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LETTER

Digital Halftoning Algorithm Based on Random

Space-Filling Curve∗

Tetsuo ASANO†, Member

SUMMARY This letter introduces a new digital halftoning
technique based on error diffusion along a random space-filling
curve. The purpose of introducing randomness is to erase regular
patterns which tend to arise in an image area of uniform intensity.
A simple algorithm for generating a random space-filling curve is
proposed based on a random spanning tree and maze traversal.
Some experimental results are also given.
key words: digital halftoning, error diffusion, random space
filling curve

1. Introduction

Digital halftoning is a well-known technique in im-
age processing to convert an image having several bits
for brightness levels into a binary image consisting of
black and white dots. Up to now, a large number
of methods and algorithms for digital halftoning have
been proposed (see e.g., [4]–[7], [9]). The error-diffusion
method [5] among them is known to be good enough in
quality of its output images and efficiency in ordinary
serial machines. It scans each pixel in a raster manner
and determines its output binary level by comparing
its gray level with some average intensity level. The
difference of its intensity level from the average level as
the threshold is distributed as error over its neighbor-
ing pixels which have not been examined yet. Unfortu-
nately, the regularity of error distribution is sometimes
recognized as regular patterning in large uniform re-
gions. Therefore, to have better quality we need to
incorporate some randomness for error distribution.

An idea here is to use random space-filling curve
instead of raster scan. Recently, it has been observed
that error diffusion along some space-filling curves such
as Peano curve [4] and Hilbert curve [11] sometimes
achieve better quality compared to the traditional er-
ror diffusion based on a raster scan. In [10] parallel
implementation of cluster-dot technique using a space-
filling curve is proposed. One drawback of the meth-
ods comes from the fact that such space-filling curves
are usually defined recursively on a square grid plane.
Thus, there is some difficulty when they are applied to
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rectangular images. Another drawback is found in its
quality of an output image due to its recursive struc-
ture. Since it is recursively defined, each quarter of an
image is completely separated and their boundaries are
often recognized in the resulting binary image.

Our idea is to use a space-filling curve based
on random choices to avoid regular patterning. We
have studied space-filling curves from different stand-
points [1], [2], [8]. Some experimental results are in-
cluded to show the effectiveness of those ideas.

2. Random Space Filling Curve

Given a lattice plane G, a space-filling curve on G is
a curve which visits every lattice point on G exactly
once. Since the shape of the curve itself is not impor-
tant, it is sometimes represented as a permutation of
lattice points of G. Many space-filling curves such as
Hilbert and Peano curves are non-selfcrossing although
this property is not a necessary condition for a curve
to be space-filling. A number of space-filling curves are
defined in addition to those famous curves (see for ex-
ample, [8]).

The idea of using space-filling curves for digital
halftoning is not new. Velho and Gomes [11] use space-
filling curves for cluster-dot dithering. Zhang and Web-
ber [10] give a parallel halftoning algorithm based on
space-filling curves. Asano, Ranjan and Roos [2] for-
mulate digital halftoning as a mathematical optimiza-
tion problem and obtain an approximation algorithm
based on space-filling curves. So, the digital halfton-
ing techniques based on space-filling curves seem to be
promising. However, one of their serious disadvantages
is that there is some difficulty when the size of an in-
put image is not a power of 2 since most of recursively
defined space-filling curves such as Hilbert and Peano
curves are defined for square lattice planes of sizes of
powers of 2. One advantage of the random space-filling
curve proposed in this paper is that it can be defined
even for irregular-shaped lattice planes under some rea-
sonable conditions. A more precise description for an
irregular-shaped lattice plane will be given later.

Another disadvantage of using a recursive space-
filling curve comes from the shapes of the curves. Sup-
pose that we draw space-filling curves by connecting
vertices which are consecutive in the order specified by
the space-filling curves. Then, a straight gap is defined
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Fig. 1 Representative space-filling curves. (a) Hilbert curve,
(b) Sierpinski curve, (c) Raster scan, and (d) Serpentine rack.

to be a horizontal or vertical line segment which does
not intersect the space-filling curve. It should be noted
that those gaps could be barriers against error propaga-
tion. Thus, long straight gaps are sometimes easily rec-
ognized in the resulting image. Figure 1 shows several
representative space-filling curves which are defined re-
cursively. It is easy to see that each space-filling curve
contains long straight gaps. Especially, the serpentine
rack has gaps which are as long as the side of the entire
plane. On the other hand, since the random space-
filling curve frequently changes its direction, it seldom
contains long gaps. This is one of the advantages of the
random space-filling curve.

Then, how can we generate random space-filling
curves? First of all, can we guarantee the existence of
such space-filling curves? And how can we incorporate
randomness into space-filling curves?

In [3] a general scheme for defining a class of space-
filling curves based on a grammar is presented. Al-
though this suggests a way of constructing space-filling
curves looking random, this kind of approaches bear
some limit as far as they are based on a grammar. That
is, such a space-filling curve exists only when the sizes
of a rectangular grid are powers of some constants. On
the other hand, this letter discusses a class of space-
filling curves defined on a rectangular lattice plane of
any even sizes. Consider a lattice plane looking like a
checker board as shown in Fig. 2. If it consists of odd
number of cells (small squares), the number of black
cells is different from that of white cells. Thus, there
is no space-filling curve starting and ending at cells of
different colors. The reason is as follows. Colors of

Fig. 2 Is there any space-filling curve with starting and target
positions specified on a lattice graph consisting of an odd number
of lattice points?

Fig. 3 Partitioning an image matrix into 2 × 2 small subma-
trices (to the left) and its associated lattice graph (to the right).

cells alternate in any space-filling curve. Therefore, the
length of the space-filling curve must be even if the
starting and ending cells have the same color. It con-
tradicts to the fact that there are an odd number of
cells in total.

So, the questions above are not really trivial. In
this letter we present a simple incremental algorithm for
generating space-filling curves based on random choices
at each step.

Let A = (aij), i = 0, 1, . . . , 2n − 1, j =
0, 1, . . . , 2m − 1 be a two-dimensional array with sides
of even lengths. We first partition the entire array
into 2 × 2 small arrays. We define a cell bij (0 ≤
i ≤ n − 1, 0 ≤ j ≤ m − 1) to consist of elements
a2i,2j , a2i+1,2j , a2i,2j+1, a2i+1,2j+1 (see Fig. 3 (a)).

Now, we can imagine a lattice graph whose vertices
are those bij ’s and two vertices are joined by an edge
if they are horizontally or vertically adjacent to each
other. In Fig. 3 (b) those vertices and edges are repre-
sented by black disks and solid bold lines, respectively.

Here we want to find a random spanning tree of the
lattice graph. For the purpose we choose any vertex on
the external boundary of the lattice graph as the root
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of the spanning tree. Then, we implement a depth-first
search on the lattice graph starting at the root. To
incorporate randomness, at each step during the search
we choose the next adjacent vertex randomly if two
or three unvisited vertices are adjacent to the current
vertex. Formally, the algorithm is described as follows:

Generating a Random Spanning Tree
G := a lattice graph associated with an input image;
V := its vertex set;
Choose a vertex u on the external boundary of G;
Let T be a tree which has one node u as a root;
Call a recursive procedure rdfs(u);
procedure rdfs(u){

Mark u;
C(u) := a set of unmarked vertices adjacent to u;
while(C(u) is not empty){

Remove a vertex v randomly out of C(u);
Add the edge (u, v) to T ;
Recursively call rdfs(v);

}
}

An example of a random spanning tree is shown in
Fig. 4 (a).

Now it is easy to see that the resulting tree serves
as a connected wall which defines a maze on the rect-
angular grid plane. Thus, if we follow the wall while
keeping one hand touching the wall, we can traverse
the entire image. See Fig. 4 (b) in which the traverse
associated with the spanning tree is depicted by dotted
lines.

The above definition of a random space-filling
curve on a rectangular lattice plane can be generalized
to an irregular-shaped plane. It may have holes. The
condition for a lattice region to satisfy is the following;
It is a collection of 2 × 2 small lattice regions. We say
that two such small regions are fully adjacent to each
other if they share their horizontal or vertical sides of
length two. Then, those small lattices must form a sin-
gle connected component.

Fig. 4 Maze which defines a random space-filling curve. (a)
Spanning tree. (b) Traverse along the tree.

3. Error Diffusion along RSFC

Once a random space-filling curve (or RSFC for short)
is fixed, we can implement error diffusion along the
curve. More concretely, we scan pixels in the order
defined by the curve. For each such pixel, we compare
its intensity level with some predetermined threshold
level to determine its binary level. Then, the round-
ing error is diffused to adjacent pixels which have not
been scanned yet. In the Floyd-Steinberg algorithm [5]
based on a raster scan the error is distributed to adja-
cent pixels based on the following matrix:

0/16 0/16 0/16
0/16 7/16
3/16 5/16 1/16

Since the rounding error is propagated to those
adjacent pixels whose output levels have not been de-
termined, we have 0 weights for those four pixels in the
upper and left parts. 1/16 is the normalizing factor of
the weights.

In our case based on a random space-filling curve
a set of pixels to which the error is propagated is not
fixed. So, each entry could have a non-zero value. We
have tested several weight matrices against standard
test patterns in the SIDBA library, and chose the fol-
lowing weight matrix based on experimental evaluation.

1 5 3
7 7
3 5 1

At each pixel p we first find those pixels adjacent
to p that have not been scanned yet, and then com-
pute the sum of the weights associated with those pix-
els to determine the normalizing factor at p. Note that
the algorithm behaves exactly in the same fashion if
space filling-curve is raster scan. According to our ex-
perience on experiments, the error propagating ratio
defined above is somewhat too large. So, in our pro-
gram we used 30% larger value of the total weights as
the normalizing factor. In other words we propagated
only about 76% of the rounding error generated at each
pixel to its adjacent pixels. This prohibits too long error
propagation since the influence decreases exponentially
in the distance.

Figures 5 and 6 show output images due to or-
dinary error diffusion method based on raster scan,
and error diffusion along a random space-filling curve
defined above. Regular patternings are recognized in
Fig. 5 especially in its upper parts while such patterns
are not included in Fig. 6. Moreover, details are some-
what more clearer in our result in Fig. 6. See for exam-
ple the boundary of the sleeve of the right hand.

4. Concluding Remarks

In this paper we have proposed a new algorithm for
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Fig. 5 Output image by ordinary error diffusion method.

Fig. 6 Output image by error diffusion along a random space-
filling curve.

digital halftoning based on a random space-filling curve
induced by a random spanning tree. Using space-filling
curves for halftoning is not new, but we experimentally
showed that randomness is important to use space-
filling curves as a guide for halftoning. Space filling
curves have been extensively investigated for various
applications in mind [2], [8], [10], [11]. To the author’s
best knowledge, this is the first efficient algorithm for
generating random space-filling curve.
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