SYNTHESIS OF APPLICATION SPECIFIC ASYNCHRONOUS SYSTEMS
667

Table 3 Experimental results for twice unfolded fifth-order elliptic wave
filter. Fast module set Add1: N(7.5, 0.69), Mul1: N(16, 2.78). Slow mod-
ule set Add2: N(15, 2.78), Mul2: N(43.5, 23.36). [2] and [3] use the hierar-
chical approach, and set the maximum block size at 15. For two instances
(Add1(Add2)=3, Mul1(Mul2)=3, Reg=13, TM=348(824)), [2] and [3] halt
within 2800[s] and 1200 [s], respectively, but they did not generate compa-
rable solutions to ours. For the other instances, [2] and [3] don’t halt within
24 hours on our PC environment. [2] and [3] don’t halt within 24 hours for
all instances if the maximum block size is greater than 15. Also [8] don’t
halt within 24 hours for all instances. So, we omit the columns for [2], [3]
and [4].

[4] Ours
Add1 Mul1 Reg TM Corr Ttypi E time E time

[ns] [ns] [ns] [s] [ns] [s]
0.0 266.42 260.20 103

3 3 13 348 0.3 254.5 264.46 3042 259.33 105
0.6 262.04 258.27 105
0.9 258.46 256.71 103
0.0 274.30 269.12 106

3 2 13 358 0.3 263 272.44 4704 268.23 108
0.6 270.15 267.12 108
0.9 266.82 265.48 106
0.0 283.27 281.46 138

2 2 13 368 0.3 269.5 280.97 10365 279.45 141
0.6 278.16 276.98 141
0.9 274.04 273.41 141

Add2 Mul2 Reg TM Corr Ttypi E time E time
[ns] [ns] [ns] [s] [ns] [s]

0.0 611.58 598.79 103
3 3 13 824 0.3 589.5 607.72 3652 596.86 103

0.6 603.18 595.28 103
0.9 596.78 592.84 103
0.0 640.41 631.30 104

3 2 13 844 0.3 618 636.90 4277 629.56 104
0.6 632.51 626.97 104
0.9 625.73 622.94 104
0.0 650.27 645.23 138

2 2 13 864 0.3 619.5 645.22 20365 641.00 138
0.6 638.96 635.78 138
0.9 629.40 626.03 138

blocks of a given maximum size, and then the solution space
exploration is done separately for each block. In our ex-
periments, the hierarchical approach is also applied to the
fifth-order elliptic wave filter and the twice unfolded fifth-
order elliptic wave filter. The maximum block size is set to
15, which is as large value as possible for the system to halt
within 24 hours on our PC environment. Note that we also
tested smaller maximum block sizes from 2 to 14. Their
runtimes spread from 1 second to more than 24 hours on our
PC environment. However, all of their solutions generated
within 24 hours are not comparable to ours.

The runtimes of [2] and [3] increase when TM becomes
larger. This is because the chance of bounding by the mini-
mum latency filter becomes smaller. As for the hierarchical
approach, the runtime and the quality of solutions depend
on not only the maximum block size but also the group-
ing of operations into blocks. Thus, if the grouping is not
adequate, no feasible (or good) solutions will be generated
even if a larger maximum block size is used. Unfortunately,
[2] didn’t discuss how to group operations into blocks more
than random grouping. In our experiments, we also used
random grouping.

5.3 Comments on Differences between Previous Systems
and Ours

Finally, we briefly discuss differences between [2], [3] (Mer-
cury and Mercury based synthesis Systems, in the following
MS in short) and [4], [8] and our system (Assignment driven
synthesis Systems, AS in short) with regard to the efficiency
as a synthesis system.

1. The central optimization procedure of MS is the
branch-and-bound search of the schedule solution
space, and that of AS is the simulated annealing search
([4], [8]) or the constructive search (this paper) of the
assignment solution space. The performance difference
especially the difference in the computation time would
be caused partly by the difference of the underlying ex-
ploration method.

2. The central optimization procedure of MS is the
branch-and-bound search of the schedule solution
space, and that of AS is the simulated annealing search
([4], [8]) or the constructive search (this paper) of the
assignment solution space. As a result, the assign-
ment is applied to a generated schedule in MS, while
the scheduling is applied to a generated assignment in
AS. In our experiments done in this paper, the numbers
of functional units and registers are specified as design
constraints. In AS, we can efficiently utilize those re-
source constraints for exploring the assignment solu-
tion space. However, in MS, those resource constraints
can hardly help the efficiency of the branch-and-bound
search of the schedule solution space, since the more
disjunctive arcs are (i.e., the deeper the branches pro-
ceed), the higher the chance of resource sharing is.
Thus, it is difficult to generate solutions satisfying re-
source constraints efficiently.

6. Conclusions

In this paper, we have proposed an effective asynchronous
datapath synthesis system to optimize statistical schedule
length using statistical schedule length analysis. The pro-
posed algorithm is a heuristic method which simultane-
ously performs scheduling and resource assignment. Dur-
ing the design process, decisions have been made based on
the statistical schedule length analysis. Our system gener-
ates schedules and datapaths having higher statistical per-
formances, which are not synthesized by using conventional
ones.

The normal distribution is not always adequate for the
delay analysis of asynchronous datapaths. Development of a
proper model and algorithms to compute statistical parame-
ters, which reflect practical random delay variations, are left
for future work.

In this paper, operation delays are mainly considered,



668
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.3 MARCH 2007

Table 4 Experimental results for four-order all-pole lattice filter. Small variance module set
Add3: N(15, 1.34), Mul3: N(43.5, 11.68). Large variance module set Add4: N(15, 5.46), Mul4:
N(43.5, 46.72). [2] and [3] don’t use the hierarchical approach. [2], [3] and [4] generate optimal so-
lutions in terms of the minimization of Ttypi.

[2] [3] [4] [8] Ours
Add3 Mul3 Reg TM Corr Ttypi E time Ttypi E time Ttypi E time E time E time

[ns] [ns] [ns] [s] [ns] [ns] [s] [ns] [ns] [s] [ns] [s] [ns] [s]
0.0 150.14 150.14 152.57 149.87 1 149.87 ≤1

4 2 6 176 0.3 147 149.64 ≤1 147 149.64 ≤1 147 151.67 ≤1 149.43 1 149.43 ≤1
0.6 149.01 149.01 150.55 148.85 1 148.85 ≤1
0.9 148.03 148.03 148.80 147.95 1 147.95 ≤1
0.0 167.26 167.26 167.91 165.51 1 165.51 ≤1

2 2 6 194 0.3 162 166.38 ≤1 162 166.38 ≤1 162 166.94 ≤1 164.92 1 164.92 ≤1
0.6 165.30 165.30 165.72 164.19 1 164.19 ≤1
0.9 163.63 163.63 163.83 163.07 1 163.07 ≤1

Add4 Mul4 Reg TM Corr Ttypi E time Ttypi E time Ttypi E time E time E time
[ns] [ns] [ns] [s] [ns] [ns] [s] [ns] [ns] [s] [ns] [s] [ns] [s]

0.0 153.28 153.28 158.13 152.74 1 152.74 ≤1
4 2 6 216 0.3 147 152.28 ≤1 147 152.28 ≤1 147 156.34 ≤1 151.85 1 151.85 ≤1

0.6 151.02 151.02 154.09 150.70 1 150.70 ≤1
0.9 149.06 149.06 150.60 148.90 1 148.90 ≤1
0.0 172.51 172.51 173.83 169.20 1 169.20 ≤1

2 2 6 238 0.3 162 170.76 ≤1 162 170.76 ≤1 162 171.87 ≤1 167.84 1 167.84 ≤1
0.6 168.59 168.59 169.43 166.38 1 166.38 ≤1
0.9 165.25 165.25 165.67 164.14 1 164.14 ≤1

Table 5 Experimental results for fifth-order elliptic wave filter. Small variance module set
Add3: N(15, 1.34), Mul3: N(43.5, 11.68). Large variance module set Add4: N(15, 5.46), Mul4:
N(43.5, 46.72). [2] and [3] use the hierarchical approach, and set the maximum block size at 15. For
two instances (Add3(Add4)=3, Mul3(Mul4)=3, Reg=13, TM=370(454)), [2] and [3] generate optimal
solutions in terms of the minimization of Ttypi. For the other instances, all solutions generated by [2] or
[3] within 24 hours are not comparable ones to ours. For the latter set of instances, [2] and [3] don’t halt
within 24 hours for all instances if the maximum block size is greater than 15. [4] generates optimal
solutions in terms of the minimization Ttypi for all instances.

[2] [3] [4] [8] Ours
Add3 Mul3 Reg TM Corr Ttypi E time Ttypi E time Ttypi E time E time E time

[ns] [ns] [ns] [s] [ns] [ns] [s] [ns] [ns] [s] [ns] [s] [ns] [s]
0.0 310.76 310.76 316.06 309.62 59 309.69 7

3 3 13 370 0.3 309 310.61 23 309 310.61 10 309 314.82 18 309.53 48 309.88 7
0.6 310.48 310.48 313.38 309.44 49 309.72 7
0.9 310.29 310.29 311.24 309.28 50 309.28 7
0.0 - - 315.48 312.90 151 315.31 8

2 2 13 388 0.3 - - 1945 - - 378 309 314.38 25 312.90 146 314.23 8
0.6 - - 313.04 312.68 172 312.68 7
0.9 - - 310.97 310.16 126 310.79 7
0.0 - - 424.94 424.94 181 424.94 7

2 1 13 622 0.3 - - > 24h - - > 24h 423 424.43 32 424.34 217 424.38 7
0.6 - - 424.38 424.33 246 424.36 7
0.9 - - 423.56 423.49 150 423.56 7

Add4 Mul4 Reg TM Corr Ttypi E time Ttypi E time Ttypi E time E time E time
[ns] [ns] [ns] [s] [ns] [ns] [s] [ns] [ns] [s] [ns] [s] [ns] [s]

0.0 313.27 313.27 325.25 310.91 75 311.05 7
3 3 13 454 0.3 309 311.65 20 309 311.65 11 309 322.10 17 310.16 75 310.49 7

0.6 310.36 310.36 318.41 309.81 95 310.02 7
0.9 310.36 310.36 313.50 309.21 47 309.60 7
0.0 - - 322.80 316.16 252 322.12 7

2 2 13 476 0.3 - - 1965 - - 387 309 322.17 15 315.63 236 319.71 8
0.6 - - 317.16 313.96 189 316.90 8
0.9 - - 312.95 312.58 173 312.58 7
0.0 - - 427.50 427.14 110 427.14 7

2 1 13 622 0.3 - - > 24h - - > 24h 423 426.43 32 426.34 217 426.38 7
0.6 - - 425.38 425.35 246 425.36 7
0.9 - - 424.11 424.11 184 424.11 7



OHASHI and KANEKO: STATISTICAL ANALYSIS DRIVEN SYNTHESIS OF APPLICATION SPECIFIC ASYNCHRONOUS SYSTEMS
669

Table 6 Experimental results for twice unfolded fifth-order elliptic wave
filter. Small variance module set Add3: N(15, 1.34), Mul3: N(43.5, 11.68).
Large variance module set Add4: N(15, 5.46), Mul4: N(43.5, 46.72).
[2] and [3] use the hierarchical approach, and set the maximum block
size at 15. For two instances (Add3(Add4)=3, Mul3(Mul4)=3, Reg=13,
TM=740(908)), [2] and [3] halt within 2800[s] and 1200[s], respectively,
but they did not generate comparable solutions to ours. For the other in-
stances, [2] and [3] don’t halt within 24 hours on our PC environment. [2]
and [3] don’t halt within 24 hours for all instances if a maximum block size
is greater than 15. Also [8] don’t halt within 24 hours for all instances. So,
we omit the columns for [2], [3] and [8].

[4] Ours
Add3 Mul3 Reg TM Corr Ttypi E time E time

[ns] [ns] [ns] [s] [ns] [s]
0.0 604.59 595.76 106

3 3 13 740 0.3 589.5 602.15 3052 594.80 103
0.6 599.23 593.69 108
0.9 594.89 592.09 107
0.0 634.08 627.90 105

3 2 13 758 0.3 618 631.61 4715 626.45 106
0.6 628.53 624.63 106
0.9 623.74 621.80 107
0.0 641.31 637.75 138

2 2 13 776 0.3 619.5 637.78 11365 634.80 138
0.6 633.39 631.16 139
0.9 626.71 623.51 139

Add4 Mul4 Reg TM Corr Ttypi E time E time
[ns] [ns] [ns] [s] [ns] [s]

0.0 622.22 603.75 104
3 3 13 908 0.3 589.5 616.27 3665 601.01 105

0.6 609.20 597.88 104
0.9 599.45 593.91 104
0.0 649.40 636.91 105

3 2 13 930 0.3 618 644.31 4727 633.94 106
0.6 638.06 630.26 105
0.9 628.48 624.59 106
0.0 662.91 655.97 140

2 2 13 952 0.3 619.5 655.67 20335 649.79 138
0.6 646.77 642.29 136
0.9 628.06 623.20 141

and we propose a framework of statistical delay variation-
aware asynchronous datapath synthesis. Currently, the other
delays, such as wire delay, multiplexer delay, and controller
delay, are included in a limited way, that is, ε(oi) is re-
defined as the sum of operation delay, wire delay, and mul-
tiplexer delay. However, more precise treatment of those
delays is also left for future work.

Acknowledgments

The authors would like to thank reviewers for their helpful
suggestions.

References

[1] J.A. Brzozowski and C.H. Seger, Asynchronous circuits, Springer-
Verlag, 1994.

[2] B.M. Bachman, H. Zheng, and C. Merys, “Architectural synthesis of
timed asynchronous systems,” Proc. International Conf. Computer
Design, pp.354–363, 1999.

[3] M. Kawanabe, H. Saito, M. Imai, H. Nakamura, and T. Nanya,
“Design space reduction filter in asynchronous data-path synthesis,”
IEICE Technical Report, SLDM2003-112, 2003.

[4] K. Ohashi and M. Kaneko, “Asynchronous datapath synthesis based
on binding space exploration,” Proc. 17th Workshop on Circuits and
Systems in Karuizawa, pp.549–554, 2004.

[5] P.G. Paulin and J.P. Knight, “Force-directed scheduling for the be-
havioral synthesis of ASICs,” IEEE Trans. Comput.-Aided Des. In-
tegr. Circuits Syst., vol.8, no.6, pp.661–679, 1989.

[6] R. Camposano and W. Rosenstiel, “Synthesizing circuits from be-
havioral descriptions,” IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., vol.8, no.2, pp.171–180, 1989.

[7] H. Saito and T. Yoneda, “Asynchronous data-path circuit synthesis
by using force-directed scheduling algorithm and consideration to
improve efficiency,” IEICE Technical Report, VLD2004-80, 2004.

[8] K. Ohashi and M. Kaneko, “Statistical schedule length analysis in
asynchronous datapath synthesis,” Proc. IEEE International Sympo-
sium on Circuits and Systems, pp.700–703, 2005.

[9] S. Tsukiyama, “Statistical timing analysis: A survey,” Proc. 18th
Workshop on Circuits and Systems in Karuizawa, pp.533–538,
2005.

[10] H. Tomiyama and H. Yasuura, “Module selection using manufac-
turing information,” IEICE Trans. Fundamentals, vol.E81-A, no.12,
pp.2576–2584, Dec. 1998.

Koji Ohashi received the B.E. degree in
Electronic engineering from Nagaoka Univer-
sity of Technology in 1998. He received the
M.E. and Ph.D. degrees in Information Science
from Japan Advanced Institute of Science and
Technology (JAIST) in 2000 and 2003, respec-
tively. Since 2003 he has been a researcher
in School of Information Science, JAIST. His
research interests include CAD for VLSIs and
high level synthesis.

Mineo Kaneko received Bachelor of Engi-
neering, Master of Engineering, and Doctor of
Engineering degrees in electrical and electronic
engineering from Tokyo Institute of Technology
in 1981, 1983, and 1986, respectively. From
1986 to 1996, he worked at Tokyo Institute of
Technology as a research associate, a lecturer,
and an associate professor. In 1996, he trans-
ferred to Japan Advanced Institute of Science
and Technology (JAIST), and currently he is a
professor in the Graduate School of Information

Science, JAIST. His research interests include circuit theory, CAD for VL-
SIs, and signal processing. He is a member of IEEE and ACM.


