
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Generating Chordal Graphs Included in Given

Graphs

Author(s) KIYOMI, Masashi; UNO, Takeaki

Citation
IEICE TRANSACTIONS on Information and Systems,

E89-D(2): 763-770

Issue Date 2006-02-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4711

Rights

Copyright (C)2006 IEICE. Masahi Kiyomi and

Takeaki Uno, IEICE TRANSACTIONS on Information

and Systems, E89-D(2), 2006, 763-770.

http://www.ieice.org/jpn/trans_online/

Description



IEICE TRANS. INF. & SYST., VOL.E89–D, NO.2 FEBRUARY 2006
763

PAPER Special Section on Foundations of Computer Science

Generating Chordal Graphs Included in Given Graphs

Masashi KIYOMI†a), Nonmember and Takeaki UNO†b), Member

SUMMARY A chordal graph is a graph which contains no chordless
cycle of at least four edges as an induced subgraph. The class of chordal
graphs contains many famous graph classes such as trees, interval graphs,
and split graphs, and is also a subclass of perfect graphs. In this paper,
we address the problem of enumerating all labeled chordal graphs included
in a given graph. We think of some variations of this problem. First we
introduce an algorithm to enumerate all connected labeled chordal graphs
in a complete graph of n vertices. Next, we extend the algorithm to an
algorithm to enumerate all labeled chordal graphs in a n-vertices com-
plete graph. Then, we show that we can use, with small changes, these
algorithms to generate all (connected or not necessarily connected) labeled
chordal graphs in arbitrary graph. All our algorithms are based on reverse
search method, and time complexities to generate a chordal graph are O(1),
and also O(1) delay. Additionally, we present an algorithm to generate ev-
ery clique of a given chordal graph in constant time. Using these algorithms
we obtain combinatorial Gray code like sequences for these graph struc-
tures in which the differences between two consecutive graphs are bounded
by a constant size.
key words: chordal graph, enumeration, constant time

1. Introduction

A chordal graph is an undirected graph in which every cy-
cle with at least four edges has a chord. Here, a chord
of a cycle is an edge not in the cycle and connecting two
vertices of the cycle. Chordal graphs have been consid-
ered to be important in the sense of both theoretical and
application aspects. The class of chordal graphs contains
many popular graph classes such as trees, interval graphs,
and split graphs [6]. Many polynomial time algorithms to
solve a lot of problems on chordal graphs are known. More-
over, the class of chordal graphs is a subclass of the class
of perfect graphs [8]. Chordal graphs have many applica-
tions, for example, to matrix computation [5] or to relational
database [4]. Chordal graphs are sometimes called triangu-
lated graphs since every cycle in them is divided into some
triangles. Chordal graphs are also used for numerical com-
putation of models, and modeling some systems in computer
science and social sciences [21].

Chordal graphs have many good properties. One im-
portant property of them is that a chordal graph has at least
one simplicial vertex, where a vertex is simplicial iff its
neighbors induce a clique. Given a graph G with a sim-
plicial vertex v, we define an elimination of v from G as
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removing the vertex v from the vertex set of G and remov-
ing the edges adjacent to v from the edge set of G. An
elimination of a simplicial vertex from a chordal graph re-
sults another chordal graph, and the size of the vertex set of
the chordal graph is exactly smaller than that of the original
chordal graph. Thus, we can iteratively eliminate simplicial
vertices from a chordal graph until the graph has no vertex.
The vertex ordering along which we eliminate the simpli-
cial vertices are called perfect elimination ordering. Given a
general graph, we can find a perfect elimination ordering of
the graph in the linear time of the graph size, if there exists
at least one such ordering [15]. We can characterize chordal
graphs by perfect elimination orderings; a graph is chordal
if and only if it has a perfect elimination ordering. These
properties of chordal graphs give simple and fast algorithms
for many problems. In particular, we can solve some combi-
natorial problems on chordal graphs, such as maximum in-
dependent set and minimum vertex coloring, in polynomial
time with simple combinatorial algorithms.

Recently, because of the increase of computation
power, many problems in practice are solved with enumera-
tion. The graphical structures are used to model the systems
and objects in many scientific area. Enumeration is used for
simulating and finding good properties and new knowledges
in these models. For example, enumeration algorithms for
graph structures such as labeled paths, labeled trees, labeled
graphs are used in frequent pattern mining problems [1],
[2], [9], [18]. In optimization, many branch and bound type
algorithms for combinatorial optimization explicitly or im-
plicitly use enumeration of feasible solutions. Branching
processes essentially generate all of the objects in the feasi-
ble domain, while the bounding processes try to reduce the
number of objects to generate. It is important not to generate
the same objects redundantly wherever possible to keep the
algorithms efficient, and we can often do this with the tech-
niques of enumeration. Enumeration of vertices of a poly-
tope is used to find an optimum solution maximizing com-
plicated functions. In column generation algorithms and set
covering approaches, solutions of a subproblem are enumer-
ated, and an optimal solution is found by combining them.
Enumeration is also used in many graph algorithms. More-
over, enumeration itself has theoretical interests, and many
studies have been done [7].

In this paper, we focus on enumeration of chordal sub-
graphs included in a given graph. More precisely, we enu-
merate edge subsets of a given graph which are edge sets of
chordal subgraphs of a given graph. Here we assume that
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every vertex has an index (label) different from the other
vertices, and we can describe every edge by a pair of ver-
tices. We simply call such edge subsets labeled chordal
graphs. We also consider the enumeration of connected la-
beled chordal subgraphs.

We propose efficient algorithms for the problems. The
first is an algorithm for enumerating all connected chordal
graphs included in a complete graph. The second is an algo-
rithm for enumerating all connected chordal graphs included
in an arbitrary graph. We will show that we can easily mod-
ify these algorithms so that they enumerate all (not neces-
sary connected) chordal graphs. We also propose an algo-
rithm for enumerating all cliques in a chordal graph, which
is used as a subroutine by the algorithms for chordal graphs.

The time complexity of these three algorithms are all
O(1) for each output, that is, the computation time is linear
in the number of output chordal graphs, or cliques. We note
that we output each chordal graph or clique by the symmet-
ric difference from the previous one. Moreover, we show
these algorithms directly lead combinatorial Gray code like
sequences of several kinds of chordal subgraphs of a graph,
and of cliques in a chordal graph, such that any consecutive
two graphs differ at most three edges or vertices. The delay
between two successive outputs in our algorithms are also
O(1).

Our algorithms to enumerate labeled chordal graphs
are based on reverse search. Reverse search was originally
developed to enumerate all vertices of a given polytope rep-
resented by the intersection of half spaces [3]. Many enu-
meration algorithms use reverse search to enumerate many
kind of objects such as spanning trees, trees, plane graphs,
maximal cliques, etc. [11]–[13], [17].

In the following sections, we describe our problems
and algorithms in detail. Section 2 describes a framework
of reverse search and our enumeration scheme for labeled
chordal graphs. In Sect. 3, we describe our enumeration
algorithms. In Sect. 4, we analyze the time complexity of
our algorithms. We explain a way to bound the delay in
constant, and combinatorial Gray codes of labeled chordal
graphs and cliques in Sect. 5. Finally we conclude the paper
in Sect. 6.

2. Enumeration Scheme

In this section, we explain a basic concept of reverse search,
then describe our enumeration scheme for labeled chordal
graphs.

2.1 Reverse Search

Let F be the set of objects which we want to enumerate. In
our problem, F is the set of labeled chordal graphs included
in a given graph. We define a parent–child relation by de-
termining a parent for each object except for some specified
objects called root objects. The definition of the parents has
to satisfy that no object is a proper ancestor of itself, i.e., by
iteratively moving from an object x to the parent of x, to the

Fig. 1 Spanning forest on the objects to be enumerated, in which paths
from all leaves aim to the roots.

parent of the parent of x, and so on, we never come to the
start object x again. The graph representation of the relation
induces a set of disjoint rooted trees spanning all objects, in
which paths from all leaves aim to the roots. We illustrate an
example of the graph representation in Fig. 1. Each object
to be enumerated is drawn by a point, and an object and its
parent is connected by a directed arrow.

Tracing each edge in the reverse direction enables us
to perform depth first search to visit all objects. Thus, we
can enumerate all objects using an algorithm to find all root
objects, and an algorithm to find all children of an object.
This is a basic concept of reverse search. Because of its
simplicity and efficiency, reverse search has been used in a
lot of algorithms [3], [11]–[13].

2.2 Parent–Child Relation

To construct a reverse search algorithm for labeled chordal
graphs included in a graph, we need parent–child relations
defined on the labeled chordal graphs.

Let Ḡ = (V̄ , Ē) be an arbitrary graph, and V̄ =

{1, . . . , n}. Suppose G = (V, E) is a chordal subgraph of
Ḡ and G has more than one edges. We define minimum de-
gree simplicial vertex of G as the simplicial vertex having
the minimum degree, and denote it by s∗(G). If there are
more than one such simplicial vertices, we choose the mini-
mum (in vertices number) as s∗(G), so that s∗(G) is defined
uniquely. Note that any chordal graph has at least one sim-
plicial vertex, hence we can define s∗(G) for any chordal
graph. We define the parent of G as the graph obtained by
elimination of s∗(G) from G. Since an elimination of a sim-
plicial vertex from a chordal graph results another chordal
graph, the parent of G is also a chordal graph. We note that
if G is connected, then the parent of G is also connected,
since for any two neighbors of a simplicial vertex there is
an edge which connect the vertices (See Fig. 2). The num-
ber of edges on the parent chordal graph is always strictly
less than that of its child. Thus, no chordal graph becomes
an ancestor of itself. Therefore, both the parent–child re-
lation defined on all labeled chordal subgraphs of Ḡ and
the parent–child relation defined on all connected labeled
chordal subgraphs of Ḡ satisfy the conditions to be used in
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Fig. 2 The left chordal graph has simplicial vertices 1, 3, 4 and 7. The
simplicial vertices of the minimum degree are 4 and 7. s∗(G) is 4. The right
chordal graph obtained by eliminating 4 from the left graph is the parent of
the left graph.

reverse search described in the previous subsection. We il-
lustrate an example of the parent–child relation of labeled
chordal graphs in Fig. 2. Note that root chordal graphs are
the graphs with exactly one edge.

3. Algorithms for Reverse Search

To enumerate all labeled chordal graphs included in a graph,
we need an algorithm to enumerate all root labeled chordal
graphs and also need an algorithm to enumerate all children
of a given labeled chordal graph. The former algorithm
is very simple; just generate all subgraphs having exactly
one edge. In the following subsection, we describe the lat-
ter algorithm, the algorithm to generate children of labeled
chordal graphs included in an arbitrary graph. We consider
both the cases that the chordal graphs to be enumerated are
connected, and not necessary to be connected.

3.1 Enumerating Children

The parent of a labeled chordal graph is obtained by elimi-
nating a simplicial vertex. Hence, given a connected labeled
chordal graph G in Ḡ, any of its connected child is obtained
by adding a vertex v to G. Here adding a vertex v to G means
adding the vertex v to the vertex set of G and adding edges
connecting the vertex v and some other vertices C ⊆ V to
the edge set E of G. It is necessary to obtain a child that C
contains at least one vertex, and is a clique in G so that v is
a simplicial vertex of the child. In the following, we charac-
terize a necessary and sufficient condition for the resulting
graph to be a child of G.

3.1.1 Characterization of Children of Connected Chordal
Graph

In this subsection, we present a characterization of a child of
a connected chordal graph in the parent–child relation of la-
beled connected chordal subgraphs of a given graph Ḡ. We
first introduce some notations. We denote the set of simpli-
cial vertices in G by S (G). The minimum degree in S (G)
is denoted by k(G). We define S d(G) as the set of simpli-
cial vertices of degree d in G, and particularly, we denote
S k(G)(G) by S ∗(G). We denote the minimum vertex in a ver-
tex set X by min(X). If X = ∅, we define min(X) is +∞.
Suppose G = (V, E) be a connected labeled chordal graph

Fig. 3 Examples of Ḡ,G,G4 and G6.

included in Ḡ. Let v be a vertex of Ḡ and not in G. We
denote by N(G, v) the subgraph of G induced by the ver-
tices which are adjacent to v in Ḡ (Fig. 3). We note that
N(G, v) = G holds for any G and v if Ḡ is a complete graph.
Let C be a vertex subset in N(G, v). We denote by G(v,C)
the graph obtained by adding v and edges connecting v and
all vertices in C to G. It is necessary that any connected
child H of a chordal graph G satisfies that H = G(v,C) for
some v and C, and C is a clique of G. We show below the
necessary and sufficient condition for H = G(v,C) to be a
child of a chordal graph G.

Lemma 1: For a vertex v � G and a clique C in N(G, v),
G(v,C) is a child of G if and only if one of the following
conditions holds.

(1) |C| < k(G)
(2) |C| = k(G) and v < min(S ∗(G) \C)
(3) |C| = k(G) + 1, S ∗(G) ⊆ C and

v < min(S ∗(G) ∪ S k(G)+1(G)).

Proof: First, we claim the following propositions.

Proposition 1: Any simplicial vertex u (� v) in G(v,C) is
simplicial in G.

Proof: If u is not adjacent to v, the neighbors of u form a
clique in G. If u is adjacent to v, the elimination of v from
the neighbors of u also forms a clique in G. Thus, in both
cases, u is simplicial in G. �

Proposition 2: G(v,C) is a connected chordal graph, and v
is simplicial in G(v,C).

Proof: Let X be a cycle in G(v,C) having at least four edges.
If X does not include v, then X is included in G, hence X
has a chord. If X includes v, then X includes at least two
neighbors of v. The edge connecting the two neighbors is a
chord of X, thus any cycle in G(v,C) of at least four edges
has a chord. Since the neighbors of v form C which is a
clique, v is simplicial in G(v,C). �
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Now we prove the lemma. Above two propositions
show that G(v,C) is a connected child of G if and only if
s∗(G(v,C)) = v. Thus, in order to prove the statement, we
only need to check whether s∗(G(v,C)) = v holds or not in
the case of the conditions (1), (2) and (3). We consider the
following four cases according to the size of C.

(a) |C| < k(G): The degree of v in G(v,C) is |C| and is
smaller than any other simplicial vertex in G. From
Proposition 1, any simplicial vertex in G(v,C) is a sim-
plicial vertex in G, hence v is the unique minimum de-
gree vertex among simplicial vertices in G(v,C). Thus,
s∗(G(v,C)) = v.

(b) |C| = k(G): Similarly to the above, v has the minimum
degree (k(G)) among simplicial vertices in G(v,C).
However it is possible that there are some other sim-
plicial vertices whose degree are also k(G). Since
the degree of vertices of C in G(v,C) is larger than
k(G), S ∗(G(v,C)) is equal to (S ∗(G) \ C) ∪ {v}. Thus,
s∗(G(v,C)) = v if and only if v is smaller than
min(S ∗(G) \C).

(c) |C| = k(G) + 1: In this case, v has the minimum de-
gree in S (G(v,C)) if and only if S ∗(G) ⊆ C holds.
Thus, s∗(G(v,C)) = v if and only if S ∗(G) ⊆ C and
v < min(S ∗(G) ∪ S k(G)+1(G)) hold.

(d) |C| > k(G) + 1: In this case, C ∩ S ∗(G) = ∅ since
any vertex in S ∗(G) is adjacent to exactly k(G) vertices.
Thus, it is clear that s∗(G(v,C))(= s∗(G)) is never equal
to v.

From these observations, we obtain that for a vertex v not in
G and a clique C in G,

• if one of (1), (2) or (3) holds,
G(v,C) is a connected child of G,

and

• if none of (1), (2) and (3) holds, i.e.,
one of the below holds,

(2’) |C| = k(G) and v > min(S ∗(G) \C),
(3’) |C| = k(G) + 1 and S ∗(G) \C � ∅,
(3”) |C| = k(G) + 1 and v > min(S ∗(G)),
(4’) |C| > k(G) + 1,

then G(v,C) is not a child of G.

Lemma 1 characterizes the children of a connected la-
beled chordal graph efficiently. From the lemma, we obtain
an algorithm to enumerate the children of a connected la-
beled chordal graph. And it directly leads an algorithm to
enumerate connected labeled chordal graphs in an arbitrary
graph Ḡ. In Fig. 4, we describe the algorithm. Note that it is
easy to generate all cliques whose size are restricted, hence,
if Ḡ is a complete graph, the algorithm becomes more sim-
ple.

3.1.2 Non-connected Chordal Subgraphs

To characterize the children for the parent–child relation on

ALGORITHM Enum Labeled Connected Chordal
(G = (V, E)):
1: output G;
2: if |V | = n then return;
3: if k(G) = 1 then do

for each pair of vertices v � G and u ∈ G
such that (u, v) ∈ Ē and v < min(S ∗(G) \ {u}),

call Enum Labeled Connected Chordal(G(v, {u}));
return;

end;
4: for each d such that S d(G) � ∅,

compute S d(G) and min(S d(G));
5: for each vertex v � G with non-empty N(G, v),

for each clique C in N(G, v) of size at most k(G) − 1
in G,

call Enum Labeled Connected Chordal (G(v,C))
for each v � G;

6: for each pair of vertex v � G and clique C in N(G, v)
of size k(G)
such that v < min(S ∗(G) \C),

call Enum Labeled Connected Chordal (G(v,C));
7: for each pair of vertex v � G and clique C in N(G, v)

of size k(G) + 1
such that S ∗(G) ⊆ C and
v < min(S ∗(G) ∪ S k(G)+1(G)),

call Enum Labeled Connected Chordal (G(v,C));

Fig. 4 Algorithm to enumerate connected labeled chordal graphs in an
arbitrary graph.

general labeled chordal graphs, we just modify the condition
“C has to be a clique of G = (V, E)” to “C has to be a clique
of G, or a singleton of a vertex not in G ∪ {v}”, which is
equivalent to “C is a clique in the graph (V̄ , E)”. We can
prove the lemma below analogously. Note that we do not
need to modify the definition of parents of chordal graphs.

Lemma 2: Let G = (V, E) be a chordal subgraph of Ḡ =
(V̄ , Ē). For a vertex v � G and a clique C in (V̄ , E), G(v,C)
is a child of G if and only if one of the following conditions
holds.

(1) |C| < k(G)
(2) |C| = k(G) and v < min(S ∗(G) \C)
(3) |C| = k(G) + 1, S ∗(G) ⊆ C and

v < min(S ∗(G) ∪ S k(G)+1(G)).

In the case of Lemma 1, it is clear that there is a bijec-
tion between G(v,C) and a pair of (v,C). However, in the
case of Lemma 2, if C is a singleton of a vertex w � G∪ {v},
we can sometimes swap v and w, that is, G(w, {v}) is also a
child of G and G(w, {v}) is equal to G(v,C). Thus, if we gen-
erate all children satisfying one of (1), (2) or (3), we some-
times generate the same child twice. To avoid this, we must
not generate a child if C is a singleton w and w is smaller
than v.

From the proofs of the lemmas, we directly obtain the
following corollary.

Corollary 1: If G(v,C) is a child of G, then k(G(v,C)) =
|C|.

3.2 Enumerating Cliques in Chordal Graphs

The algorithm described in Fig. 4 requires a subroutine to
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enumerate cliques of sizes at most k in a given chordal
graph. We can enumerate cliques in a general graphs in
O(|V |) time for each by simple backtracking algorithm.
However, we can not use this algorithm for an enumera-
tion algorithm which takes O(1) time for each clique. Here,
we describe a new algorithm to enumerate all size restricted
cliques in a chordal graph G = (V, E) which takes O(1) time
for each clique.

Let v be a simplicial vertex of G. We consider a par-
tition of the set of cliques in G; all cliques including v, and
all cliques not including v. Since the neighbors of v form a
clique, v and its neighbors induce a complete graph. Thus,
we can enumerate, as vertex set, every clique which includes
v and whose size is up to k by combining v and every vertex
subset whose size is at most k − 1 and whose elements are
neighbors of v. We can enumerate the cliques of size at most
k and not including v recursively, that is, we can enumerate
all cliques of size at most k in the graph obtained by elimi-
nating v from G. We choose the vertex v in each level of the
recursive calls along a perfect elimination ordering so that
we need only constant time to obtain a simplicial vertex in
each level of the recursive calls, if we already know a perfect
elimination ordering of G. Note that we can generate each
subset of size at most k − 1 with reverse search, where we
define the parent subset of a subset P including more than
one elements as a subset obtained by removing the biggest
element, as element number, from P. It is easy to obtain ev-
ery child of a subset in constant time; We just add to a subset
of size at most k − 2 an element whose element number is
bigger than those of all elements in it, then the resulting sub-
set is a child of the subset, and all children are obtained in
this way. Thus, we obtain the following theorems.

Theorem 1: We can enumerate all cliques of sizes at most
k in a chordal graph in constant time for each clique on av-
erage and additional time to obtain a perfect elimination or-
dering, so that the size of the difference between consecutive
two cliques is constant on average.

If we think the case that k is equal to n, we also obtain
the following theorem.

Theorem 2: We can enumerate all cliques in a chordal
graph in constant time for each clique on average, so that
the size of the difference between consecutive two cliques is
constant on average.

4. Time Complexity

In this section, we refer to the time complexity of our al-
gorithms. First, we show our algorithm to enumerate all
connected labeled chordal graphs in a complete graph costs
constant time on average to enumerate every chordal graph.
To show the time complexity to enumerate every labeled
chordal graph in a complete graph is constant is analogously.
Bounding the time complexity in the case of enumerating
labeled chordal graphs in Ḡ which is not a complete graph
needs some additional observations.

4.1 In Complete Graphs

Here we evaluate the computation time in the case that the
input graph Ḡ is a complete graph.

We define an iteration of the algorithm as the op-
erations in a vertex of the computation tree, which is
a tree representation of the recursive structure of an
execution of the algorithm. Thus, an iteration corre-
sponds to the operations in an execution of ALGORITHM
Enum Connected Labeled Chordal excluding the opera-
tions in the recursive calls generated from it. Iterations and
connected labeled chordal graphs have a one-to-one cor-
respondence, thus we call an iteration inputting a chordal
graph G iteration of G. In the rest of this subsection, we
show the computation time of an iteration of G is linear in
the number of children of G. To show this, we bound the
computation time of each step in an iteration one by one.

It is clear that we can run step 1 and step 2 in Fig. 4 in
constant time. From Corollary 1, we can compute k(G) in
constant time. Thus, we can perform the conditional branch
in step 3 in constant time. In order to execute step 3 quickly
in the case k(G) = 1, we maintain a sorted list of the vertices
in S 1(G) at every iteration. We can delete a vertex from the
list in constant time. When the algorithm constructs G(v,C)
and adds v to S 1(G) in some iteration, v is always smaller
than any vertex in S 1(G). Thus, we can add a vertex v to
S 1(G) in constant time by attaching v to the head of the list.

To compute S d(G) and min(S d(G)) in step 4, we take
O(|V |) time. When we execute step 4, we have k(G) ≥ 2.
Thus, the set of cliques of sizes at most k(G) − 1 includes
cliques whose sizes are one. We can also execute Step 7 in
O(|V |) time, since at most one clique satisfies the condition
of step 7. Since the number of cliques of one vertex in G is
|V |, G has at least |V | children. Therefore, the computation
time for steps 4 and 7 is linear in the number of children
of G. This means that the computation time is linear in the
number of children.

The enumeration algorithm of cliques in a chordal
graph requires a perfect elimination ordering. Since in each
iteration the algorithm adds a simplicial vertex to the graph,
the ordering of the vertices added to obtain G reversely
forms a perfect elimination ordering. Thus, we can keep a
perfect elimination ordering of the current operating graph
in memory, and update it in constant time at each iteration.

Step 6 takes long time in a straightforward way. To
avoid this, we use cliques C′ of size k(G) − 1 found in step
5. We find all vertices u ∈ G such that there is a vertex
v � G satisfying v < min(S ∗(G) \ (C′ ∪ {u})). To satisfy the
condition, S ∗(G) \ C′ includes at most one vertex smaller
than the minimum vertex not included in G. We can check
this in O(|C′|) time.

In the above, we saw that steps 5, 6 and the mainte-
nance of the sorted list of the vertices in S 1(G) take O(|C|)
time for each child. We can reduce the time to compute
G(v,C) in step 5 by using G(v,C′) where C′ is the last clique
obtained. By modifying G(v,C′) to obtain G(v,C), we can
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reduce the time complexity to O((C \C′) ∪ (C′ \C)). Thus,
from Theorem 1, the reduced computation time complexity
is constant time for each on average. From similar obser-
vation, the computation time complexities for steps 5, 6 and
the maintenance of the sorted list of the vertices in S 1(G) are
bounded by a constant for each child on average. Therefore,
we obtain the following theorem.

Theorem 3: For a given complete graph Kn, we can enu-
merate all connected labeled chordal graphs, which are
equivalent to all edge subsets of Kn inducing connected
chordal graphs, in constant time for each edge subset, and
in O(n2) memory.

In analogous way, we obtain the following theorem.

Theorem 4: For a given complete graph Kn, we can enu-
merate all labeled chordal graphs, which are equivalent to
all edge subsets of Kn inducing chordal graphs, in constant
time for each edge subset, and in O(n2) memory.

4.2 In Arbitrary Graphs

In the case of generating all connected or not necessarily
connected labeled chordal graphs in an arbitrary graph Ḡ,
we have to compute N(G, u) for all u ∈ V̄ \ V . Comput-
ing N(G, u) for each u with no information takes long time.
In order to reduce the time, we maintain N(G, u) along the
changes of the current chordal graph G. As a result, we will
show that the computation time to obtain all N(G′, u) to be
used is O(|Chd(G′)| + 1), where Chd(G′) is the set of chil-
dren of G′. This implies that the computational time with
respect to this operation is constant for each output chordal
graph on average, since the sum of the number of children
over all vertices in a tree is less than or equal to the number
of vertices in the tree.

For each vertex not in G, let M(G, v) be the set of ver-
tices in V̄ \ (V∪{v}) and adjacent to v. We keep M(G, u) (u ∈
V̄ \V) sorted in their indices. Suppose that in an iteration we
obtain a child G′ = G(v,C) of G for some v and a clique C in
N(G, v). To generate a recursive call with respect to G′, we
compute N(G′, u) and M(G′, u) from N(G, u) and M(G, u)
for each u ∈ V̄ \ (V ∪ {v}). The computation with respect to
M(G′, u) is O(|M(G, v)|), since M(G′, u) = M(G, u) \ {v} if
u ∈ M(G, v) and M(G′, u) = M(G, u) otherwise.

For any vertex u in neither G nor M(G, v), N(G′, u)
is equal to N(G, u). For any vertex u ∈ M(G, v), N(G′, u)
is obtained from N(G, u) by adding v and edges connect-
ing v and vertices both in N(G, v) and C. In this way, the
computation time to obtain N(G′, u) for all u ∈ M(G, v) is
O(
∑

u∈M(G,v) |V(N(G, u))|), where V(N(G, u)) is the vertex set
of N(G, u). If |C| ≥ 2, we obtain a child by adding an edge
(u,w) to G′ for any w in N(G′, u), since k(G′) ≥ 2 holds.
Hence, we have

|M(G, v)| +
∑

u∈M(G,v)

|V(N(G, u))| ≤ O(|Chd(G′)|).

Suppose that |C| = 1. We denote the unique element

in C by w (i.e., C = {w}). In this case, N(G′, u) includes
at most three edges not in N(G, u), which are (u, v), (u,w)
and (v,w). Thus, we can obtain N(G′, u) from N(G, u) in
constant time by looking the adjacency matrix of Ḡ. The
computation time to obtain N(G′, u) for all u ∈ M(G, v) is
O(|M(G, v)|). We first consider the case that |S 1(G′)| = 1,
that is, v is the unique simplicial vertex in G′ whose degree
is one. In this case, for each u ∈ M(G, v), G′ has a child
obtained by adding the edge (u, v) to G′. Hence, |M(G, v)| =
O(|Chd(G′)|), and the time to compute all N(G′, u) for all
u ∈ M(G, v) is O(|Chd(G′)|).

Next we consider the case that |S 1(G′)| > 1. Then, v
is the minimum vertex among S 1(G′). Let v′ be the second
minimum in S 1(G′). We have the following property.

Lemma 3: For any descendant H of G′, s∗(H) < v′, the de-
gree of s∗(H) is one, and S 1(H) includes at least two vertices
no greater than v′ which are not adjacent to each other.

Proof: Suppose that H does not satisfy the condition, and
without loss of generality, any ancestor of H satisfies the
condition. Let P(H) be the parent of H. From the assump-
tion, s∗(P(H)) < v′, the degree of s∗(P(H)) is one, and
S 1(P(H)) includes at least two vertices not greater than v′
which are not adjacent to each other. Then, s∗(H) has to be
connected to at least two vertices in S 1(P(H)) which are not
adjacent to each other. It contradicts the fact that the neigh-
bors of s∗(H) form a clique. �

From the lemma, we can see that for any descendant of
G′, u > v′ never be added. Thus, we do not need to compute
N(G, u) for any u > v′. We compute N(G′, u) and M(G′, u)
for all vertices u ∈ M(G, v) with u < v′. We can do this in
constant time for each u ∈ M(G, v) with u < v′ by tracing
M(G, v) in the ascending order. For each u ∈ M(G, v) with
u′ > v, G′ has a child obtained by adding the edge (u, v) to
G′. Thus, |{u|u ∈ M(G, v), u < v′}| = O(|Chd(G′)|).

In every case, we have proved that the computation
time to obtain N(G′, u) and M(G′, u) is O(|Chd(G′)| + 1).
Thus, we obtain the following theorem.

Theorem 5: For a given graph Ḡ, we can enumerate all la-
beled chordal graphs, which are equivalent to all edge sub-
sets of Ḡ inducing chordal graphs, in constant time for each.
The memory space necessary to run the algorithm is O(n3).

5. Constant Delay and Combinatorial Gray Codes

A combinatorial Gray code is an ordering of subset family
in which consecutive two sets differ in small size [16]. Gen-
erally, the differences are minimal, but sometimes are not.
In this section, we consider combinatorial Gray code like
sequences of all chordal subgraphs and cliques so that any
consecutive two differ at most three edges or three vertices.
The differences are small, but possibly not minimal. Thus
here we call them combinatorial Gray code like sequences.

In our algorithm, enumeration of cliques in a given
chordal graph is composed of enumeration of all subsets of
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a set. Thus, we can get a combinatorial Gray code by com-
bining combinatorial Gray codes of these subsets. We can
also see that the delay of the algorithm is constant. Simi-
larly, we can obtain a combinatorial Gray codes for cliques
of sizes at most a certain constant in a chordal graph.

Next we consider labeled chordal graphs. According
to an algorithm described in Nakano and Uno [14], [20], if
we have an enumeration algorithm traversing a search tree
such that any parent and its child differ in constant size, the
maximum difference between two consecutive outputs can
be bounded in a constant size only with a modification on
timing of output. The modification is that at the odd level of
the recursion we output the objects before making recursive
calls, and at the even level of the recursion, we output after
the terminations of the recursive calls. In this way, at least
one of three iterations outputs an object when the algorithm
ascends or descends the search tree. Thus, the sequences
of the output objects are combinatorial Gray codes like se-
quences. In this way, if each iteration takes constant time to
make a recursive call, the delay is also constant time.

However, in our search tree on labeled chordal graphs,
differently from that of subsets of size at most k, the size
of difference between a parent and a child is not always in
a constant size. In order to reduce the differences between
consecutive chordal graphs, we enumerate all children of a
labeled chordal graph G in an ordering that the differences
between (a) G and the first child, (b) any two consecutive
children, and (c) the last child and G are bounded by con-
stant. This enumeration is equivalent to generating a com-
binatorial Gray code for cliques in a chordal graph. Using
this enumeration method of children, the algorithm adds or
deletes a constant number of edges to make a recursive call.
Thus, we obtain combinatorial Gray code like sequences for
them.

Theorem 6: There are algorithms for enumerating chordal
subgraphs in a graph, connected chordal subgraphs in a
graph, and cliques in a chordal graphs in constant delay, re-
spectively.

Theorem 7: There is a sequence of cliques of a chordal
graph such that two consecutive cliques differ at most three
vertices.

Theorem 8: There are sequences of chordal subgraphs in a
graph, and connected chordal subgraphs in a graph, respec-
tively, such that two consecutive graphs differ at most three
edges.

6. Conclusion

In this paper, we focused on the problems of enumerating
all labeled chordal graphs on a vertex labeled graph. We
introduced a good search tree on the set of (connected, or
not necessarily connected) labeled chordal graphs, and pre-
sented efficient algorithms taking constant time on average
for each chordal graph. As a corollary, we showed that we
can enumerate all cliques in a chordal graph in constant time

for each. Further, we showed the algorithms generate com-
binatorial Gray codes like sequences such that any two con-
secutive outputs differ at most three vertices or three edges.
We leave the following problem as an open problem.

• Is there an output polynomial time algorithm to enu-
merate all maximal connected labeled chordal sub-
graph of a given general graph?
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