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PAPER Special Section on Discrete Mathematics and Its Applications

On Detecting Digital Line Components in a Binary Image

Tetsuo ASANO†a), Koji OBOKATA†, and Takeshi TOKUYAMA††, Regular Members

SUMMARY This paper addresses the problem of detecting
digital line components in a given binary image consisting of n
black dots arranged over N × N integer grids. The most popu-
lar method in computer vision for this purpose is the one called
Hough Transform which transforms each black point to a sinu-
soidal curve to detect digital line components by voting on the
dual plane. We start with a definition of a line component to
be detected and present several different algorithms based on the
definition. The one extreme is the conventional algorithm based
on voting on the subdivided dual plane while the other is the one
based on topological walk on an arrangement of sinusoidal curves
defined by the Hough transform. Some intermediate algorithm
based on half-planar range counting is also presented. Finally, we
discuss how to incorporate several practical conditions associated
with minimum density and restricted maximality.
key words: algorithm, computer vision, computational geome-

try

1. Introduction

One of the most fundamental tasks in pattern recogni-
tion on images is to detect lines in binary images re-
sulting after edge detection. In fact, a great number
of works have been proposed for the purpose. Among
them, most popular is the one based on so-called Hough
Transform. It originated in the patent application by
Hough in 1962 [8]. His main idea was to parameter-
ize a set of all possible lines passing through each edge
point (a black pixel on a sharp edge) using two param-
eters and to detect digital line components by voting
on the dual plane. Although Hough used the duality
transform between points and lines, Duda and Hart [7]
later claimed advantage of using another transforma-
tion of points into sinusoidal curves defined by angles
and perpendicular distances to lines. Nowadays a group
of these methods are generally referred to as Hough
Transform [6], [9], [11], [13], [15].

There have been a number of approaches to im-
prove the practical performance of Hough Transform.
However, it does not seem that there is any essential
improvement, mainly because the quality of output is
usually evaluated based on human perception without
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giving explicit definition for the goal, digital line com-
ponents. Another difficulty comes from their basic al-
gorithmic technique, voting.

We start with a formal definition of a line com-
ponent to be detected and present several different al-
gorithms depending on how faithful to the definition.
The most faithful way is to transform each black point
to a pair of sinusoidal curves in the dual plane and ex-
amine all of the cells in the arrangement of such curves
using Topological Walk. Then, we can find all possi-
ble line components satisfying the formal conditions.
The other extreme is the conventional algorithm based
on voting on the subdivided dual plane since outputs
are optimized only on discrete values of angles and dis-
tances. Some intermediate algorithm based on half-
planar range counting is also described.

Finally, we discuss how to put additional con-
straints that are necessary in practical line detection
applications: First, we include density condition as a
constraint, i.e., each line segment must be dense ev-
erywhere. In practice, it is very important to output
only lines with dense segments; however, density of line
segments has not been characterized well in the litera-
ture. Second, although Hough Transform detects only
infinite lines, we sometimes want to output dense line
segments with endpoints or the union of dense line seg-
ment components (as a point set). Finally, to avoid
redundancy, we want to report only maximal compo-
nents or restricted maximal components (see Sect. 6.5
for the definition).

Our algorithm can output all restricted maximal
line components satisfying the threshold condition in
O(n2) time and O(n) working space. Note that the
computational complexities do not depend on the image
size N but only on the number n of edge points. We
can attain the density condition by increasing the time
complexity to O(n2 log n). Our basic tools are Hough
Transform (without voting) and topological walk on an
arrangement of pseudolines together with an efficient
dynamic data structure maintaining intervals.

There are some theoretical works [3], [4] based on
the linear duality transformation, in which the width
of a line component is defined by the L∞ metric. This
approach has a disadvantage that actual widths are
different for small and large slopes of lines. Com-
pared to that, our methods can consider the Euclidean
width (thickness), which is independent on the slope
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and much more natural in computer vision applications.
However, we have to pay for it by dealing with an ar-
rangement of pseudo parabolas (i.e. each pair of curves
intersect each other at most twice) instead of lines. To
overcome this difficulty, we take advantage of the fact
that output line components should be skinny; this is
contrasted to the works utilizing fatness [1] of objects
in computational geometry.

2. Digital Line Component

Let G be an N ×N integer grid in the Euclidean plane
R2, or G is defined to be a set of those N × N grid
points. We consider as our input a binary image result-
ing after edge detection which contains n black points
(pixels) among N×N points. Let P be the set of those
n black points. Thus, n ≤ N2.

Given a binary image, we want to detect all line
components. In this paper we define a line component
to be a set of black points. Due to integrality of coor-
dinates of pixels it rarely happens that many points lie
exactly on a line. Thus, we should define a line compo-
nent to have some width. More precisely, given a line
l in R2, we consider the tube tuber(l) = {x ∈ R2 :
dist(x, l) ≤ r} around l of width 2r; Here dist(x, l) is
the Euclidean distance from x to l. Then, a line com-
ponent is a set of black points (a subset of P ) that are
contained in the tube of some line l.

If the distance from the origin to the line l is
ρ, there is a unique angle θ such that the point
(ρ cos θ, ρ sin θ) is on the line; Moreover, l can be repre-
sented by an equation ρ = x cos θ + y sin θ. This equa-
tion can be regarded as a transformation from a point
(x, y) in the (x, y)-plane into a sinusoidal curve in the
(θ, ρ)-plane.

For technical simplicity, we only consider lines such
that 0 ≤ θ ≤ π/4 since remaining seven cases are
treated similarly or symmetrically. The slope of the
line is tan(θ−π/2), and hence less than −1. We some-
times further refine the angle interval [0, π/4] into at
most n angle buckets. We also assume that ρ > r, since
we can always translate G so that this condition holds.
Then, tuber(l) is the region in the (x, y)-plane bounded
by two lines

ρ−r = x cos θ+y sin θ (called far boundary) and
ρ+r = x cos θ+y sin θ (called near boundary).

Refer to Fig. 1 for pictorial illustration.
A subset Q of P is a (digital) line component of

thickness r if Q is a set of black points contained in the
tube of a line l, that is, Q = tuber(l) ∩ P for a line l.
It is often required to extract (digital) line components
satisfying some optimization conditions efficiently. As
far as the authors know, the thickness r is usually as-
sumed to be some constant, say 0.5 or 1. In this paper
r is not required to be a constant. Theoretically r can

Fig. 1 Definition of tuber(l) for a line l passing through a point
pi = (xi, yi) in the (x, y)-plane and that of ribbon R(pi) in the
(θ, ρ)-plane.

be O(n), but it is reasonable to assume r = O(
√
n)

for most practical applications since the side length of
an image containing n edge points is Ω(

√
n). This as-

sumption is in fact important to achieve computational
complexities of the algorithms described in the latter
half of the paper.

Important definitions and notations are summa-
rized below for readability.
1: G: N ×N integer grid or a set of those grid points.
2: P : a set of n black points.
3: tuber(l): the region bounded by two lines parallel
to a line l separated by distance 2r, or tuber(l) = {x ∈
R2 : dist(x, l) ≤ r}.
4: ρ = x cos θ + y sin θ: an equation of a line passing
through (x, y) such that its normal line forms an angle
θ with the positive x-axis and the distance from the
origin to the line is ρ.
5: a line component: a set of black points contained
in the tube of some line l.

3. Conventional Algorithms for Line Detection

A naive algorithm for detecting line components in a
binary image is to check O(n2) lines passing through
pairs of black points. This algorithm is not only slow
but also incomplete in the sense that some line com-
ponents may be missed since the center line of a tube
defining a line component is not always defined by a
line passing through two black points.

The first algorithm for line detection was invented
by Hough [8] with two algorithmic ideas. One is the
duality transform between points and lines and the
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other is voting technique on the dual plane. Later,
Duda and Hart [7] claimed advantage of using another
transformation of a point (xi, yi) into a sinusoidal curve
ρ = xi cos θ + yi sin θ, where θ is an angle of the nor-
mal vector to a line passing through the point and ρ
is the distance from the origin to the line. Nowadays
the latter transform is generally referred to as Hough
Transform.

In both cases an intersection of two lines or curves
in the dual plane corresponds to the line passing
through the two points. Due to this property our task
is to find busy intersections in the dual plane. Unfor-
tunately, due to integrality of coordinates many points
rarely lie on a line. In fact, a line we can recognize in
a binary image is a sequence of black points (on grids)
which lie sufficiently close to a line. This leads to an
idea to subdivide the dual plane into small cells (rect-
angular regions) to find those cells intersected by many
lines or curves. This subdivision corresponds to dis-
cretization of ρ and θ values.

Recall that our goal here was to detect line com-
ponents of thickness 2r. Obviously the height (length
in ρ) of each cell must be at most 2r. If the height is
at most 2r/k, points on a line of width 2r are scattered
over k different cells. Thus, if we don’t want to miss
any line component, we need the sum of counts in k
consecutive cells of the same θ value. This is an easy
task by linear scan.

4. Algorithm without Discretization of ρ

As described above, the conventional method is charac-
terized by discretization of both of ρ and θ. We could
devise an algorithm without discretization of ρ.

Let (0 = θ0, θ1, . . . , θM = π/4) be a sequence of
discretized θ values (see Fig. 2). For each θj we compute
ρ
(−)
i = xi cos θj + yi sin θj − r and ρ(+)i = xi cos θj +
yi sin θj + r to define an interval [ρ(−)i , ρ

(+)
i ]. Then, the

problem is to find intervals that are maximal and are
intersected by more than some predetermined number
of intervals. Each such interval must be of length at
most 2r. So, if we take the center point of such an

Fig. 2 Discretization of θ values.

interval, its dual gives us an equation of a corresponding
line.

Fixed a θ value, this is done in O(n logn) time
by sorting 2n values ρ(−)1 , ρ

(+)
1 , . . . , ρ

(−)
n , ρ

(+)
n computed.

If we assume that M , the number of different θ val-
ues is O(

√
n), then the overall time complexity is

O(n1.5 log n). Essentially the same algorithm was pro-
posed as “sorting verification” in [15].

The algorithm above could be improved by ran-
domization. First of all we choose nr black points ran-
domly out of n black points. Then, we implement the
same procedure as above with M = O(

√
nr). Note

that the counts obtained depend on random samples.
For safety we should check candidate intervals found in
this manner using original point data. Range counting
scheme serves as a basic tool for efficient check in this
direction. That is, for each candidate interval of length
2r, we check how many black points are contained in the
associated region bounded by two parallel lines defined
by endpoints of the interval. Such counting is done in
O(

√
n) time using linear space if we use hierarchical

cutting by Matoušek [12]. If we choose the size nr of
random samples to be n2/3 and the discretization size
of θ values to be O(

√
nr), then candidate enumeration

can be done in time O(n1.5r ) = O(n). So, if the num-
ber of candidate intervals is O(

√
n), then the overall

time complexity is O(n), except the construction time
of the range counting data structure, which is O(n1+δ)
for small δ.

The size of random samples has been chosen so
that the overall time complexity becomes almost linear.
However, the size O(n2/3) is quite reasonable from an
experimental view. It may be easily understood that
O(

√
n) random samples are not good enough since it

means only constant number of samples are taken in
each column or row. With O(n2/3) samples we can still
recognize lines.

The arguments above can be summarized as fol-
lows: There is an algorithm for detecting digital line
components in almost linear time based on random
sampling and range counting technique in computa-
tional geometry. Unfortunately this algorithm does
not guarantee the completeness of the algorithm in the
sense that every line component that meets the condi-
tion is not detected. This incompleteness may cause no
problem in practice for most of practical cases. In this
paper we are more interested in theoretical aspect of
the problem and so we insist on the completeness.

5. Algorithm without Any Discretization

Let P be a set of black points in a given binary im-
age. For a black point pi = (xi, yi) ∈ P , the set of
lines passing through pi is parameterized by ρ and θ
to satisfy that ρ = xi cos θ + yi sin θ. Hence, in the
(θ, ρ) plane, it becomes a sinusoidal curve fi. Those
sinusoidal curves f1, . . . , fn corresponding to n black
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points can be treated just as lines since each pair of
them intersect at most once in the range 0 ≤ θ ≤ π/4
(it follows from the fact that the line through two points
is uniquely determined). Such a curve is called a pseu-
doline. In fact, an arrangement of pseudolines can be
treated just in the same manner as that of lines, i.e.,
topological walk algorithm [2] can be applied to search
in an arrangement in the same computational complex-
ity as that for lines.

The discussion above implies that the framework
for an arrangement of lines applies to pseudoline ar-
rangement unless the width of a line component is taken
into consideration. Then, the next natural question
is whether it also applies to line components of some
width. To take the width into accounts, for each black
point pi ∈ P we consider a set of lines the distance
from pi to which is at most r. Fixed an angle θ of
lines there are two such extreme lines, the far side and
near side with respect to the origin, which are defined
as (far side:) f (0)i : ρ = xi cos θ + yi sin θ + r and (near
side:) f (1)i : ρ = xi cos θ + yi sin θ − r. These lines in
the (x, y)-plane are sinusoidal curves in the (θ, ρ)-plane.
These equations represent lines in (x, y)-plane and si-
nusoidal curves in the (θ, ρ)-plane. As stated before,
points and lines in the (x, y)-plane are mapped into
sinusoidal curves and points in the (θ, ρ)-plane, respec-
tively. Thus, a black point pi = (xi, yi) is contained in
the tube of a line l characterized by (θ, ρ) if and only if
the point (θ, ρ) in the (θ, ρ)-plane corresponding to the
line l lies between f (0)i and f (1)i . This observation leads
to the following lemma.

Lemma 5.1: Define for a point pi a ribbon region
R(pi) bounded by two sinusoidal curves f (0)i and f (1)i

as above. Then, a set B of black points forms a line
component, in other words, there is a line l such that
B ⊆ tuber(l) if and only if the intersection

⋂
pi∈B R(pi)

of the ribbon regions is not empty (contains l).

The lemma 5.1 suggests that a set of black points
forming a line component corresponds to a region
bounded by the sinusoidal curves defined above. That
is, if a region is included in a ribbon region R(pi) then
the corresponding set of black points includes the point
pi.

By the definition of upper and lower curves we have
the following lemma.

Lemma 5.2: A set of black points associated with a
cell is maximal if its upper boundary consists only of
upper curves and its lower one does of lower curves.

We can enumerate all possible line components
by an exhaustive search in the arrangement of those
curves. Since we have 2n curves and any pair of curves
can intersect each other at most constant times, the
complexity of the arrangement is Ω(n2). Our goal here
is to implement an exhaustive search on the arrange-

ment in Θ(n2) time and O(n) space. A basic idea is
Topological Walk algorithm [2] for searching in an ar-
rangement of lines (or pseudolines) in optimal time and
space.

The curves f (0)i s (i = 1, 2, .., n) are called upper
curves, while f (1)i s are called lower curves. Now we
have 2n sinusoidal curves in the (θ, ρ)-plane forming
an arrangement. Topological Walk starts from a cell c0
and finds a set of black points associated with c0, which
is denoted by S(c0). Then, it iteratively visits adjacent
cells until all the cells are exhausted. To move from a
cell c1 to c2 adjacent to c1 it crosses an edge. If it is a
part of an upper curve f (0)i , its corresponding point pi

is included into a set S(c2). On the other hand, if it is a
part of a lower curve f (1)i , its corresponding point pi is
removed from a set S(c1). That is, S(c2) is computed
as follows:

S(c2) =

{
S(c1) ∪ {pi}, if f (0)i is crossed
S(c1)− {pi}, if f (1)i is crossed

In this way, we can enumerate all the cells in the ar-
rangement. The lemma 5.2 allows us to determine
whether a set associated with a cell is maximal or not.
Whenever we encounter a maximal cell, we output its
corresponding set of black points as a line component
if its cardinality exceeds a threshold.

Thus, if those sinusoidal curves are pseudolines,
i.e., if they can be treated as if they are lines, we can
rely on Topological Walk algorithm. Unfortunately,
this arrangement is not a pseudoline arrangement in the
range 0 ≤ θ ≤ π/4. This is a major difficulty compared
to the L∞-width based line detection given in [3], [4]
in which we only need to consider a line arrangement.
More precisely, a pair of curves of the same type (upper
or lower) intersect at most once, but a pair of curves of
different types may intersect twice. Such an arrange-
ment is called an arrangement of pseudo parabolas [14].
Our algorithm is based on Topological Walk method [2],
which only works for a pseudoline arrangement. There-
fore, we want to cut the arrangement by O(n) vertical
lines into pseudoline arrangements. However, the best
known method needs O(n5/3) vertical lines to cut an
arrangement of n pseudo parabolas into pseudoline ar-
rangements [14] in general (a speudo parabola is a curve
having the same property as a parabola, that is, each
pair of them intersect at most twice.)

Fortunately, our arrangement comes from dual
curves of grid points, and also we can assume the width
r is not very large in the line detection application. In
the following, we show that we can cut the arrangement
into pseudoline arrangements by at most (2r+1)2 verti-
cal lines. Since we assumed r <

√
n (usually r is a small

constant), addition of these lines does not increase the
asymptotic complexity of the arrangement.

Consider when two curves intersect twice. As is
said above, double intersections occur only for different
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Fig. 3 Pictorial description for double intersections.

types of curves. Figure 3 shows the upper curve f (0)i

corresponds to the line tangent to the circular arc in
the first quadrant with respect to a point (xi, yi). The
lower curve f (1)j is similarly described. So, the intersec-
tions between them correspond to common tangents of
the two circular arcs defined in the figure. Their slopes
are less than −1 if the point (xj , yj) lies in the interior
of the square of side length 4r and in the exterior of the
circle of radius 2r both centered at (xi, yi) and more-
over below the line of slope 1 passing through the point
(xi, yi). Moreover, they are separated by a slope which
is perpendicular to the line passing through the two
points (xi, yi) and (xj , yj). Thus, the slope of the sepa-
ration line is defined by a pair of grid points (xi, yi) and
(xj , yj) satisfying the condition described above. This
leads to the fact that there are only (2r + 1)2 different
such slopes.

This is just a rough sketch. More formal discus-
sions follow. Suppose that f (0)i and f (1)j intersect twice
each other. Then, there exist two tubes such that their
far boundaries contain pi = (xi, yi) and near bound-
aries contain pj = (xj , yj).

Lemma 5.3: If |xi − xj | > 2r or |yi − yj | > 2r, then
f
(0)
i and f (1)j intersect at most once in the range 0 ≤
θ ≤ π/4.

Proof If we set t = tan(θ/2), the equations ρ =
xi cos θ+yi sin θ+r and ρ = xj cos θ+yj sin θ−r become
(1+ t2)(ρ− r) = xi(1− t2) + 2yit and (1+ t2)(ρ+ r) =
xj(1−t2)+2yjt, respectively, each of which has at most
two roots. If |xi − xj | > 2r, there exists a vertical tube

going through the interval between pi and pj . There-
fore, one of the above roots corresponds to a positive θ
and the other to a negative θ. Hence, we have at most
one intersection in the range 0 ≤ θ ≤ π/4. The case
|yi − yj | > 2r can be proved similarly. ✷

Lemma 5.4: Suppose that the angle between the ver-
tical line and line pipj is αij (we chose the one in
[0, π/2]). If αij > π/4, f

(0)
i and f (1)j intersect at most

once in the range 0 ≤ θ ≤ π/4. Otherwise, f (0)i and f (1)j

intersect at most once in each of ranges 0 ≤ θ < αij

and αij < θ ≤ π/4.
Proof Routine one, and hence omitted. ✷

Let {a1, . . . , aM} be the Farey series of rank 2r,
which is the increasing sequence of numbers repre-
sented by a/b such that 1 ≤ a ≤ b ≤ 2r. We
divide the angle interval [0, π/4] into buckets Bk =
(tan−1(ak−1), tan−1(ak)] (k = 1, 2, ..,M), where a0 =
0.

Lemma 5.5: Within each bucket Bk, f
(0)
i and f (1)j

intersect at most once.

Proof If |xi − xj | ≤ 2r and |yi − yj | ≤ 2r, then,
tanαij ∈ F2r if αij ≤ π/4. Hence, the lemma follows
from Lemma 5.4. ✷

Hence, we have the following theorem:

Theorem 5.6: If we partition the (θ, ρ) plane into
slabs by vertical lines θ = tan−1(ak), k = 1, 2, ..,M ,
the set of curves f (e)i (i = 1, 2, .., n, e = 0, 1) forms a
pseudoline arrangement within each slab.

Hence, we can partition the plane byM ≤ (2r+1)2/2 =
O(n) vertical lines, so that the arrangement is pseudo-
line arrangement within each slab. This corresponds to
the fact that there are at most (2r+1)2 tubes of width
2r circumscribing a given set of grid points. Recall that
we assumed r = O(

√
n).

6. What to be Detected

6.1 Optimization Conditions

We consider the following conditions for the digital line
component Q reported by algorithms:

• Cardinality: The cardinality of Q is greater than a
given threshold.
• Maximality: There exists no digital line component
Q′ satisfying Q′ ⊃ Q.
• Density: There exists a “dense segment” in Q.

In usual methods, only cardinality condition is dis-
cussed. Maximality is important to reduce the redun-
dancy of the output. If maximality is expensive to at-
tain, we need some weaker condition to avoid redundant
outputs; Indeed, we consider restricted maximality de-
fined later. The density condition is requested since we



ASANO et al.: LINE DETECTION ALGORITHM
1125

usually only need lines containing dense segments in
computer vision applications.

Since the slope of a line is less than −1 if θ ∈
[0, π/4], the density of a segment is fairly represented
by the density of its projection to the ordinate. For a
vertical interval I, let Q(I) be the subset of Q whose
projection falls in I. Let |I| be the width of I. There
are several candidate optimization criteria for dense in-
tervals:

1. Fixed-width dense interval: Interval I of width
w containing at least t elements of Q, where w and t
are given thresholds.
2. No-gap dense interval: Interval of width at least
w without a gap of width g, where a gap is a subinter-
val in which no point of Q is located.
3. Parametric dense interval: The interval I sat-
isfying |Q(I)| − τ |I| > µ for given parameters τ and
µ.

Here note that a direct way of evaluating density
of Q(I) by |Q(I)|/|I| is not linear. Since the density of
the segment also depends on the slope, we also need the
versions where parameters and thresholds are sensitive
to the slope of the line. Parametric dense interval is use-
ful since we can handle any non-linear concave objec-
tive function measuring density by using a parametric
optimization approach [10] if we can detect parametric
dense interval efficiently.

6.2 Line Segment Detection

We often want to report line segments rather than lines
themselves. The problem is called line segment detec-
tion. If we consider the fixed-width dense interval con-
dition, we want to report the maximal intervals (and
the associated segments) each of which is represented
as a union of fixed-width dense intervals. For the no-
gap dense condition, we want to report maximal no-
gap dense intervals. For the parametric dense interval,
we report the segment corresponding to the interval I
maximizing |Q(I)| − τ |I|.

6.3 L∞-Width Based Line Component

Instead of considering tubes of thickness 2r, we may
consider tubes of L∞ (i.e. vertical or horizontal) width
2r to represent a line. If the line l has the equation
y = ax + b and 0 ≤ a ≤ 1, the thickness of a tube
of L∞ width 2r around l is 2r/

√
1 + a2, and hence it

depends on the slope a. However, this gives a practical
approximation of lines to be detected. This formula-
tion was given in [3], [4], and solved by using geomet-
ric duality which maps a point (c, d) to the dual line
y = cx − d. In [3], [4], the cardinality condition and
maximality condition were discussed, and O(n2)-time
algorithm was given to report the set of all maximal
line components satisfying the cardinality condition if

we restrict the lines of slopes between 0 and 1. Lines of
other slopes are handled by applying reflection trans-
formation to the original data. Although we mainly
consider thickness-based line components in this paper,
we can similarly consider density conditions for this L∞
case, and can design algorithms with the same asymp-
totic time complexities.

6.4 Cardinality Condition

Now, we see how our optimality conditions for the
line component can be examined during the topological
walk. We execute topological walk within each of slabs
S1, . . . , SM associated with angle buckets B1, . . . , Bk.

For each cell C in the arrangement, letQ(C) be the
line component corresponding to C; in other words, the
set of tube regions containing C is {Ri : pi ∈ Q(C)}.
When we proceed the walk from an edge e to the next
edge e′, the cells C(e) and C(e′) above e and e′, re-
spectively, may be different. If so, there is a curve f (σ)i

through the endpoint shared by e and e′ which sepa-
rates these cells. If C(e) is above f (σ)i , then Q(C(e′)) =
Q(C(e))∪{pi} for σ = 0 and Q(C(e)) = Q(C(e′))∪{pi}
otherwise. The case in which C(e) lies below the curve
is symmetric. Therefore, it is very easy to keep the
count of |Q(C(e))| for the edge e visited, and hence the
cardinality condition can be checked in O(1) time at
each cell visited.

6.5 Maximality Condition with Angle Restriction

Let Lk be the set of lines whose slope is in the angle
bucket Bk (k = 1, 2, ..,M). We say a line component
Q is maximal in Lk if it is represented by some line
l ∈ Lk, and there exists no line component Q′ ⊃ Q
represented by a line in Lk. If a line component is
maximal in Lk for some k in {1, 2, ..,M}, we say it is
restricted maximal. We design our algorithm to report
only restricted-maximal line components.

We consider the arrangement restricted to the slab
dual to the angle bucket Bk. If we cut the boundary
of a cell at its rightmost and leftmost vertices, we have
two chains of edges, one above the cell called the up-
per chain and the other called the lower chain. A cell
C(e) corresponds to a maximal line component in Lk

if and only if all edges in its upper chain are segments
of upper curves and all edges in its lower chain are seg-
ments of lower curves. This is because C(e) is exactly
the intersection of the upper half planes of the pseudo-
lines in the lower chain and the lower half planes of the
pseudolines in the upper chain (this does not hold for
pseudo parabolas).

In the arrangement, each edge e is adjacent to ex-
actly two cells C(e) and D(e), above and below e, re-
spectively. Also, each vertex is the leftmost vertex of
a unique cell. As we have shown, we know the whole
information concerning C(e) when we walk on e to the



1126
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

right (in its second visit), but we do not know complete
information concerning the cell D(e). However, if e is a
leaf edge of the upper horizon tree, we know the infor-
mation concerning the part of the upper chain of D(e)
to the left of e.

Our method is to keep two check-bits, namely U-
bit and L-bit, at each leaf edge in the upper horizon
tree. For each leaf edge e, U -bit (resp. L-bit) of e
is “on” if all edges to the left of e in the lower (resp.
upper) chain of C(e) (resp. D(e)) are segments of lower
(resp. upper) curves; otherwise, it is “off.” If we come
to the branch of leaf edges and execute an elementary
step, we report the cell to the left of the branching
vertex as a maximal cell if and only if both the L-bit of
the upper leaf edge of the branch and the U -bit of the
lower leaf edge are “on.” At each elementary step, the
L-bit and U -bit of the newly created pair of leaf edges
can be obtained in O(1) time from the erased pair of
leaf edges. Therefore, the maximality condition can be
checked in O(1) amortized time.

Theorem 6.1: All line components satisfying both
cardinality and restricted maximality conditions can be
computed in O(n2) time and O(n) space

The restricted maximal condition is definitely weaker
than maximality; indeed the size of output might be
much larger than the number of all maximal line com-
ponents satisfying the cardinality condition. This is dif-
ferent from the L∞-width based line detection [3], [4],
for which we can only report maximal line components
among lines of slope angles between 0 and π/4. If a
non-maximal component Q is reported in the algorithm
represented by a line in Lk, Q must be contained in the
intersection tuber(l) ∩ tuber(l′) for l ∈ Lj and l′ ∈ Lk

for some j �= k. If |j − k| �= 1, tuber(l) ∩ tuber(l′) is
a diamond which can contain at most 4r4 grid points.
With the threshold t > 4r4, Q is dominated by only
maximal line components in Lk+1 or Lk−1.

6.6 Density Conditions

6.6.1 Fixed-Width Dense Interval

For a line component Q, a vertical interval I is called
effective if every subinterval of width w of I has at
least t elements, where w and t are given thresholds.
We would like to find every possible line component Q
with at least one effective interval, and for such a com-
ponent, we want to report all maximal effective inter-
vals (this second requirement is discussed in Sect. 6.7).
If Q is given, we can easily compute all of its maximal
effective intervals in linear time. However, since Topo-
logical Walk algorithm walks in the arrangement while
updating the information of a line component Q(C(e))
for the current edge e, we want an efficient dynamic
data structure.

We have the point setQ(C(e)). For each point pi =

(xi, yi), we associate a vertical interval Ii = [yi, yi+w).
The following is an easy observation:

Lemma 6.2: A vertical interval (s−w, s] of width w
(w ≤ s ≤ N) is effective for a line component Q if and
only if there are at least t intervals Ii associated with
pi ∈ Q containing s.

From the above lemma, we can use the well-known in-
terval tree data structure. We construct a binary static
interval tree T on [1, N ]. An interval J(v) is associ-
ated for each node v of T , and J(v) = J(l(v))∪J(r(v))
(disjoint union) holds, where l(v) and r(v) are left and
right sons of v, respectively, and J(root) = [1, N ].
We consider the segment tree storing the set of seg-
ments {Ii : pi ∈ Q}. Each segment is decomposed
into at most logN canonical intervals and stored in
the tree. For each v, we count the number m(v,Q) of
Ii (pi ∈ Q) which has the canonical interval J(v) as
its piece. Also, we define M(v,Q) = maxu�vm(u,Q),
where u � v means that u is a descendant of v in T .
The value of M can be computed by using the formula
M(v,Q) = max{M(l(v), Q),M(r(v), Q)} + m(v,Q).
Our data structure is the tree T such that each node v
stores both m(v,Q) and M(v,Q).

Lemma 6.3: The line componentQ has a fixed-width
dense interval if and only ifM(root,Q) ≥ t for the given
threshold.

The tree data structure takes O(N) space, and it is
easy to see that we can maintain it in O(logN) time if
a point is inserted or deleted from Q. It may happen
that N > n. However, in such a case, we can remove
empty columns from the grid to compress the tree size
to O(n).

6.6.2 No-Gap Dense Interval

To maintain the gap condition, we maintain the ordered
list L of the x-coordinate values of Q. Moreover, if dif-
ference of two adjacent entries of L is less than g, we
give a bidirectional pointer between them. These point-
ers divide L into groups, each of which corresponds to
an interval without a gap. We also maintain this group-
ing, and also the list of length of groups. If there exists
a group of length at least w, the line component Q has a
no-gap dense interval. Maintenance of this data struc-
ture is a Union-Find-Split problem, and hence can be
done in O(log logN) time using O(N) space. If n ≤ N ,
we can do it in O(logn) time using O(n) space.

6.6.3 Parametric Dense Interval

We fix the parameter τ . For a line component Q, let us
compute the interval I maximizing Φ(I) = |Q(I)|−τ |I|
for the parameter τ . We again use the interval tree
T . For the canonical interval J(v) at the node v, we
store the following three subintervals, together with
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the associated values of the function Φ; (1) J(v,Q, all)
maximizing |Q(I)| − τ |I|, (2) J(v,Q, right) maximiz-
ing |Q(I)| − τ |I| under the condition that I contains
the right end of J(v), and (3) J(v,Q, left) maximizing
|Q(I)|−τ |I| under the condition that I contains the left
end of J(v). If we know these three intervals for two
sons l(v) and r(v) of v, we can compute these for v in
constant time. The line component Q has a paramet-
ric dense interval if and only if Φ(J(root,Q, all)) > µ.
We can compress the data size to n if N > n, and it
is easy to maintain the data structure in O(logn) time
per update of Q.

Hence, we have the following theorem:

Theorem 6.4: All line components satisfying all of
cardinality, maximality, and density conditions can be
computed in O(n2 logn) time and O(n) space for each
of density criteria. For the no-gap density criterion,
time complexity can be decreased to O(n2 log logN)
using O(n+N) space.

Our density criteria depends on the width of the ver-
tical projection of the segment. The real density also
depends on the slope of the line; Of course, steeper line
is denser with the same density interval condition, since
we project it to the ordinate. We could assign a differ-
ent threshold and parameter value for each bucket of
angles to reduce the effect of slope. Moreover, within
a bucket, Topological Walk algorithm reports the line
component when it visits the rightmost vertex of its as-
sociated cell. We can run right-to-left topological walk
instead of usual left-to-right one to report the line com-
ponent at the leftmost vertex of the cell. In the pri-
mal plane, the leftmost vertex corresponds to the line
of smallest θ, i.e. the line steepest among those rep-
resenting the line component (recall that the slope is
tan(θ − π/2)). Hence, we can compute the slope of
the line corresponding to the vertex, and tune the pa-
rameters suitably. For the fixed-width density interval
criterion, the parameter w must remain unchanged dur-
ing topological sweep; however, the threshold t can be
tuned to, say, t/ cos θ. For the no-gap and parametric
conditions, we can tune w and µ during Topological
Walk, respectively.

6.7 Line Segment Detection

Let us consider the problem of detecting line segments
with endpoints instead of infinite lines. We can apply
the above algorithm and compute all maximal dense in-
tervals in each line. However, it is not assured that we
report O(n2) segments; Accordingly, the time complex-
ity might increase. Indeed, the same segment compo-
nent may be reported several times. We want to avoid
such redundancy as far as possible.

For each maximal line segment component S, we
consider the steepest tube containing S. This must cor-
respond to the leftmost vertex of a cell in the arrange-

ment (or the left vertical boundary of the slab), and we
know the information of the cell when we visit the ver-
tex in the right-to-left topological walk. Therefore, for
each cell C, we only consider the segment component
containing the points, say pi and pj , corresponding to
curves intersecting at its leftmost vertex. If we consider
the fixed-width dense interval condition, we report the
maximal interval J such that any point in J is con-
tained in at least one fixed-width dense interval under
the condition yi, yj ∈ J . Such an interval is unique,
and is computed in O(logn) time by using the interval
tree data structure. For the no-gap dense condition, we
want to report a maximal no-gap dense interval con-
taining both yi and yj , and can be done in O(logn)
time. For the parametric dense interval, we just start
with the leaf nodes containing yi and yj , respectively,
and climb up the tree to compute the optimal interval
containing them in O(logn) time easily. Therefore, we
have the following:

Theorem 6.5: We can compute a set of dense line
segment components containing all maximal dense line
segment components in O(n2 logn) time and O(n)
space for each density criterion.

Unfortunately, there may be a non-maximal line seg-
ment component (in the restricted sense) in the output
set, since a maximal line segment in a line component
may not be maximal as a point set.

Finally, let us consider the problem of reporting
the union of all the dense line segment components as
a point set. Although we report at most O(n2) line
segments in the previous algorithm, each line segment
component may have many points and hence a naive
method may need O(n3) time to compute the union.

Theorem 6.6: The union of all dense line compo-
nents can be computed in O(n2 logn) time and O(n)
space.

Proof We use a simple trick that works for each of
our density criteria. We color the points in P in red and
white in our algorithm. Initially, all points are white,
and when Topological Walk finds a dense line segment
component, we change all white points in the compo-
nent into red, and update the coloring. If there are k
white points in the line component, we can update the
coloring using additional O(k logn) time if we store the
current points in a segment tree. Since the total num-
ber of points is n, the total computation time remains
O(n2 logn). ✷

7. Some Difficulties in Implementation

We have implemented a preliminary version of the al-
gorithms presented in this paper: although we have
described an algorithm for detecting line components
based on traversal on subdivided arrangements of si-
nusoidal curves, our program uses lines instead of si-
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nusoidal curves. So, each black point is transformed
into a tube of width 2r (vertical width since we are
looking for lines of slopes between −1 and 1), which is
a region bounded by two parallel lines corresponding
to the upper and lower curves defined in this paper.
The implementation is not easy due to possible numer-
ical errors and degeneracies. Especially, degeneracy is
a serious problem for this application: recall that each
black point is transformed into a tube bounded by two
lines based on duality transform. Since coordinates of
such a point are integers, we may have very high de-
generacies, that is, O(N) lines may meet at one point.
This problem can be resolved by using exact compu-
tation based on rational numbers. Another difficulty
occurs when an upper line of a tube happens to coin-
cide with a lower line of another tube for a different
point. It happens when r = 1

2 . To avoid this type of
degeneracy, we use an irreducible fraction for r with its
denominator greater than 2, say r = 4/7.

We are now trying to extend our program to deal
with some of the conditions described in the paper and
also to traverse on the subdivided arrangements of si-
nusoidal curves in a robust way.

Generally speaking it is not so easy to implement
Topological Walk for a set of curves defined by sine and
cosine functions. Fortunately, in our case it is rather
easy. For exact implementation we must exactly iden-
tify and resolve degeneracy that more than two curves
meet at one point and exactly check whether an inter-
section lies above, on, or below a curve. We shall show
all these can be done.

Let ρ = xi cos θ + yi sin θ + ci and ρ = xj cos θ +
yj sin θ+cj be two arbitrary curves, where ci and cj are
r or −r. Setting t = tan(θ/2), their intersection must
satisfy the following equation:

1− t2
1 + t2

xi +
2t

1 + t2
yi + ci =

1− t2
1 + t2

xj +
2t

1 + t2
yj + cj .

Since 1 + t2 �= 0, we have a quadratic equation in t.
(1− t2)xi + 2tyi + ci(1− t2)
= (1− t2)xj + 2tyj + cj(1− t2).

Thus, a solution to the equation must be of the form:
tij = aij + bij

√
cij ,

where aij and bij are rational numbers and cij an inte-
ger. This type of numbers can be handled exactly, say
by using LEDA. It is also obvious that we can judge
vertical relationship between such an intersection of two
curves and another curve.

8. Conclusions

Hough Transform is a well-established scheme for line
detection and in fact, it is commonly used in practice.
However, several questions about tradeoff between its
computational cost and performance of line detection
has been left unanswered. In this paper we began with a
mathematical formulation of the problem and presented

a totally different scheme based on decomposition of
arrangement of parabolas into that of pseudolines com-
bined with Topological Walk over it. We have shown
that our new scheme could resolve several important
open problems left by Hough Transform. The original
Hough Transform detects lines by counting the num-
ber of points near parameterized lines. Thus, it seemed
impossible to take the density and no-gap conditions
into considerations without any increase of computa-
tional costs. Our new scheme can do it with O(logn)-
time overhead. Thus, its running time is either O(n2)
or O(n2 log n) depending on which constraints are re-
quired. Note that it depends only on the number n of
edge points, not on the image size (N ×N). We imple-
mented an algorithm for finding digital lines based on
Topological Walk not on an arrangement of sinusoidal
curves but on that of lines.
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