JAIST Repository

https://dspace.jaist.ac.jp/

Title Parall el Algorithms for Mpximal Lince

Author(s) UEHARA, Ryuhei; CHEN, Zhi}f Zhong

| EI CE TRANSACTI ONS on Funpdgamental s «
Citation El ectroni cs, Communicatiohs and Comj
Sciences, E80-A(4): 627-6B4

Issue Date 1997-04-20

Type Journal Article

Text version publ i sher

URL http://hdl . handle.net/ 101019/ 4710
Copyright (C)1997 1EI CE. Ry uhei Ue h
Zhong Chen, | EI CE TRANSAC[ITI ONS on Fu

Rights Electronics, Communicatiops and Comj
Sciences, E80-A(4), 1997, 627-634.
http://www.ieice.org/jpn/ftrans_onli:

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

627

|PAPER Special Section on Discrete Mathematics and Its Applications

Parallel Algorithms for Maximal Linear Forests

Ryuhei UEHARA' and Zhi-Zhong CHEN'', Nonmembers

SUMMARY The maximal linear forest problem is to find,
given a graph G = (V, E), a maximal subset of V that induces a
linear forest. Three parallel algorithms for this problem are pre-
sented. The first one is randomized and runs in O(log n) expected
time using n2 processors on a CRCW PRAM. The second one
is deterministic and runs in O(log? n) time using n* processors
on an EREW PRAM. The last one is deterministic and runs in
O(log® n) time using n® processors on an EREW PRAM. The
results put the problem in the class NC.

key words: parallel algorithms, randomized parallel algorithms,
graph algorithms, linear forests, maximal matchings, maximal
independent sets

1. Introduction

Since Karp and Wigderson showed that the maximal
independent set (MIS) problem is in the class NC[11],
much work has been devoted to the study of parallel
complexity of maximality problems. A typical maxi-
mality problem on graphs is to find either a maximal
vertex-induced subgraph (MVIS) or a maximal edge-
induced subgraph (MEIS) that satisfies a specified graph
property. A common feature of the MVIS or MEIS
problems is that they can be solved by simple greedy al-
gorithms but are very difficult from the parallel point of
view. So far, only a few MVIS or MEIS problems have
been shown to be in NC or RNC[1],[3]-[5],[8],[10],
[12],[16],[18]). Parallel complexity of many natural
MVIS or MEIS problems remains unknown. Among
them is the MVIS problem associated with the property
“acyclic.” In [6], NC algorithms are given for several
special cases of this problem. However, parallel com-
plexity of this problem still remains open. Note that this
problem is equivalent to the problem of computing a
maximal forest in a given graph. In this paper, we show
that a related problem, namely, the problem of comput-
ing a maximal linear forest in a given graph is in NC.
We call this problem the MLF problem. Note that the
MLF problem is equivalent to the MVIS problem asso-
ciated with the property “acyclic and maximum-degree
<27

In addition to its correspondence to the problem
of computing a maximal forest, there are two other rea-

Manuscript received August 27, 1996.
fThe author is with the Center for Information Science,
Tokyo Woman’s Christian University, Tokyo, 167 Japan.
" The author is with the Department of Mathematical
Sciences, Tokyo Denki University, Saitama-ken, 350—03
Japan.

sons for us to be interested in parallel complexity of
the MLF problem. First, the maximal path set (MPS)
problem is studied in [5]. This problem is the edge-
analogue of the MLF problem, i.e., the MEIS problem
associated with the property “acyclic and maximum-
degree < 2.” In [5],[20], it is shown that the MPS
problem can be used to design parallel approximation
algorithms for the shortest superstring problem, which
has applications in DNA sequencing and data compres-
sion[17],[19]. On the other hand, the MPS problem
can be efficiently reduced to the MLF problem as fol-
lows: To solve the MPS problem for a given graph
G, it suffices to solve the MLF problem for the edge
graph of G. Thus, efficient parallel algorithms for the
MLF problem can be used to design parallel approxi-
mation algorithms for the shortest superstring problem,
too. Second, Shoudai and Miyano [18] showed that the
MVIS or MEIS problem associated with certain local
properties can be solved in NC by an elegant reduction
to the MIS problem. They also remarked that their
idea of using the MIS problem (and its variants) does
not seem to work if the graph property concerned is not
local. Note that the property “acyclic and maximum-
degree < 2” is not local. One of our algorithms (the last
one) for the MLF problem is a sophisticated reduction
to a variant of the MIS problem (namely, the problem
of finding an MIS in a given hypergraph of dimension
3). This result disproves Shoudai and Miyano’s remark
mentioned above.

Our RNC algorithm for the MLF problem has a
similar structure to that of Luby’s RNC algorithm for
the MIS problem[14]. Namely, given a graph G, both
Luby’s algorithm and ours proceed in stages; in each
stage, their main jobs are to compute a certain indepen-
dent set I in a certain (augmented) subgraph of G and
to delete (from G) the vertices in I and (part of) their
neighbors. In Luby’s algorithm, the expected number
of edges deleted in each stage is a constant fraction of
the number of edges in G [14]. However, our algorithm
does not have this property. Instead, we define a po-
tential function ® and prove that in each stage, ®(G)
decreases by a constant fraction on average. This is the
key for us to show that the algorithm runs very fast. It
runs in O(logn) expected time using n? processors on
a CRCW PRAM. Our first NC algorithm for the MLF
problem is obtained by derandomizing the RNC algo-

628

rithm. It runs in O(log? n) time using n* processors on
an EREW PRAM. Our second NC algorithm is a little
more efficient than the first. It runs in O(log®n) time
using n® processors on an EREW PRAM. This algo-
rithm is obtained by a sophisticated reduction to the
problem of finding an MIS in a given hypergraph of di-
mension 3. Finally, we remark that the MLF problem
restricted to bipartite graphs or sparse graphs (such as
planar graphs) can easily be reduced to the MPS prob-
lem and hence has more efficient NC algorithms.

Recall that the EREW PRAM is the parallel model
where the processors operate synchronously and share
a common memory, but no two of them are allowed si-
multaneous access to a memory cell (whether the access
is for reading or for writing in that cell). The CRCW
PRAM differs from the EREW PRAM in that both
simultaneous reading and simultaneous writing to the
same cell are allowed; in case of simultaneous writing,
the processor with lowest index succeeds. The rest of the
paper is organized as follows. In Sect.2, we give basic
definitions and reduce the MLF problem to a simpler
problem. We then present the RNC algorithm and its
derandomization in Sect. 3. In Sect.4, we describe the
more efficient NC algorithm. Section 5 concludes the
paper and states an inferesting open question related to
this work.

2. Reducing the Problem to a Simpler One

Throughout this paper, we will be dealing only with
undirected graphs without loops or multiple edges. Let
G = (V,E) be a graph. The neighborhood of a vertex
v in G, denoted N¢(v), is the set of vertices in G ad-
jacent to v. The degree of a vertex v in G is |Ng(v)|,
and denoted by dg(v). Vertices of degree 0 are called
isolated vertices. For UCV, let Ng(U) = Uyev Ng(u),
and G[U] be the graph (U, F), where F = {{u,v} |
u,v € U and {u,v} € E}. By a path, we always mean
a simple path. Note that a single vertex is considered
as a path (of length 0). A subset U of V is called a
linear forest set (LFS) if G[U] is a forest in which each
connected component is a path. Intuitively speaking, if
U is an LFS, then G[U] is a collection of vertex-disjoint
paths. A maximal linear forest set (MLFS) in G is an
LFS that is not properly contained in another LFS. The
maximal linear forest (MLF) problem is to find, given
a graph G, an MLFS in G.

To reduce the MLF problem to a simpler problem,
we need additional definitions. A graph G = (V, E) is
said to be proper if V can be partitioned into two sub-
sets X and Y such that for every y € Y, (a) X U {y}
is an LFS in G and (b) |X N Ng(y)| = 2. To explic-
itly show this partition of V, we write G = (X UY, E).
Hereafter, by a proper graph G = (X UY, E), we al-
ways mean that forevery y € Y, X U {y} is an LFS in
G and | X N Ng(y)| = 2. A valid MLFS in a proper

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

graph G = (XUY,E) isan MLFS U in G with X CU.
The restricted MLF problem is to find, given a proper
graph G = (X UY, E), a valid MLFS in G. In the rest
of this section, we describe an NC reduction from the
MLF problem to the restricted MLF problem.

Algorithm 1

Input: A graph G = (V, E) with n vertices.

Output: A proper graph H = (X UY, Ey) such that
XUY CV, H=G[XUY], and every valid MLFS
in H is an MLFS in G.

1. Initialize X to be an MIS in G.

2. Perform the following steps twice:

2.1. Compute W, the set of all v € V—X such that
XU{v}isan LFSin G and |[Ng(v)NX| = 1.

2.2. Construct a graph G’ = (W, E¢-), where Eg
consists of all {vy,v2} such that {vy,v2} € E
or NG(’Ul) N NG(vg) NX # 0.

2.3. Compute an MIS I in G'.

2.4. Add the vertices in [to X.

3. Set Y to be the set of those v € V — X such that
X U{v} isan LFS in G and |[Ng(v) N X| = 2.

Let Xo be the MIS in G found at step 1. Fori =1, 2,
let W;, G%, I;, and X; be the contents of the variables
W, G, I, and X at the end of the ith execution of the
steps 2.1 through 2.4, respectively.

Lemma 1: X, is an LFS in G.

Proof: X, is an MIS in G and is hence an LFS in G.
We next prove that X7 is an LFS in G. First note that
X1 = XoUI;. By steps 2.1 through 2.3, each v € I;
has degree 1 in the graph G[X;]. This together with
the acyclicness of G[Xj] implies that G[X;] is acyclic.
We claim that every u € X, has degree at most 2 in
the graph G[X;]. This can be seen by noting that each
u € Xy is adjacent to at most one vertex v € I; in the
graph G[X;] and that X, U {v} is an LFS in G for all
v € I;. The claim implies that X; is an LFS in G.
A similar discussion shows that X, is also an LFS in
G. a

Lemma 2: Forallv € V—X,, X,U{v} is not an LFS
in G or [Ng(v) N X3| 2 2.
Proof: Since X is an MIS in G, it holds that Wy C W;.
From this, we can observe that V — X is the union of
V - (Wl U X()), Wy — (W2 U Il), and W, — I, which
are pairwise disjoint. Let v be an arbitrary vertex in
V — X5. One of the following three cases must occur.

Case I: v € V— (W13 UXy). Then, by the definition
of Wi, XoU{v} isnotan LFS in G or [Ng(v)NXg| = 2.
Since X C X5, it follows that X, U {v} is not an LFS
in G or |[Ng(v) N Xs| 2 2.

Case 2: v € Wy —(W,UI;). Then, by the definition
of Wy, X3 U{v} isnotan LFS in G or |[Ng(v)NX,| = 2.

UEHARA and CHEN: PARALLEL ALGORITHMS FOR MAXIMAL LINEAR FORESTS

Since X; C Xo, it follows that X, U {v} is not an LFS
in G or [Ng(v) N X,| 2 2.
Case 3: v € Wao—1I,. Sincev € Wy, |[Ng(v)NXg| =
1. Let u be the unique vertex in Ng(v) N Xo. Be-
cause v € Wy — I, and I is an MIS in G, there
is aw € Iy with {v,w} € Eg,. By the construc-
tion of G}, {v,w} belongs to E or there is some
z € Xo with z € Ng(v) N Ng(w). In the former case,
w € Ng(v)NI; and {u, w} C Ng(v) N X;, implying that
|[Ng(v) N X2| 2 2. Thus, we may assume the latter case.
Then, we have z = u since z € Xo N Ng(v) = {u}.
Therefore, w € NG[Xl](u). On the other hand, since
v € Wao — I, and I is an MIS in Gj, there is a
w' € I with {v,w'} € Eg;. By the construction of
%, {v,w'} belongs to E or there is some y € X; with
y € Ng(v)NNg(w'). In the former case, w’ € Ng(v)Nl;
and {u,w’} C Ng(v)N X2, implying that [Ng(v)NX2| 2
2. Thus, we may assume the latter case. Then, we
have y = u since |[Ng(v) N Xi| =1 and {u,y} C X1 N
Ng(v). Therefore, w' € Ngix,(u). Recalling that
w € Ngx,)(u), we now have {w,w'} C Ngix,)(u)-
Hence, {v, w,w'} C Ngix,u{v}(n). Obviously, v # w
and v # w'. Sincew € I1,w' € I, and I, NI, = 0,
it follows that w # w’. Therefore, | Ng[x,u(v}(u)| 2 3.
This implies that X7 U {v} is not an LFS in G. 0

Theorem 3: The MLF problem can be reduced to
the restricted MLF problem in O(logn) expected time
with n2 processors on a CRCW PRAM, in O(log® n)
time with n? processors on an EREW PRAM, or in
O(log® n) time with n? processors on an EREW PRAM.

Proof: By Lemma 1 and Lemma 2, Algorithm 1 is
clearly correct. This gives a reduction from the MLF
problem to the restricced MLF problem. It remains to
analyze the complexity of Algorithm 1. Steps 1 and 2.3
can be done in O(logn) expected time with n? proces-
sor on a CRCW PRAM[14], in O(log®n) time with
n* processor on an EREW PRAM14], or in O(log® n)
time with n? processor on an EREW PRAM[9]. It is
not so difficult to see that the other steps can be done in
O(logn) time using n? processors on an EREW PRAM.
This establishes the theorem. |

In the next sections, we present parallel algorithms
for solving the restricted MLF problem.

3. An RNC Algorithm and Its Derandomization
3.1 Description of the Algorithm

The top-level structure of the RNC Algorithm is as fol-
lows.

Algorithm 2

Input: A proper graph G = (X UY, E).

Output: A valid MLFS U in G.

1. Set U := X and construct a new graph G' = (Y, F’),

629

where E’ is the set of all edges {y1,y2} such that
{y1,y2} ceEFEorXn Ng(yl) n NG(yz) 4: .
2. While G’ is not empty, perform the following steps:

2.1. Select an independent set I in G’ such that
each connected component of G[U U I] con-
tains at most one vertex of I.

2.2. Add the vertices in I to U.

2.3. Delete from G’ all vertices y such thaty € T
or UU {y} is not an LFS in G.

3. Output U.

An easy induction shows that Algorithm 2 correctly
computes a valid MLFS of G. We need to specify how
to implement the steps 2.1 and 2.3. In order to perform
the two steps fast, the algorithm maintains an array R
for which the following is an invariant. For each ver-
tex u € U, Rlu] = u if dgj(u) = 0, Rlu] = v if
dgu)(u) = 1, where v is the other vertex of degree I in
the connected component of G[U] containing u. (Com-
ment: Vertices u in U with dgy)(u) = 2 are irrelevant
to R.) It is necessary to insert a new step between steps
1 and 2 in Algorithm 2 to initialize R so that the invari-
ant is true before the first execution of the while-loop.
Since the details are trivial, we omit them.

To implement step 2.1, we need a definition and
a lemma due to Luby[14]. Following[13], we say
that a vertex v in a simple graph H is good if
Y ueNn() o) 2 3- The following lemma is known:

Lemma 4: [13],[14]. Given a graph H, we can com-
pute an independent set J in O(1) expected time with
n+m processors on a CRCW PRAM such that for each
good vertex v in H, the probability that v € Ng(J) is
no less than a positive constant.

To implement step 2.1, we use the following three
substeps:

2.1.1. Compute an independent set J of G’ as in
Lemma 4.

2.1.2. In parallel, for each vertex u € U with dgyj(u) <
1, select v if v = R[u), and randomly select one
of u and R[u] if v < R[u].

2.1.3. Set [:= {y € J | the two vertices in U N Ng(y)
are both selected at step 2.1.2}.

Lemma 5: For the set I computed in step 2.1.3, each
connected component of G[U U I| contains at most one
vertex of I.

Proof: Fix an arbitrary connected component C of
G[U]. Recall that C is a path. By Algorithm 2, only
the endpoint(s) of C can be adjacent to a vertex of I
in G. Moreover, if C has two endpoints, then exactly
one of the two is selected in step 2.1.2. Thus, by the
definition of I, at most one vertex u of C can be adja-
cent to a vertex of I in G, and this vertex © must be an
endpoint of C. To show the lemma, it suffices to show

630

that |Ng(u) N I| = 1. Towards a contradiction, assume
that [Ng(u) N I| 2 2. Let y; and y2 be two vertices in
Ng(u)nI. Note that eitheru € X oru € U—X. In the
former case, {y1,y2} must be an edge in G’ by step I,
contradicting that I is an independent set in G’. In the
latter case, u must be in Y and hence |Ng(u) N X| = 2.
Combining this with the fact that X CU, we see that
u can not be an endpoint of C, a contradiction. This
completes the proof. a

To update R and to implement step 2.3, we use the
following substeps:

2.3.1. In parallel, for each y € I, find the two vertices
w1 and us in NG(y) NU and set R[R[ul]] = R[UQ]
and R[R[ug]] := Rlu1].

2.3.2. Delete all vertices in I from G’.

2.3.3. In parallel, for each v € U with dgp)(u) = 2,
delete from G’ all vertices in Ng(u).

2.3.4. In parallel, for each vertex y in G’, if the two
vertices u; and ug in Ng(y) N U satisfies that
R[uy) = us, then delete y from G’.

We claim that R is correctly updated in step 2.3.1. This
simply follows from the fact that the two vertices in
Ng(y) N U both have degree at most 1 in G[U].

Lemma 6: The vertices of G’ deleted in step 2.3.3 or
2.3.4 are exactly those vertices y in G’ such that U U {y}
is not an LFS in G.

Proof: It is clear that the vertices y of G’ deleted in step
2.3.3 or 2.3.4 satisfy that U U {y} is not an LFS in G.
Let y be a vertex such that U U {y} is not an LFS in G.
Then, one of the following three cases must occur; (1)
there is a vertex u € Ng(y) NU with dgyugyy(u) > 2;
(2) the two vertices in Ng(y) NU are the two endpoints
of a single path in G[U]; and (3) dguugyy(y) > 2. In
the cases (1) and (2), y is deleted in step 2.3.3 and 2.3.4,
respectively. We claim that the case (3) is impossible.
Towards a contradiction, assume that the case (3) oc-
curs. Then, since |Ng(y) N X| = 2, there must exist a
vertex u € (U — X) N Ng(y). Since U — X CY, u was
added to U in an earlier iteration of the while-loop in
Algorithm 2. In that iteration, y must have been deleted
in step 2.3.3 because dg(y)(u) = 2. This contradicts that
y still remains in G’ in the current iteration. O

3.2 Complexity Analysis

Suppose that the while-loop in Algorithm 2 is executed
t times. For 1 <7 < t, let U; and G} be respectively the
contents of the variables U and G’ after the <th iteration,
and let I; and J; be the two independent sets (in G?)
computed in the ith iteration. For convenience, let Up
and G}, be the contents of the variables U and G’ before
the first iteration. Our main task in this subsection is to
prove an upper bound on the expected value of t. We
begin with a helpful lemma.

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

Lemma 7: Forevery 0 <:<t—1 and every good ver-
tex v in G}, Prfv € Ng;(I;11)] is no less than a positive
constant c;.
Proof: Fix an arbitrary good vertex v in Gj. By
Lemma 4, the probability that v € Ng/ (J;4+1) is no less
than a positive constant. In other words, the probability
that some neighbor of v in G} belongs to J;1+1 is no less
than a positive constant. On the other hand, if y is a
neighbor of v and y is in J;41, then the probability that
y € I;41 is no less than ;11 by step 2.1.2. Therefore, it
seems that the probability that some neighbor of v in G,
belongs to I;; is no less than a positive constant. How-
ever, this intuitive inference is not correct and we need
a rigorous proof. Fortunately, by step 2.1.2, we have the
fact that Prly € I;y; | y € Jiy1] = 1 for every vertex
y in G%. Using this fact, we can modify the proof of
Lemma 4 given in [13] to prove that Pr[v € Ng (L;11)]
is no less than a positive constant. Since the details are
not so difficult, we omit them. 0O
We proceed to the proof of the fact that the ex-
pected value of ¢ is O(logn). To show the fact, we use
a potential function argument. Before describing our
potential function, we observe that for every 0 <7 < ¢,
each vertex y in G satisfies that Nz(y) N U; is equal to
Ng(y)NX. We denote the two vertices in Ne(y) N X by
zy and z§. Now, we are ready to define our potential
function @ as follows: For every 0 £¢ < ¢,

(G, Ui) = > (e, Uy),

edgee = {y, 2} in G

where ¢(e,U;) = (2 — dgu, (21))(2 — de,(23))(2 —
dG[UI](‘riz))(z - dG[Ull(w;))

For a random variable Z, let £Z denote the ex-
pected value of Z, and let £(Z | B) denote the expected
value of Z given that event B occurs.

Lemma 8: For every 0 < ¢ < ¢t — 1, E(®(G,U;) —
®(Giyy,Uir1)) 2 co - ®(GY, U;) for some positive con-
stant cs.

Proof: Fix an arbitrary ¢ with 0 < 7 < t — 1. Let
m, be the number of edges in Gj. For each edge
e = {y,z} in G, let Z. = ¢(e,Uiy1) if e is also in
Gi,, and Z. = 0 otherwise, and let B, be the event that
{y,2} N Ng/(Ii+1) # 0. Then, we have

(I)(G;7Ui) - (I)(G;+17Ui+1)
= Y (@leU)-Z)

edges e in G,

Fix an arbitrary edge e = {y, z} in G;. Note that
¢(e,U;) =2 1. Assume that event B, occurs. Then,
y € Ng:(Ii+1) or z € Ng:(Ii41). By symmetry, we may
assume that y € Ng/ (I;ix1). Let w be a vertex in ;41
with y € Ng:(w). Then, by the construction of G’, ei-
ther {y,w} is an edge in G or XNNg(y)NNg(w) # 0. In
the former case, the edge {y, w} is not contained in G;_
since it must be deleted from G’ in step 2.3.3 during the

UEHARA and CHEN: PARALLEL ALGORITHMS FOR MAXIMAL LINEAR FORESTS

i+ 1st iteration, and hence ¢(e,U;) — Z, = ¢(e, U;) 2 1.
In the latter case, {z¥, 25} N {z¥, 2%} # 0 and we can
Slmply show that ¢(ea Ul) - Ze = ¢(€7 Ul) - ¢(ea Ui+l) g
1. Thus, in both cases, we have ¢(e,U;) — Z, 2 1.
This implies that £(¢(e,U;) — Z. | B.) = 1. There-
fore, £(¢(e,U;) — Z.) 2 E(¢ple,U;) — Z. | Be) Pr[B.] 2
Pr[B.]. If in addition e is good, then by Lemma 7,
E(p(e,U;)—Z.) 2 Pr[Be] 2 ¢; for some constant ¢; > 0.
Combining this with the fact that G;4, is a subgraph
of G;, we now have

E(®(G, Ui) — ®(Gi11, Vi)
=& Z (#(e,Ui) — Ze))

H ’ 7
edgese in G; — Gy

= > E(¢le, Us) - Ze)

N ! 4
edgese in G; — G,y

> E(ple,Us) — Z.)

good edges e in G} — G

’
m.:
> E c1 2 e
good edges e in G; — G

vV

The last inequality follows from the fact that at least
half the edges in any simple graph are good [13],[15].
On the other hand, we have ®(G},U;) £ 16m.. Thus,
E(®(G,,U;)— (G 11, Vi) 2 30(G, U;). This com-
pletes the proof. a

Lemma 9: £t = O(logn).
Proof: Note that ®(G),Up) < 16 (3) and that the

while-loop is iterated until ®(G%,U;) < 1. Thus, by
Lemma 8 and Theorem 1.3 in [15], we immediately have
that £t < f116(;) 54z = O(logn). This completes the
proof. O
Theorem 10: An MLFS in an n-vertex graph G can be
found in O(logn) expected time with n? processors on
a CRCW PRAM.

Proof: By Theorem 3, it suffices to prove that Algo-
rithm 2 runs in O(logn) expected time with n? proces-
sors. Since there are only O(n) edges between X and
Y in G, step 1 takes O(logn) time with n? processors.
Thus, by Lemma 9, it remains to show that steps 2.1
through 2.3 can be implemented in O(1) time with n?
processors.

By Lemma 4, step 2.1.1 can be done in O(1) time
with n? processors. Steps 2.1.2 and 2.1.3 use no more
resources than step 2.1.1. Thus, the implementation of
step 2.1 takes O(1) time with n? processors. Implement-
ing step 2.2 in O(1) time using n processors is trivial.
Now, consider the implementation of step 2.3. Recall
that during any iteration of the while-loop, each vertex
y in G’ satisfies that Ng(y)NU = Ng(y)NX. Hence, the
algorithm may compute Ng(y) N U before entering the
while-loop, and this takes O(logn) time with n? pro-
cessors. Therefore, step 2.3.1 can be done in O(1) time

631

with n processors. The implementation of step 2.3.2
is trivial. It is not difficult to implement step 2.3.3 in
O(1) time with n? processors. Step 2.3.4 uses no more
resources than step 2.3.1. In total, the implementation
of step 2.3 takes O(1) time with n? processors. This
completes the proof. 0

3.3 Derandomization

In this section, we obtain an NC algorithm for the
MLF problem by derandomizing the randomized al-
gorithm in Sect.3.1. Recall that the randomized algo-
rithm consumes random bits in steps 2.1.1 and 2.1.2. We
now consider how many random bits are sufficient. It
has been shown in [13],[14] that step 2.1.1 needs only
2logn + O(1) random bits. We claim that step 2.1.2
needs only 1 random bit. To see this, we replace steps
2.1.2 and 2.1.3 with the following steps:

2.1.2°. Partition J into two subsets J; and J; such that
both UUJ; and UUJ, are LFS’s in G. (Comment:
This step is possible because each connected com-
ponent of G[U U J] is a cycle or path.)

2.1.3°. Randomly set I to be J; or J,.

It is easy to see that even if we do the above re-
placement, the algorithm remains correct, and more im-
portantly, Lemma 7 and Lemma 8 still hold. Step 2.1.3’
needs only 1 random bit, and hence the modified algo-
rithm uses only 2logn + O(1) random bits. Therefore,
we can derandomize it using standard techniques. Since
the details are rather standard, we omit them. Summa-
rizing up, we obtain the following theorem: .

Theorem 11: An MLFS in an n-vertex graph G can
be found in O(log®n) time with O(n*) processors on
an EREW PRAM.

4. A More Efficient NC Algorithm

We have already obtained an NC algorithm for the
MLFS problem in Sect. 3. This algorithm runs very fast.
However, it uses too many processors. In this section,
we present a little more efficient NC algorithm using a
completely different approach.

We begin with several definitions. A hAypergraph
H = (V, E) consists of a set V of vertices and a collec-
tion E of subsets of V' called hyperedges. The dimension
of H is the maximum size of a hyperedge in E. Clearly,
an ordinary graph is a hypergraph of dimension 2. An
independent set in H is a subset U of V' that does not
contain any hyperedge of E. A maximal independent
set (MIS) in H is an independent set that is not properly
contained in another independent set.

Algorithm 3
Input: A proper graph G = (X UY, E).
Output: A valid MLFS U in G.

632

I. SetU:=X and W :=Y.
2. While W # 0, perform the following steps:

2.1. Construct a hypergraph H = (W, Ey U EY};)
of dimension 3 as follows. Ey consists of all
subsets {wy, w2} of W such that at least one
of the following (1), (2), and (3) holds: (1)
{wy, w2} € E; (2) there is some u € U such
that u € Ng(w1)NNg(w2) and dey)(u) = 1;
(3) GlUU{w1, w2}| has a cycle in which both
w; and wo appear. Ej}; consists of all sub-
sets {w1, w2, ws} of W such that no proper
subset of {w;,wq, w3} is contained in Eg
and at least one of the following (a) and
(b) holds: (a) there is some v € U such
that u € Ng(wl) n NG(’LUQ) N Ng(’wg) and
dg)(w) = 0; (b) GIU U {wy, w2, ws}] has a
cycle in which all of w;, we, and ws appear.

2.2 Compute an MIS S in H. (Comment: It will
be shown that each connected component of
G[U U 8] is either a cycle containing at least
4 vertices in S or a path.)

2.3. Let Cy,...,C} be the connected components
of G[U U S] that are cycles. Foreach1 < <
k, in parallel, choose two vertices z; and y;
in C; such that x; € S, y; € S, and the two
vertex-disjoint paths from z; to y; in C; both
contain a vertex in S — {z;,y;}.

24. Foreach 1 <7 £k, let u; 1, u;2 be the two
neighbors of x; in C; and let v; 1, v; 2 be
the two neighbors of y; in C;. Set A :=
Ur<ick((Na(z:) U Ng(ui1) U Ne(us2)) N
W) ~ 8§ and B := Uicick((Nel(y:) U
Ng(viyl) U NG('U‘L"2)) n W) -S.

25.1f |A] £ |B|, add the vertices in S —
{z1,...,z¢} to U and then set W = {w €
A—B: UuU{w} is an LFS in G}; otherwise,
add the vertices in S — {y1,...,yx} to U and
thenset W:={we B—A: UV {w} is an
LFS in G}.

3. Output U.

Let t be the number of executions of the while-loop
in Algorithm 3. In case ¢ = 0, Algorithm 3 is clearly
correct. Thus, we may assume £ > 1. For 1 < j < ¢, let
W;, U;, H;, S5, A;, and B; denote the contents of the
variables W, U, H, S, A, and B after the jth execution
of the while-loop, respectively. For convenience, let W
and Uy denote the contents of the variables W and U
at the end of step 1, respectively. Clearly, for1 < j <t
Wj g Wj_l, Uj_l - Uj, and Uj g Uj_l U Sj‘

Lemma 12: Forall0 < j <t andallwe W;, U;u{w}
isan LFS in G and |[U; N Ng(w)| = 2.

Proof: This is done by induction on j. Clearly, UyU{w}
is an LFS in G and |Uy N Ng(w)| = 2 for all w € W,

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

Let j > 0 and assume that U;_; U {w} is an LFS in G
and |U;_; N Ng(w)| =2 for all w € W;_;.

Let us first prove that no vertex has degree = 3 in
the graph G[U;_; U S;]. Fix an arbitrary vertex u € S;.
Then, dgu,_,ufu))(v) = 2 by the inductive hypothesis.
Since S; is an independent set in H;, Ng(u) N S; = 0.
Thus, dgy;_,us;)(u) = 2. Next, fix an arbitrary vertex
u € U;_1. By the inductive hypothesis, dgy,_,)(u) < 2.
Since S; is an independent set in H;, the construction
of H; guarantees that there are at most 2 ~ dgy, _,)(v)
vertices of S; adjacent to u in the graph G[U;_, U Sj].
This implies that dgy,_,us;)(v) £ 2. Therefore, no
vertex has degree = 3 in the graph G[U;_, U Sj].

By the inductive hypothesis, G[U;_; U S;] cannot
contain a cycle in which only one vertex of S; appears.
Moreover, G[U;_; US;] cannot contain a cycle in which
two or three vertices of S; appear because S; is an in-
dependent set in H;. Hence, each connected component
of G[U;_; U S;] is either a cycle containing at least 4
vertices in S; or a path. From this and Algorithm 3,
it is easy to see that U; is an LFS in G. Let w be an
arbitrary vertex in W;. By step 2.5, U; U {w} is an LFS
in G. Moreover, |U;_1 N Ng(w)| = 2 by the inductive
hypothesis. Therefore, |[U; N Ng(w)| = 2. a

Lemma 13: U; is an MLFS in G.

Proof: By Lemma 12, we only need to prove the
maximality of U;. Let w be an arbitrary vertex in
(X U Y) — U;. Then, w € Wj_l - (W] U U]) for
some 1 £ 5 £ t. Without loss of generality, we
may assume |A;| < |B;|. Then, W; CA; — B; and
Uj = Uj_l U (SJ - {Zl,‘l, e ,(Ek}), where z,,...,x) are
the vertices chosen in step 2.3 during the jth iteration.
Thus, one of the following three cases must occur:

Case 1: w = z; for some 1 £ ¢ < k. Then, the
cycle C; is completely contained in G[U; U {w}]. Thus,
U; U{w} is not an LFS in G.

Case 2: w € Bj. Then, w € NG(yi) U NG(’UZ'J) U
Ng(viz2) for some 1 < ¢ < k. Since no two vertices of
S; can be adjacent in the graph G[U;_1US,], the choice
of z; and y; guarantees that none of v;; and v; 2 is a
neighbor of z; in the cycle C;. Thus, each of y;, v; 1,
and v; > has degree 2 in the graph G[U;]. This implies
that at least one of y;, v; 1, and v; 3 must have degree 3
in the graph G[U; U {w}]. Therefore, U; U {w} is not
an LFS in G.

Case 3: w € W,;_1 — (5; U 4; U Bj). Since S;
is an MIS in Hj, there is a hyperedge W' in H; such
that w € W’ and W' — {w}CS,. If (W — {w})N
{z1,...,2zx} = 0, then U; U {w} is clearly not an LFS
in G by the construction of H;. Thus, we may assume
that (W' — {w}) N {zy,...,zx} # 0. Then, one of the
following two subcases must occur.

Subcase 3.1: |W'| =2, Letx; (1 £ < k) be the
unique vertex in W’ — {w}. Since W' is a hyperedge in
Hj; and w ¢ A;, G[U;_, U{w,z;}] has a cycle in which
both w and z; appear. Let u be a neighbor of w in

UEHARA and CHEN: PARALLEL ALGORITHMS FOR MAXIMAL LINEAR FORESTS

this cycle. Clearly, u € U;_;. Furthermore, u must also
be contained in C; and cannot be u;; or u;3. Thus,
dgiy,)(uw) = 2 and so dgu,ufw))(v) = 3. This implies
that U; U {w} is not an LFS in G.

Subcase 3.2: |W'| = 3. Then, there is some x;
(1 £4 < k) with z; € W — {w}. Let v be the vertex
in W' — {w,z;}. Since W’ is a hyperedge in H; and
w ¢ Aj, G[Uj~1 UW'] has a cycle C in which w, z;,
and v appear. Note that neither {w, v} nor {w,x;} can
be an edge in G (and thus in C) or else W' = {w, v, z;}
could not have been a hyperedge in H;. Let u be the
neighbor of w in C such that x; can be reached from u
without traversing w or v. Clearly, v € U;_;. Further-
more, v must also be contained in C; and cannot be u; ;
or u; 2. Thus, dgy,)(v) = 2 and so dgy,u{w)(u) = 3.
This implies that U; U {w} is not an LFS in G. o
Lemma 14: ¢ = O(logn).
Proof: It suffices to show that |W;| < |W;_4|/2 for
all 1 £ j £ t. Fix an arbitrary integer j with
1 £ 7 £t. Without loss of generality, we may assume
|A;] < |B;|. By Algorithm 3, W; CA; — (A4; N By)
and A; U B;CW;_;. Now, it is easy to see that
W] < [Wj-1l/2. o
Theorem 15: An MLFS in an n-vertex graph G can
be found in O(log® n) time with n® processors on an
EREW PRAM.

Proof: By Theorem 3 and Lemma 13, it suffices to prove
that Algorithm 3 runs in O(log® n) time with n3 proces-
sors on an EREW PRAM. Now, by Lemma 14, we need
only to prove that steps 2.1 through 2.5 of Algorithm 3
can be done in O(log* n) time with n® processors on an
EREW PRAM.

Before constructing the hypergraph H in step 2.1,
Algorithm 3 first computes the connected components of
G[U] and the degree of each vertex in G[U]. This takes
only Oflogn) time using n processors on an EREW
PRAM. Using this information and that |[UNNg(w)| =
2 for all w € W, it is easy to construct H in O(logn)
time with n® processors on an EREW PRAM. Note
that H has only n® hyperedges. Thus, step 2.2 can
be done in O(log*n) time with n® processors on an
EREW PRAM([7]. Obviously, steps 2.3 through 2.5
can be done in O(logn) time with n? processors on
an EREW PRAM. Hence, steps 2.1 through 2.5 can be
done in O(log* n) time with n® processors on an EREW
PRAM. a

5. Concluding Remarks

Restricting to bipartite graphs or sparse graphs (such as
planar graphs), the MLF problem can be easily reduced
to the MPS problem and hence has more efficient NC
algorithms than Algorithm 2 and 3. Since the details
are rather easy, we omit them here.

In the remainder of this section, we point out an
interesting open question related to this work. We say

633

that a bipartite graph G = (X,Y, E) is special if ev-
ery y € Y has exactly 3 neighbors (in X). Consider
the following problem: Given a special bipartite graph
G = (X,Y, E), we wish to find a maximal subset S of Y’
such that G[X U S] is acyclic. We call this problem the
maximal triangular cactus (MTC) problem. The MTC
problem can be viewed as an extension of the restricted
MLF problem. We describe an interesting application
of the MTC problem below.

The maximum planar subgraph problem is, given
a graph G = (V, E), to find a maximum subset F' of £
such that the graph (V, F) is planar. This problem has
applications in circuit layout and graph drawing, but
is unfortunately NP-hard. Thus, it is of interest to de-
sign approximation algorithms for this problem. Note
that the maximum planar subgraph of an n-vertex graph
contains at most 3n — 5 edges and that a spanning tree
has exactly n—1 edges. From this fact, we obtain a triv-
ial approximation algorithm which always computes a
planar subgraph whose size is at least 3 optimal. Only
recently, Calinescu et al. [2] gave the first approximation
algorithm better than the trivial one.

To describe Calinescu et al.’s approximation algo-
rithm, we need several definitions. A triangular cactus
is a graph whose cycles (if any) are triangles and such
that all edges appear in some cycle. A triangular cactus
in a graph G is a spanning subgraph of G which is a
triangular cactus. A triangular cactus H in G is maxi-
mal if there is no other triangular cactus in G which is a
supergraph of H. It is easy to see that a maximal trian-
gular cactus in a given graph can be computed in poly-
nomial time. We are now ready to describe Calinescu
et al.’s approximation algorithm. Given a (connected)
graph G, their algorithm computes a maximal triangu-
lar cactus H in G, and then computes a spanning tree
T in the graph obtained from G by merging each con-
nected component of i into a single vertex. The output
of the algorithm is the union of H and T'. In [2], it is
shown that the size of the planar subgraph output by
this approximation algorithm is at least 1—78 optimal. We
wish to parallelize this algorithm. To reach our goal,
we only need to answer the question whether a maximal
triangular cactus in a given graph can be computed in
NC.

We claim that the problem of computing a maxi-
mal triangular cactus in a given graph can simply be
reduced to the MTC problem. The reduction is as fol-
lows. Given a graph G = (V, E), we construct a special
bipartite graph G’ = (X, Y, E’), where X =V, Y is the
set of all triangles in G, and E’ consists of all {z,y}
such that the vertex x appears in the triangle y. Clearly,
there is a one-to-one correspondence between maximal
triangular cactuses in G and maximal subsets S of Y
such that G’[X U S] is acyclic. Thus, the claim holds.
Therefore, Calinescu et al.’s approximation algorithm
can be parallelized if the MTC problem can be solved
in NC. However, we do not know whether the MTC

634

problem is in NC or not. This is an open question.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]
(14]

(15]
[16]

[17]

(18]

(19]
(20]

R. Anderson, “A parallel algorithm for the maximal path
problem,” Proc. 17th ACM Symp. on the Theory of Com-
puting, pp.33-37, ACM, 1985.

G. Calinescu, C.G. Fernandes, U. Finkler, and H. Karloff,
“A better approximation algorithm for finding planar sub-
graphs,” Proc. 7th ACM-SIAM Symp. on Discrete Algo-
rithms, pp.16-25, ACM, 1996.

Z.-Z. Chen, “A randomized NC algorithm for the maxi-
mal tree cover problem,” Information Processing Letters,
vol.40, pp.241-246, 1991.

Z.-Z. Chen, “The maximal f-dependent set problem for
planar graphs is in NC,” Theoretical Computer Science,
vol.143, pp.309-318, 1995.

Z.-Z. Chen, “Parallel constructions of maximal path sets
and applications to short superstrings,” Theoretical Com-
puter Science, vol.161, pp.1-21, 1996. A preliminary ver-
sion was presented at [CALP °96.

Z.-Z. Chen and X. He, “Parallel algorithms for maxi-
mal acyclic sets,” Proc. Aizu International Symposium
on Parallel Algorithm/Architecture Synthesis, pp.169-175,
IEEE, 1995. to appear in Algorithmica.

E. Dahlhaus, M. Karpinski, and P. Kelsen, “An efficient
parallel algorithm for computing a maximal independent
set in a hypergraph of dimension 3,” Information Process-
ing Letters, vol.42, pp.309-313, 1992.

K. Diks, O. Garrido, and A. Lingas, “Parallel algo-
rithms for finding maximal k-dependent sets and maximal
f-matchings,” ISA 91 Algorithms, pp.385-395, Lecture
Notes in Computer Science, vol.557, Springer-Verlag, 1991.
M. Goldberg and T. Spencer, “Constructing a Maximal
Independent Set in Parallel,” SIAM J. Disc. Math., vol.2,
no.3, pp.322-328, 1989.

A. Israeli and Y. Shiloach, “An improved parallel algo-
rithm for maximal matching,” Information Processing Let-
ters, vol.22, no.57-60, 1986.

R.M. Karp and A. Wigderson, “A fast parallel algorithm
for the maximal independent set problem,” Journal of
American Computing Machinery, vol.32, no.4, pp.762—
773, 1985.

P. Kelsen and V. Ramachandran, “On finding minimal 2-
connected subgraphs,” Proc. 2nd Ann. ACM-SIAM Symp.
on Discrete Algorithms, pp.178—187, ACM, 1991.

D.C. Kozen, “The Design and Analysis of Algorithms,”
Springer-Verlag, 1992.

M. Luby, “A simple parallel algorithm for the maximal
independent set problem,” SIAM Journal on Computing,
vol.15, no.4, pp.1036—1053, 1986.

R. Motwani and P. Raghavan, “Randomized Algorithms,”
Cambridge, 1995.

D. Pearson and V.V. Vazirani, “Efficient sequential and
parallel algorithms for maximal bipartite sets,” Journal of
Algorithms, vol.14, pp.171-179, 1993.

H. Peltola, H. Soderlund, J. Tarhio, and E. Ukkonen,
“Algorithms for some string matching problems arising in
molecular genetics,” Proc. 2nd IFIP Congress, pp.53—64,
1983.

T. Shoudai and S. Miyano, “Using maximal independent
sets to solve problems in parallel,” Theoretical Computer
Science, vol.148, no.57-65, 1995.

J. Storer, “Data Compression: Methods and Theory,”
Computer Science Press, 1988.

R. Uehara, Z.-Z. Chen, and X. He, “Fast RNC and NC

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

algorithms for finding a maximal set of paths with an ap-
plication,” Proc. 2nd Ann. Intern. Computing and Combi-
natorics, pp.209-218, Lecture Notes in Computer Science,
vol.1090, Springer-Verlag, 1996.

Ryuhei Uehara was born in Osaka
Prefecture, Japan, on September 7, 1965.
He received the B.E. and M.S. degrees
both from the University of Electro-
Communications in 1991 and 1993, re-
spectively. He is now Assistant of the
Center for Information Science of Tokyo
Woman’s Christians University. His cur-
rent interest is in the Theory of Compu-
tational Complexity, and Algorithms and
Data Structures.

Zhi-Zhong Chen was born in China,
on January 9, 1964. He received the
B.E. degree from the Northwest Telecom-
munication Engineering Institute (China)
in 1985, the M.S. and Ph.D. degrees
both from the University of Electro-
Communications in 1989 and 1992, re-
spectively. He is now Associate Professor
of the Department of Mathematical Sci-
ences of Tokyo Denki University. His cur-
rent interest is in Parallel Algorithms and

Approximation Algorithms.

