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Abstract

In all areas of biological and medical research, the role of the computer has been

dramatically enhanced in the last five- to ten-year period. While the first wave of compu-

tational analysis did focus on sequence analysis, where many highly important unsolved

problems still remain. Outstandingly, protein-protein interaction research looks into the

association of proteins to discover the rules controlling their interactions, which are key

parts of cell mechanism. Because many major biological processes are controlled by pro-

tein interaction networks, the comprehensive description of protein- protein interactions

(PPI) is necessary to understand the genetic program of life. The research also aims at

predicting a novel protein function given the relation with a well-characterized one.

In addition to the central problem of PPI prediction, two relevant problems have

been raising and developing rapidly, i.e., signal transduction networks (STN) and disease-

causing genes from PPI networks. STN play an important role in the control of most

fundamental cellular processes, including cell proliferation, metabolism, differentiation,

and survival. It is known that STN most likely dependent on PPI. Also, discovering human

disease-causing genes (disease genes in short) is one of the most challenging problems in

bioinformatics and biomedicine, because most of diseases are related in some way to our

genes. There are several evidences of the relationship between PPI and disease genes.

Keeping with the most attractive problems, our study targets three significant problems:

(1) protein-protein interaction prediction, (2) signal transduction construction, and (3)

disease-causing gene prediction.

In fact, three problems have long histories of their own in biology and medicine. How-

ever, the traditional wet-lab methods often required many efforts. Since the work itself

much involves quantitative tasks, computer science came to the scene bringing about an-

other approach, the computational one, to the standing issues. Thanks to life scientists,

the amount of biological and medical data is growing exponentially. As a result, compu-

tational methods become more and more essential to mine the huge amount of data and

discovery useful knowledge for life science.

In such context, our strategy is twofold. The first one is to take the full advantage of

the biological nature of PPI, STN and disease-causing genes underlying a titanic amount

of data. The second one is to develop appropriate and robust computational methods to

integrate those complex biological and medical data, and then solve three targeted prob-

lems. These proposed methods fill the gaps of existing methods and achieve considerable

contributions as follows.

ii



1. Protein-protein interaction prediction: We developed a novel integrative domain-

based method to predict protein-protein interactions.

The previous works either used multiple data sources instead of a single source

as in integrative methods or only protein domain features as in the domain-based

methods. The key idea of our computational method is to integrate protein domain

features and genomic and proteomic features from multiple data sources into PPI

prediction using Inductive Logic Programming (ILP). Comparing with other meth-

ods, our method outperforms in terms of several evaluation measures. Moreover,

represented in forms of ILP rules, the predictions were easy to interpret and useful

for biologists.

2. Signal transduction network construction: We developed an effective computational

method to construct human signal transduction networks from protein-protein inter-

action networks.

Our method is better than the previous ones by exploiting three biological facts

of STN applied to human, i.e., rich-information of protein-protein interaction net-

works, signaling features, and sharing components among STN. We firstly consid-

ered many levels of the signaling machinery in terms of signaling features. Secondly,

soft-clustering effectively detected the sharing components among STN. The early

work was done for yeast, and later we shifted to human STN, a currently significant

challenge. To the best of our knowledge, this study is the first one that has taken

effort to construct human STN computationally. Both the evaluations of STN con-

struction for yeast and human were promising with high performance and gain some

considerable findings.

3. Disease-causing gene prediction: We developed a new method for discovering disease

genes with the exploitation of semi-supervised learning, protein-protein interactions

and multifarious disease-related features.

Differed from existing work, our method based on semi-supervised learning (i) solved

imbalance between known disease genes and unknown disease genes, (ii) integrated

multifarious data related to disease genes, and (iii) exploited both useful informa-

tion of labeled and unlabeled data. The contributions of this work were not only the

new and effective method for disease gene prediction but also new significant find-

ings. The comparative results demonstrated that our method obtained the higher

sensitivity, specificity, precision, accuracy, and balanced F-score. Testing with all

interacting partners of disease proteins, we found 568 putative disease genes.

In conclusion, our effort in analyzing the protein interaction network data is to mine

the coherent information, forecast unobserved interactions, and then detect relevant bi-

ological functions and processes, i.e., signal transduction networks and disease-causing
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genes. The thesis focused on benefiting multiple data sources to effectively solve three

biologically significant problems related to PPI in both theoretical and empirical aspects.

The theoretical aspect of this thesis concerns about the design of new and effective meth-

ods for protein-protein interaction prediction, signal transduction network construction

and disease-causing gene prediction. The other aspect is the application of these methods

to produce lot of biological findings that can be useful sources for life scientists.

We further expect to combine three current works in our research to build up a com-

plete decision support system for disease diagnostics and drug design.

Key words: Bioinformatics, Protein-Protein Interaction Networks, Protein Domain-

Domain Interactions, Signal Transduction Networks, Disease-Causing Genes, Inductive

Logic Programming, Soft Clustering, Semi-supervised Learning.
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Chapter 1

Introduction

In this chapter, we briefly introduce the research on protein-protein interactions, the

problem statement and the research context, and the contributions of the thesis. We

first introduce the research on protein-protein interaction networks. Secondly, we state

the research problems that the thesis targets to solve in the context of other work. The

main contributions of the thesis are later described corresponding to each stated problem.

Finally, we outline the structure of the thesis.

1.1 Research on Protein-Protein Interaction Networks

Bioinformatics has been emerging as one of the most prominent fields in the 2000s for

its huge contribution to improve human life. Bioinformatics involves the use of tech-

niques including applied mathematics, informatics, statistics, computer science, artificial

intelligence, chemistry and biochemistry to solve biological problems usually on the molec-

ular level. Major research efforts in the field include sequence alignment, gene finding,

genome assembly, protein structure alignment, protein structure prediction, prediction of

gene expression and protein-protein interactions, and the modeling of evolution. Among

them, protein-protein interaction networks are taken much interest of many ongoing re-

search projects. Biologically, in performing their functions, proteins rarely function in

isolation. Interactions among proteins are intrinsic to almost all cellular functions and

biological processes. Because of the importance of PPI, in addition to traditional ex-

perimental methods, there is a great need to develop computational methods to study

protein-protein interactions and discover their biologically relevant effects in cells.

In the PPI research, there are three major subareas. The first one is to predict

protein-protein interactions. The second one is study the characteristics of protein-protein

interactions. The last one is to detect biological phenomena related to protein-protein
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interactions.

The first subarea is to predict whether two arbitrary proteins interact or not. This sub-

area has attracted a lot of works and achieved many notable results. These works mainly

fall into two categories: the homology (or similarity) methods and the non-homology

methods. The homology methods generally assume that proteins with similar sequences

or structures perform similar functions [Bock and Gough, 2001, Matthews et al., 2001].

However, proteins with similar sequences or structures could perform either similar func-

tions (e.g., in the case of ortholog proteins) or different functions (e.g., in the case of

paralog proteins), while two proteins with low sequence similarity could play similar roles

(e.g. in the case of remote homology). The non-homology methods utilize properties of

proteins other than sequence or structure similarity, such as gene neighborhood, domain

composition and gene expression [Pellegrini et al., 1999]. As the data is more and more

available and the computational techniques are much more improved as well, the research

on PPI prediction is non-stop and requires more high-quality results [Ng and Tan, 2003].

The second subarea is to study insights of PPI characteristics. Besides the features

of each interacting partner, PPIs have dynamic and complex characteristics of their own

that differentiate one from another and later determine the functionality of PPI in cells.

These characteristics are biological, physical , chemical, and also the combinations like

physiological or chemico-physical characteristics, etc. Among numerous PPI characteris-

tics, the recent work is mainly focusing on stability and transience, sites and interfaces

of PPI. Starting from various points of view, the related work did not share a common

approach, they were mostly based on a specific type of data and the popular meth-

ods have been the statistical methods [Mintseris and Weng, 2005, Ofran and Rost, 2007,

Reichmann et al., 2005, Yan et al., 2004]. As the support data is limited, and much bi-

ologically concrete knowledge and wet-lab experiments are required, the second subarea

still remains very challenging.

The third subarea is to discover the phenomena that are biologically close with PPI and

affected to each other. For a long time, research groups working on detecting protein func-

tion detection from PPI have been very strong and have opened an important trend in pro-

tein function research [Marcotte et al., 1999, Chen and Yuan, 2006, Baudot et al., 2006].

In addition, lots of works have taken much effort to propose alternative ways in finding out

other biological phenomena by investigating PPI networks. More specifically, many works

have been interested in studying signal transduction networks (STN) and disease-causing

genes (disease genes). In the signal transduction network study, it is known that STN most

likely dependent on PPI. The strong association between PPI and signal transduction en-

courages the researchers to develop computational methods for constructing and modeling

STN from PPI networks [Allen et al., 2006, Liu and Zhao, 2004, Steffen et al., 2002]. In

the disease-causing genes study, the topology of PPI networks is widely confirmed to be
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related to disease-causing genes. And several biological evidence have shown the effect

of disruption of PPI in causing diseases. There is no doubt that disease genes can be

discovered through PPI networks. Because of the significance of this problem, in some

recent years, this topic has been raised as one of the hottest topics in the PPI research

[Benjamin Schuster Bockler and Alex Bateman , 2008],

[Ideker and Sharan, 2008].

In just the past two to three years, large human protein-protein interaction networks

have been increasing rapidly. This availability inspires many current studies to shift

from attempting to understand networks encoded by model species to understanding the

biomedical secrets that underlie human networks. The future of the the PPI research is

going on brightly and splendidly.

1.2 Problem Statement and Research Context

We are highly motivated by the central roles of protein-protein interactions network study

in bioinformatics. After investigating and analyzing the current research on PPI networks,

our study targets to the first and the third subarea. Concretely, the thesis pursues three

predominant problems: (1) protein-protein interaction prediction, (2) signal transduction

network construction, and (3) disease-causing gene prediction.

The first problem investigated here is the integrative approach to predict protein-protein

interactions. The motivation is the reliability and the comprehensive interpretation of PPI

predictions.

At the early time, most of works tried to employ one protein feature to predict PPI.

With the recent blooming of public proteomic and genomic databases, numerous com-

putational approaches offer a chance to study protein-protein interactions more widely

and deeply. Depending on the source of information used, computational approaches can

be categorized into three groups: structure-based, sequence-based, and genome-based, as

shown in [Bock and Gough, 2001, Matthews et al., 2001, Pellegrini et al., 1999] respec-

tively. Besides the methods based on a single data source, many bioinformaticians at-

tempted to use multiple data sources, the integrative approach, to better predict PPI.

Jansen et al. used a Bayesian network approach to integrate weakly predictive genomic

features into the predictions of protein-protein interactions [Jansen et al., 2003]. Several

kernels for different data sources like protein sequences, Gene Ontology annotations, local

properties of networks, etc. were combined [Ben-Hur and Noble, 2005]. Some other works

were on probabilistic decision tree approach, [Zhang et al., 2004] inductive logic program-

ming method [Tran et al., 2005], probabilistic model [Rhodes et al., 2005], and etc. From

multiple data sources, it is possible to extract and combine various genomic and proteomic
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features related to PPI. The obtained results showed the potential of multiple data source

integration.

Protein domains, structural and/or functional units of proteins, are conserved through

the evolution to represent protein structures or functions. They are the key regulators in

protein-protein interactions. Interactions among domains act as stable channels of PPI.

Recently, the domain-based approach to the prediction of PPI has received much attention

in many ongoing studies. One of the pioneer works based on protein domains was asso-

ciation method [Sprinzak and Margalit, 2001]. Kim et al. improved this method by con-

sidering the number of domains in each protein [Kim et al., 2002]. Han et al. proposed a

domain combination-based method by considering the possibility of domain combinations

appearing in both interacting and non-interacting sets of protein pairs [Han et al., 2003].

A graph-oriented method, called the interacting domain profile pairs, was proposed by

Wojcik and Schachter [Wojcik and Schachter, 2001]. Chen et al. used domain-based

random forest framework [Chen and Liu, 2005]. Last but not least, Martin et al. used

signatures generated from sequences [Martin et al., 2005].

The shortcoming of integrative methods is that they did not take protein domains

into account while there are evidences that the biological mechanisms underlying protein-

protein interactions are protein domains and their interactions [Pawson et al., 2002]. Fur-

thermore, while domain-based methods all treasured the biological roles of protein do-

mains in PPI prediction, most of them merely considered the co-occurrence of domains-

domain pairs. To predict PPI comprehensively, it is reasonable to employ genomic and

proteomic features in domain-based methods. Additionally, PPI predictions are much

more useful if their interpretations are easy-understanding.

The second problem is to construct signal transduction networks from PPI networks.

The motivation is how to take the best of combining biologically significant nature of

signal transduction in terms of signaling features of components and sharing components

among networks.

Constructing STN based on PPI is an area of much ongoing research. Using Markov

chain Monte Carlo method, Gomez et al. modeled STN in terms of domains in up-

stream and downstream protein interactions [Gomez et al., 2001]. Steffen et al. devel-

oped a computational method for generating static utilized PPI maps produced from

large-scale two-hybrid screens and expression profiles from DNA micro-arrays in STN

construction [Steffen et al., 2002]. Liu et al. applied a score function that integrated PPI

data and micro-array gene expression data to predict the order of signaling pathway com-

ponents [Liu and Zhao, 2004]. Concerning protein modification time-course data, Allen

et al. applied a method of computational algebra to modeling of signaling networks

[Allen et al., 2006]. Fukuda et al. represented the model of signal transduction path-
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ways based on a compound graph structure [Fukuda and Takagi, 2001]. A recent work

has searched for the optimal subnetworks from PPI according to some cost functions

[Zhao et al., 2008].

Although the previous work achieved many results, there are still some biological char-

acteristics of STN that the previous works did not take much into account. First, it is

known that the deeper level underlying the PPI to transmit signals in cells are func-

tional domains, so-called signaling domains, and their interactions [Pawson et al., 2002],

[Eungdamrong and Iyenga, 2004]. Data of those significant signaling features are struc-

tured, complexly relational, and sparse in different data sources. In order to construct

STN effectively, those data is needed to be appropriately integrated. Second, STN indeed

have many overlapping components including proteins and their interactions

[Neves and Iyengar, 2005]. As a result, the method that can join these characteristics of

STN is promising to achieve good results in STN construction.

Finally yet importantly, the third problem is to predict disease-causing genes using

PPI networks. The motivation is to benefit information-rich PPI networks, the useful

data from various databases and lastly the effectiveness of machine learning techniques.

Research on protein-protein interaction networks and diseases has been rapidly in-

creasing in the last two or three years. Many PPI-based methods have been proposed,

each with a different way of exploiting the key assumption that “the network-neighbor

of a disease gene is likely to cause the same or a similar disease”, see [Goh et al., 2007],

[Ideker and Sharan, 2008], and [Benjamin Schuster Bockler and Alex Bateman , 2008]. In

an early work, disease genes were uncovered by topological features in human PPI net-

works using the k -nearest neighbor algorithm [Xu and Li, 2006]. Because of the sparse-

ness of other proteomic/genomic data associated with certain diseases, several PPI-based

methods have been required the integration of heterogeneous biomedical data in order

to understand the complex interplay between genes/proteins and diseases [Kann, 2007].

A disease gene classification system has been proposed, to integrate the topological fea-

tures of protein interaction networks with sequence and other features, and to analyze

these features using support vector machines [Smalter et al., 2007]. Lage et al. (2007)

used the phenomic ranking of protein complexes linked to human diseases to develop

a Bayesian model for predicting new candidates for disorders. Borgwardt and Kriegel

(2007) integrated graph kernels for gene expression and human PPI to predict disease

genes. In another direction, some work has concentrated on using PPIs to discover dis-

ease genes for specific diseases, i.e., Alzheimer’s disease, using heuristic score functions

[Chen et al., 2006], [Krauthammer et al., 2004].

It can be seen that so far the ratio of known human disease genes to the total number

of human genes is small. All previous work employed supervised learning schemes, which
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exploited data regarding known disease genes to predict new disease gene candidates.

The disease predictions are potentially better if we can benefit the hidden information

of many unlabeled data. In addition, it is worth noting that information of proteins is

not contained in a single database but resides in different databases. The integration of

human protein-protein interactions with various biological data extracted from multiple

proteomic/genomic databases can improve the performance of the disease-gene prediction.

For all above, the goal of this study is to fill the gaps of previous methods to better solve

three mentioned problems in the PPI research. Our strategy is twofold. Firstly, various

biologically significant data sources are investigated and then we take full advantage

of these informative data that show the nature of phenomena. Secondly, we develop

appropriate and robust computational methods for mining those complex biological and

medical data.

1.3 Main Contributions

The thesis aims at studying protein-protein interactions and related problems in biomedicine.

The ultimate goal is that we can effectively and computationally mine enormous biologi-

cally significant data to discover useful knowledge supporting to life scientists. The main

contributions of this thesis are summarized as follows.

The first contribution is that we have proposed a novel integrative domain-

based method to predict protein-protein interactions.

The key idea of this computational method is to integrate protein domain features and

multiple genomic/proteomic features into PPI prediction using inductive logic program-

ming.

While the integrative methods use multiple data sources instead of a single source, the

domain-based methods often use only protein domain features. Integration of both protein

domain features and genomic/proteomic features from multiple data sources can more ef-

fectively predict PPI. Moreover, it allows discovering the reciprocal relationships between

PPI and biological features of their interacting partners. To integrate efficiently such two

kinds of features, we specified two main tasks. The first is to extract as many as possi-

ble useful domain and genomic/proteomic features related to PPI. From seven popular

databases, we extracted more than 278,000 ground facts of domain fusion, domain-domain

interaction features and various biologically significant genomic/proteomic features. The

second is to employ inductive logic programming (ILP) on the huge amount of background

knowledge to infer PPI effectively.
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To demonstrate the advantages of the above-mentioned integration, we conducted

multiple 10-fold cross validations to compare our method with two other methods based

on single domain features, as well as with the non domain-based approach using multiple

genomic databases. The performance measures include Receiver Operating Characteristic

(ROC) curves, sensitivity and specificity. In all tests, our method performed considerably

better than the others did. Sharing the same ILP framework, domain-domain interactions

were successfully inferred with high sensitivity and specificity. Lastly, analyzing various

produced rules (of both PPI and DDI), many interesting relationships among PPI, DDI,

and protein functions, biological processes, were found. Our proposed method can be

tuned to predict PPI and DDI for diverse organisms and other genomic and proteomic

data sources.

The publications related to PPI prediction are [Nguyen and Ho, 2008b],

[Nguyen et al., 2007, Nguyen and Ho, 2007b, Nguyen and Ho, 2007c, Nguyen and Ho, 2006].

The second contribution is that we have put forward an effective soft-clustering

method to construct signal transduction networks from PPI networks.

The key idea of this computational method is to grasp the nature of signal transduc-

tion networks underlying the variety of signaling features and PPI networks using soft-

clustering.

In case of previous methods, they did not much care deep levels of STN, i.e., signal

domain, signaling domain interactions, and sharing components between STN. This work

aims to solve those two intricate problems of STN to better construct STN from PPI

networks. To this end, we introduced an effective computational method to construct

STN that (1) exploited integrated multiple signaling features of STN from heterogenous

sources, i.e., protein-protein interactions, signaling domains, domain-domain interactions,

and protein functions, (2) detected overlapping components using soft-clustering. Addi-

tionally, in previous work clustered objects were often individual proteins, but our method

handled clustered objects as the functional or physical protein interactions because these

interactions are the means to transmit signals in cells. Not only limited to yeast STN,

we currently shift to work on human STN. To the best of our knowledge, this work is the

first one that computationally solves the STN problem for Homo Sapiens.

Experimental evaluation showed the high performance of our proposed method. We

could reconstruct signal transduction networks with the small error and more importantly

detect the overlapped parts among networks. The method is promising to discover new

STN and solve other related problems in computational and systems biology from large-

scale human protein interaction networks. Other early results related to yeast STN were

also comparative. Signaling domain-domain interactions were well predicted and yeast
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MAPK STN were reconstructed with considerable coverage.

The related publications related to STN construction are [Nguyen and Ho., 2006] and

[Nguyen and Ho, 2008a].

The third contribution is that we have developed a new method for discovering

disease genes by the exploitation of semi-supervised learning, protein-protein

interactions and multifarious disease-related features.

The key idea of this work is, how best to utilize the wealth of existing data that may

contain information about unknown genes. All previous work employed supervised learn-

ing schemes, which exploited data regarding known disease genes to predict new disease

gene candidates. However, it has recently been shown by Oti et al. that genes associated

with a particular phenotype or function are not randomly positioned in the PPI network,

but tend to exhibit high connectivity; they cluster together and occur in central network

locations [Oti et al., 2006]. That overriding property suggests that semi-supervised learn-

ing can be used in this prediction problem to exploit not only data concerning discovered

disease genes but also data which may concern disease genes that are not yet known.

In fact, this property solidifies the fundamental assumptions about the consistency of

semi-supervised learning and provides more evidence for taking into account information

regarding the unknown genes. Moreover, in addition to the protein topological features

extracted from PPI databases, semi-supervised learning enables a systematic considera-

tion of proteomic/genomic features related to diseases from various available data sources,

which further enriches this computational scheme.

This work not only proposes a new and effective method for disease gene prediction, but

also has generated significant new findings. We carefully carried out various experiments

with disease gene information extracted from the OMIM (Online Mendelian Inheritance in

Man) database (version 2007) [Hamosh et al., 2005]. Testing with all interacting partners

of disease proteins, we found 568 putative disease genes. Some encouraging results were

indirectly validated in various ways.

We performed two comparative experiments to evaluate the performance of the method.

First, 10 times stratified 10-fold cross validations were conducted using our new Semi-

Supervised Learning (SSL) method, the Support Vector Machines (SVMs) method

[Smalter et al., 2007], and the k-nearest neighbor (k-NN) method [Xu and Li, 2006]. The

results show that the SSL method outperforms the other two in terms of sensitivity, speci-

ficity, precision, accuracy, and a balanced F-score. Next, we compared our SSL method

to the k-NN method with different sizes of labeled sets, and did twenty trials for each

experiment to evaluate the accuracy. It turns out that the achieved accuracy of SSL is

higher than that of k-NN.
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The publications related to disease-casing gene discovery are [Nguyen and Ho, 2008c]

and [Nguyen and Ho, 2007a].

All in all, this thesis focuses on benefiting multiple data sources for solving three

biologically significant problems in the PPI research in both theoretical and empirical

aspects. The theoretical aspect of this thesis concerns about the design of new and

effective methods for protein-protein interaction prediction, signal transduction network

construction and disease-causing gene prediction. The other aspect is the application of

these methods to produce lot of new biological findings that can be useful sources for life

scientists.

1.4 Dissertation Organization

The thesis is divided into six chapters, including the current one. The organization of the

dissertation is as follows.

Chapter 2 introduces the background knowledge of molecular biology and protein-protein

interactions. Firstly, some key points of molecular biology are summarized. Next,

the PPI networks and theirs characteristics are presented. The last parts will dis-

cuss the relationships between PPI and STN, and between PPI and disease genes

as well.

Chapter 3 presents the integrative domain-based method for PPI prediction. There are

two main tasks in the method. Two main tasks are: (1) Constructing integrated

background knowledge of domain features and multiple genomic/proteomic features,

and (2) Learning PPI predictive rules by ILP from the constructed background

knowledge. The experiments and evaluation with good results and new findings are

shown in this chapter.

Chapter 4 describes the work of STN construction from PPI networks. First, the sig-

naling features of STN are investigated and then weighted according to their signifi-

cance. Soft-clustering method is proposed to detect the sharing components among

STN and combine the signaling features. The experiments and evaluation are given

with promising results. Some results related to yeast STN are also presented. At

last, the outlook of this work is discussed.

Chapter 5 proposes to a semi-supervised learning method for disease-causing gene pre-

diction problem. In succession, the chapter addresses three main issues to success-

fully predict disease genes. The first one is based on the similar phenotype and

genotype of neighbors in PPI networks to reliably extend the known disease gene
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set as the set of disease gene candidates. The second one is to extract from var-

ious databases the protein/gene traits that relate to disease. The third one is to

integrate the whole rich data from (1) and (2) for achieving the best performance

of semi-supervised learning in disease-causing prediction. The experimental results

have demonstrated the robustness and accuracy of the proposed method. The new

findings are initially validated.

Chapter 6 first summarizes the main tasks of the thesis, including the main achieve-

ments and contributions, and some shortcomings as well. Next, some interesting

problems are opened and will be mentioned as the future research directions.
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Chapter 2

Background

In this chapter, we first provide some introductions about molecular biology. Then, protein-

protein interactions and their particular characteristics are presented. Finally, we would

like to give the overall picture of the relationships between PPI and related problems, i.e.,

signal transduction networks and disease-causing genes.
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2.1 Molecular biology

A cell, numbered to 100 billion of 320 different types in human body, is composed of

nucleus, membrane, and the building blocks. Cellular basic activities include growth, di-

vision, and differentiation, which are completed by the functioning of the building blocks

including macromolecules and small ones. Macromolecules are of three types: Proteins as

basic constructional blocks hosting metabolism and maintaining cellular environment, De-

oxyribonucleic acid (DNA) carrying inheritable information, and Ribonucleic acid (RNA)

fostering protein synthesis. These are in turn built by small molecules, amino acids and

nucleotides respectively. Generally, the flow of information in the cell is as below.

DNAs ⇒ RNAs ⇒ Protein ⇒ Functions

2.1.1 DNA

Figure 2.1: DNA - Molecule of life.

DNA stands for deoxyribonucleic

acid. DNA is an extremely long

molecule that forms a double-helix.

The double-helix backbone of the

molecule consists of sugars and phos-

phates, and there is one base attached

to each sugar. There are four types

of bases: Cytosine (C), Guanine (G),

Adenine (A), and Thymine (T). The

DNA consists of two strands, and each

base attached to one strand forms a bond with a corresponding base on the other strand.

A only links with T and C links with G. A triplet of bases encodes an amino acid. Protein

is a sequence of amino acids, and the functional subunit of DNA that encodes a protein is

called a gene [Alberts, 2002]. In the cell, DNA is the core of the chromosome. The human

genome is stored on 23 chromosome pairs. Twenty-two of these are autosomal chromosome

pairs, while the remaining pair is sex-determining. The haploid human genome occupies

a total of just over 3 billion DNA base pairs and has a data size of approximately 750

Megabytes1. Figure 2.1 shows the flow from DNA to chromosomes and finally to cell.2

1http://en.wikipedia.org/wiki/Human genome
2 http://www.genetic-identity.com/Basic Genetics/basic genetics.html
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2.1.2 Gene Expression

Figure 2.2: The process of gene expression.

Gene expression is a two-step process

in which DNA is converted into a pro-

tein it encodes. The first step is DNA

transcription. In this step, the infor-

mation from the archival copy of DNA

is imprinted into short-lived mRNA.

The structure of RNA is a little dif-

ferent, it contains ribose instead of

deoxyrybose, and the four bases that

bind to it are Cytosine (C), Gua-

nine (G), Adenine (A) and Uracil (U).

During the transcription, DNA un-

folds, and mRNA is created by pairing

mRNA bases with the bases of RNA.

In this process, C in DNA translates

to G, G to C, A to U, and T to A.

After mRNA is translated, it is trans-

ported to the ribosome.

The second step, protein translation occurs at the ribosome. During translation, the

sequence of codons (triplets of bases) of mRNA is, with the help of tRNA, translated

into a sequence of amino acids. Since many diseases result from complex changes on the

molecular level, we need to observe and model these processes on the system level. Gene

regulatory circuits are an example of machinery that allows us to depict gene expression

graphically [Alberts, 2002]. Figure 2.2 illustrates the process of gene expression3.

2.2 Molecular interactions

Proteins with appropriate structure can interact with other molecules to perform specific

functions. Life is based on molecular interactions: underlying every biological process

there is a multitude of proteins, nucleic acids, carbohydrates, hormones, lipids, and cofac-

tors, binding to and modifying each other, forming complex frameworks and assemblies,

and catalyzing reactions. Molecular interactions can be:

1. protein-nucleic acid interactions: proteins bind to DNA and RNA that mediate a

number of processes, including regulation of gene expression, gene transcription,

DNA replication, and mRNA intron splicing.

3http://fajerpc.magnet.fsu.edu/Education/2010/Lectures/26 DNA Transcription.htm
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2. protein-ligand interactions: proteins bind to some target molecule or a set of target

molecules, and perform some action: enzymes bind to substrate molecules and then

catalyze chemical reaction that would otherwise occur too slowly to be biologically

useful; some proteins involved in cellular signaling bind to a signal molecule and

undergo a conformational change leading to further signaling or changes in cellular

processes.

3. protein-protein interactions: many proteins function by forming active complexes

with each other. The RNA polymerase II complex is an example of such an assembly.

Protein-protein interactions are also involved in antibody-antigen binding, large

scale organismal motion, and cell adhesion.

2.3 Protein-Protein Interactions and

Their Characteristics

Protein-protein interactions are specific interactions between two or more proteins. Fig-

ure 2.3 demonstrates the example of enzyme-inhibitor complex; antibody-antigen com-

plex; receptor-ligand interactions, multi-protein complexes such as ribosomes or RNA

polymerases [Cramer et al., 2001]. Part A is ribbon representation of the RNA Poly-

merase II complex structure and part B is schematic interaction diagram for the 10 sub-

units. The thickness of the connecting lines corresponds to the surface area buried in the

corresponding subunit interface. Colors of subunits are identical in (A) and (B).

Figure 2.3: Large protein complex and its protein-protein interactions.
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2.3.1 Biological Characteristics of Protein-Protein Interactions

The followings are the summary of general characteristic of protein-protein interactions

[Uetz and Vollert, 2006].

Classification: Protein-protein interactions can be arbitrarily classified based on the

proteins involved (structural or functional groups) or based on their physical properties

(weak and transient, non-obligate vs. strong and permanent). Protein interactions are

usually mediated by defined domains, hence interactions can also be classified based on

the underlying domains.

Universality: All of molecular biology is about protein-protein interactions [Alberts, 2002].

Protein-protein interactions affect all processes in a cell: structural proteins need to inter-

act in order to shape organelles and the whole cell, molecular machines such as ribosomes

or RNA polymerases are hold together by protein-protein interactions, and the same is

true for multi-subunit channels or receptors in membranes.

Specificity: distinguishes such interactions from random collisions that happen by

Brownian motion in the aqeous solutions inside and outside of cells. Note that many

proteins are known to interact although it remains unclear whether certain interactions

have any physiological relevance. Number of interactions: It is estimated that even simple

single-celled organisms such as yeast have their roughly 6000 proteins interact by at least

3 interactions per protein, i.e. a total of 20,000 interactions or more. By extrapolation,

there may be on the order of 100,000 interactions in the human body.

Protein-protein interactions and protein complexes: Most protein-protein interactions

are detected as interacting pairs or as components of protein complexes. Such complexes

may contain dozens or even hundreds of protein subunits (ribosomes, spliceosomes etc.).

It has even been proposed that all proteins in a given cell are connected in a huge network

in which certain protein interactions are forming and dissociating constantly.

In Figure 2.4, complex networks showing the interactions among proteins help sci-

entists understand how a drug affecting one protein will affect overall cell functioning.

This protein network for Brewer’s yeast shows which proteins are critical for survival

(red), which are important for growth but not critical to survival (orange), which can be

removed without slowing growth or killing the cells (green), and which are of unknown

importance (yellow)4.

4http://www.sciencenews.org/view/access/id/31301
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Figure 2.4: Protein network for Brewer’s yeast.

2.3.2 Topological Characteristics of Protein-Protein Interaction

Networks

The followings are some topological characteristics of protein-protein interaction networks

[Lin et al., 2006].

Scale-free network: Protein-protein interactions have the features of a scale-free net-

work, meaning that their degree distribution approximates a power law, P(k) ∼ kγ.

In scale-free networks, most proteins participate in only a few interactions, while a few

(termed “hubs”) participate in dozens of interactions.

Small-world effect: Protein-protein interaction networks have a characteristic property

known as the “small world effect”, which states that any two nodes can be connected via

a short path of a few links. Although the small-world effect is a property of random

networks, the path length in scale-free networks is much shorter than that predicted by

the small-world effect. Therefore, scale-free networks are “ultra-small”. This short path

length indicates that local perturbations in metabolite concentrations could permeate an

entire network very quickly.

Disassortativity: In protein-protein interaction networks, highly-connected nodes (hubs)

seldom directly link to each other. This differs from the assortative nature of social net-

works, in which well-connected people tend to have direct connections to each other. By

contrast, all biological and technological networks have the property of disassortativity,

in which highly-connected nodes are infrequently linked each other.
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2.4 Protein-Protein Interactions Networks and

Signal Transduction Networks

2.4.1 Signal Transduction Networks

Signal transduction is the primary means by which eukaryotic cells respond to exter-

nal signals from their environment and coordinate complex cellular changes. It plays an

important role in the control of most fundamental cellular processes including cell prolif-

eration, metabolism, differentiation, and survival. Extracellular signal is transduced into

the cell through ligand-receptor binding, followed by the activation of intracellular sig-

naling pathways that involve a series of protein phosphorylation and dephosphorylation,

protein-protein interaction, and protein-small molecules interaction [Liu and Zhao, 2004].

Figure 2.5 shows big number of published papers related to signal transduction in

recent years. The total number of papers published in each year since 1977 containing the

specific phrase signal transduction in either their title or abstract section, are plotted.5

Figure 2.5: Occurrence of the term signal transduction.

The molecular components involved in cellular signaling form signal transduction path-

ways. A signal transduction pathway affecting a cell is composed of the following events:

• A signaling molecule arrives outside the cell

• A receptor on the extracellular surface of the cell membrane interacts with the

signaling molecule

• The receptor interacts with intracellular pathway components, starting a cascade of

protein interactions that propagates the signal inside the cell

• A signaling molecule arrives outside the cell.

5http://en.wikipedia.org/wiki/signal transduction
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Figure 2.6: A physical map of the human

TNFα/NF-κB signal transduction pathway.

Additionally, an intracellular sig-

naling cascade can no longer be

viewed as a linear pathway that re-

lays and amplifies information. It is

known that the cell uses these path-

ways as a way of integrating multi-

ple inputs to shape a uniquely de-

fined output. Hence the interac-

tions of different pathways and the

dynamic modulation of the activities

of the components within signaling

pathways can create a multitude of bi-

ological outputs. The cell appears to

use these complex networks of inter-

acting pathways and regulatory feed-

back mechanisms to co-coordinately

regulate multiple functions. These

outputs allow the cell to respond to

and adapt to an ever-changing envi-

ronment. Due to this increasing com-

plexity, it is often not possible to un-

derstand intuitively the systems be-

havior of signaling networks.

Because of their size and complexity, these networks are often too complicated for the

human mind to organize and analyze. Therefore, it has become necessary to develop math-

ematical models to understand the system behavior of signaling networks, and to predict

higher order functions that can be validated by experiments [Neves and Iyengar, 2005].

2.4.2 From Protein-Protein Interactions Networks To Signal

Transduction Networks

Protein kinases and various transcription factors are known to be crucial in controlling

signal transduction processes that are important in mediating cellular functions such as

proliferation, differentiation, and apoptosis. Deciphering the complex cascades of binding

events in a whole cell will help define signal transduction and metabolic pathways or

enzymatic complexes activated by a variety of stimuli. Signal transduction is most likely

dependent on specific protein-protein interactions and the identification of specific binding

partners could have significant implications in the treatment of cancer and other diseases.
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The Figure 2.6 shows the interaction network which is based on a comprehensive Tan-

dem Affinity Purification-Mass Spectrometry (TAP-MS) analysis of proteins implicated

in Tα/NF-κB signal transduction pathways.6

The first level of complexity in cellular signaling derives from the large number of

molecules and multiple types of interactions between them. Considering the read func-

tionality alone, detecting extracellular cues requires several classes of sensor stimulus

interactions, typically involving receptor-ligand binding. While some receptors, such as

those for growth factors and cytokines, are found on the cell surface, intracellular recep-

tors bind to small molecules such as steroids capable of passing through the cell mem-

brane. Also extracellular matrix (ECM) proteins and proteins found on adjacent cell

surfaces also regulate cell functions through their interaction with adhesion and cell-cell

contact receptors such as integrins and cadherins, respectively. In addition to the size

of the signaling machinery, a second layer of complexity inter-connectivity of signaling

biochemistry is apparent from the fact that signaling proteins often contain multiple

functional domains, thus enabling each to interact with numerous downstream targets

[Eungdamrong and Iyenga, 2004].

2.5 Protein-Protein Interactions Networks and

Disease-Causing Genes

2.5.1 Disease Causing-Genes

Most diseases are related in some way to our genes. The information contained in our

genes is so critical that simple changes can lead to a severe inherited disease, make us

more inclined to develop a chronic disease, or make us more vulnerable to an infectious

disease. In Figure 2.7, the rules of governing monogenetic diseases and complex diseases

are showed.7. While monogenetic diseases are caused by a single gene and complex diseases

are complicated combinations of many genes.

Scientists currently believe that single gene mutations cause approximately 6,000 in-

herited diseases. These diseases are called single gene or monogenic diseases because a

change in only one gene causes the disease. These diseases include a number of lung

and blood disorders, such as cystic fibrosis, sickle cell anemia, and hemophilia. Although

these conditions are not popular however they still affect millions of people worldwide.

6http://tnf.cellzome.com/
7http://www.genetics.gsk.com/link.htm.
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Figure 2.7: Monogenetic diseases

and complex diseases.

The rules that underlie the inheritance of major com-

mon diseases are not as straightforward. These dis-

eases include heart disease, diabetes, Alzheimer dis-

ease, psychiatric disorders, and osteoarthritis. These

common diseases result not just from a change in one

or a few genes, but from a combination of the effects of

the environment and a number of susceptibility genes.

Susceptibility genes contribute to an individual’s

risk of developing a specific disease, but usually are

not enough to cause the disease. Susceptibility genes

may influence the age of onset of a disease, contribute

to its rate of progression, or help to protect against it.

Understanding the rules of their inheritance and their

roles in disease is not a simple task. Different alleles

may be associated with different degrees of susceptibil-

ity, or risk. The APOE gene on chromosome 19 is one

example of a disease susceptibility gene. An individual

who has two copies of one variant allele of APOE is

more likely to develop Alzheimer disease at an earlier

age than an individual with a different APOE geno-

type.

Even when the genetic basis of a disease is well understood, not much is known about

the molecular mechanisms leading to the disorders.

2.5.2 From Protein-Protein Interactions Networks

To Disease-Causing Genes

Interactions between specific pairs or groups of proteins are essential to all stages of

development and homeostasis. Not surprisingly, many human diseases can be traced to

aberrant proteinprotein interactions, either through the loss of an essential interaction or

through the formation of a protein complex at an inappropriate time or location. There are

some relationships between diseases and protein interactions such as a hitchhiker’s guide

to pathogen host interactions, normal protein-protein interactions gone wrong, protein

protein interaction inhibitors [Ryan and Matthews, 2005].

For oligogenic diseases, synergistic contribution of genes from several loci could explain

disruptions in their products, in particular when these proteins are directly or indirectly

interacting [Kann, 2007, Ideker and Sharan, 2008]. Two models, namely the dosage and

the poison model, have been used to explain the molecular mechanisms of the disruption.
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The dosage model explains disruptions of two proteins within a complex. Mutations in

one protein alone weaken the interaction but do not affect the phenotype. Only when the

two proteins are mutated, the complex is not formed and the phenotype is affected. For

instance, mutations that affect ligand-receptor interactions could be explained with such

a model. In the poison model, mutations in one of the proteins disrupt the complex but

enough of the unchanged complexes are still available to maintain the function. Addition

of another mutated subunit will further decrease the already reduced number of normal

complexes, resulting in phenotype changes. The molecular models described earlier could

be also used to explain indirect interactions between proteins (i.e. proteins that do not

physically interact but participate in the same functional pathway).

One example of protein interaction disruption causes is Huntington’s disease. In Hunt-

ington’s disease, an N-terminal region of the protein huntingtin (htt) is expanded to

contain at least 37 glutamines (polyQ-htt). htt is a ubiquitously expressed protein that

has many known protein interaction partners and a range of functions, including anti-

apoptotic effects, transcription regulation, cellular trafficking and neuronal development.

It has recently come to light that specific interactions between polyQ-htt and other pro-

teins may contribute directly to the neuropathology of Huntington’s disease.

Given the highly interlinked internal organization of the cell, it should be possible to

improve the single gene single disorder approach by developing a conceptual framework to

link systematically all genetic disorders (the human disease phenome) with the complete

list of disease genes (the disease genome), resulting in a global view of the diseasome, the

combined set of all known disorder/disease gene associations [Goh et al., 2007].

In Figure 2.8, Goh et al. present the construction of the diseasome bipartite network

to show the association between disease networks and gene networks (on the way, protein

network as the the product of genes networks). The figure in the center is a mall subset of

OMIM-based disorder disease gene associations, where circles and rectangles correspond

to disorders and disease genes, respectively. A link is placed between a disorder and a

disease gene if mutations in that gene lead to the specific disorder. The size of acircle is

proportional to the number of genes participating in the corresponding disorder,andthe

color corresponds to the disorder class to which the disease belongs. The figure on the

left is the HDN projection of the diseasome bipartite graph, in which two disorders are

connected if there is a gene that is implicated in both. The width of a link is proportional

to the number of genes that are implicated in both diseases. For example, three genes are

implicated in both breast cancer and prostate cancer, resulting in a link of weight three

between them. The figure on the right is the DGN projection where two genes are con-

nected if they are involved in the same disorder. The width of a link is proportional to the

number of diseases with which the two genes are commonly associated [Goh et al., 2007].

Many human genetic diseases can be caused by multiple genes. Since they lead to
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Figure 2.8: Construction of the diseasome bipartite network.

the same or similar disease phenotypes, the underlying genes are likely to be functionally

related. Such functional relatedness can be exploited to aid in the finding of novel disease

genes. Direct protein.protein interactions are one of the strongest manifestations of a

functional relation between genes, so interacting proteins may lead to the same disease

phenotype when mutated. Indeed, several genetically heterogeneous hereditary diseases

are known to be caused by mutations in different interacting proteins, such as Hermansky-

Pudlak syndrome and Fanconi anaemia [Oti et al., 2006].

2.6 Summary

In this chapter, we first provide some introduction about molecular biology. Then, protein-

protein interactions and their particular characteristics are presented. Finally, we would

like to give the pictures of PPI and related problems, i.e., signal transduction networks and

disease-causing genes. With the key roles of PPI in cells, it is promising to use machine

learning and data mining techniques to discover useful knowledge from protein-protein

interaction data produced by high-throughput biological techniques for further studies in

life science.
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Chapter 3

An Integrative Domain-Based

Approach to Predicting

Protein-Protein Interactions

In this chapter, we present a novel integrative domain-based method for predicting protein-

protein interactions using inductive logic programming (ILP). Two principal domain fea-

tures used were domain fusions and domain-domain interactions. Various relevant fea-

tures of proteins were exploited from five popular genomic and proteomic databases. By

integrating these features, we constructed biologically significant ILP background knowl-

edge of more than 278,000 ground facts. The experimental results through multiple 10-fold

cross-validations demonstrated that our method predict protein-protein interactions better

than other computational methods in terms of typical performance measures. The proposed

ILP framework can be applied to predict domain-domain interactions with high sensitivity

and specificity. The induced ILP rules gave us many interesting biologically reciprocal

relationships among PPI, protein domains, and PPI related genomic/proteomic features.
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3.1 Introduction

Proteins are macro molecules made of twenty amino acids arranged in a linear chain, which

participate in every process within cells. Many proteins play a key role in bio-chemical re-

actions, and structural or mechanical functions, and thus understanding functions of pro-

teins is a main task in molecular biology. Early work has focused on finding protein func-

tions via prediction of protein structures [Bock and Gough, 2001, Matthews et al., 2001,

Pellegrini et al., 1999]. Recently, detecting protein functions via protein-protein interac-

tions (PPI) has emerged as a new trend in computational biology [Marcotte et al., 1999,

Chen and Yuan, 2006, Baudot et al., 2006]. Protein-protein interaction study is not only

crucial in finding protein functions, but also is a significant task, as protein interactions

are one of the most important regulatory mechanisms in cells, and most of the cellular

processes are coordinated by specific protein interactions. For example, form the physical

association between a novel protein and a well-characterized protein, we can infer the

functions of the former.

Figure 3.1: An overview of computational methods

for PPI prediction.

Discovering protein-protein inter-

actions has been a key problem in

molecular biology and bioinformat-

ics. Some good surveys about protein-

protein interaction research have

been available [Ng and Tan, 2003],

[Uetz and Vollert, 2006]. Generally,

there are experimental and computa-

tional methods for prediction of pro-

tein interactions. The experimen-

tal methods are divided into two

groups, the traditional and the high-

throughput ones. Traditional experi-

mental methods typically include co-

immunoprecipitation and synthetic

lethal screening. Although the high-

throughput experimental detection methods for PPI (typically, yeast two-hybrid

[Ito et al., 2001, Uetz et al., 2000], phage display [Smith, 1985], affinity purification and

mass spectrometry[Bauer and Kuster, 2003], and protein micro-arrays)present many ad-

vantages over traditional experimental methods, but they are still tedious, labor-intensive

and usually have high false positive and high false negative rates.

Computational methods for detecting protein interactions, recently developed with

various machine learning techniques and various types of available biological data, al-
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low a chance to study more widely and deeply about protein-protein interactions. These

works mainly fall into two categories: the homology (or similarity) methods and the non-

homology methods. Sharing the same view but dividing more concretely, Ng and Tan

grouped these works into three groups, based on information of protein sequences, struc-

tures or genomes [Ng and Tan, 2003]. Figure 3.1 synthesizes these three groups. Below is

a short description of the methods (the more details are referred to [Ng and Tan, 2003]).

The first group consists of methods that exploit information in amino acid sequences of

proteins. As the information of amino acid sequences of most proteins is available, these

sequence-based prediction methods currently are widely applicable. There are mainly

two approaches of sequence-based methods: one is based on interactions of orthologs, i.e.,

sequence homology across various species (interacting orthologs) and the other is based

on interactions of protein domains (interacting domains).

The second group consists of methods that exploit information on protein structures.

This is based on the fact that the three-dimensional shapes of proteins play a major

role in their interactions. The key idea is to exploit structure homology, i.e., if two

protein A and B interact, and other two proteins A’ and B’ have similar structures to

A and B, respectively, then A’ and B’ are likely to interact. Though being a powerful

approach to protein interaction pre-diction, the structure-based methods have to deal

with two problems. One is the lack of docking algorithms for predicting large protein

molecules, and the other is the difficulty of protein structure determination, especially

the tertiary structures [Ng and Tan, 2003]. These difficulties currently limit the usage of

this approach, but also encourage further research to solve them.

The third group consists of methods that exploit genomic data, especially gene locality

context (gene neighbourhood or fusion), phylogenetic context (profiles or tree similarity)

and gene expression, to study protein interactions. As various genomes have already been

sequenced, the genome-based methods are widely applicable.

Based on the same assumption mentioned in three above groups, some early work was

based on a single data source [Bock and Gough, 2001, Matthews et al., 2001],

[Pellegrini et al., 1999]. Also, recently many bioinformaticians attempted to use multiple

data sources, the integrative approach, to better predict PPI, such as Bayesian network

approach [Jansen et al., 2003], kernel methods [Ben-Hur and Noble, 2005], probabilistic

decision tree approach [Zhang et al., 2004], inductive logic programming method

[Tran et al., 2005], probabilistic model [Rhodes et al., 2005]. With the rapidly increasing

data sources, integrative approaches showed up many advantages in PPI prediction.

Along with the development of integrative methods, domain-based approach to the

prediction of PPI has received much attention in many ongoing studies. As proteins are

assumed to interact through their domains, which are considered to be the building blocks

of proteins, a domain-based approach for inferring interactions is adopted, e.g., association
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method[Sprinzak and Margalit, 2001, Kim et al., 2002], probabilistic combination-based

method [Han et al., 2003], graph-oriented method [Wojcik and Schachter, 2001], random

forest framework [Chen and Liu, 2005].

The shortcoming of integrative methods is that they do not take protein domains

into account while there are evidences that the biological mechanisms underlying protein-

protein interactions are protein domains and their interactions.[Pawson et al., 2002] Fur-

thermore, while domain-based methods all treasured the biological roles of protein do-

mains in PPI prediction, most of them merely considered the co-occurrence of domains/

domain pairs. To predict PPI comprehensively, it is reasonable to employ genomic and

proteomic features in domain-based methods.

This work presents a novel integrative domain-based method using inductive logic

programming to predict protein-protein interactions. The key idea of this computa-

tional method is to integrate protein domain features and multiple genomic/proteomic

features into PPI prediction. To integrate efficiently such two kinds of features, we spec-

ified two main tasks. The first is to extract as many as possible useful domain and

genomic/proteomic features related to PPI. From seven popular databases, we extracted

more than 278,000 ground facts of domain fusion, domain-domain interaction features

and various biologically significant genomic/proteomic features. The second is to employ

inductive logic programming (ILP) on the huge amount of background knowledge to infer

PPI effectively.

To demonstrate the advantages of the above mentioned integration, we conducted

multiple 10-fold cross validations to compare our method with two other methods based

on single domain features, as well as with the non domain-based approach using multiple

genomic databases. The performance measures include Receiver Operating Characteristic

(ROC) curves, sensitivity and specificity. In all cases, our method performed considerably

better than the others did. Sharing the same ILP framework, domain-domain interactions

were successfully inferred with high sensitivity and specificity. Lastly, analyzing various

produced rules (of both PPI and DDI), many interesting relationships among PPI, DDI,

and protein functions, biological processes, were found. Our proposed method can be

tuned to predict PPI and DDI for diverse organisms and other genomic and proteomic

data sources.

The rest of this chapter is organized as follows. In Section 3.2, we present our proposed

method to predict PPI based on domains using ILP and multiple genomic and proteomic

databases. The comparative evaluation of the experiments is showed in Section 3.3.

Predictive rules of PPI and DDI, as well as discussion, are presented in Section 3.4.

Section 3.5 gives some concluding remarks.
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3.2 Materials and Methods

In this section, we present our proposed method to predict protein-protein interactions

based on domain and multiple genomic/proteomic data using ILP. Two main tasks are:

(1) Constructing integrated background knowledge1 of domain features and multiple ge-

nomic/proteomic features, and (2) Learning PPI predictive rules by ILP from the con-

structed background knowledge. Constructing ILP background knowledge requires two

steps. The first one is defining ILP predicates. The second one is extracting ground

facts to define predicates extensionally. When choosing a feature, we concentrated on two

points: (i) the biological role of that feature in protein-protein interactions or domain-

domain interactions, and (ii) the availability of data for that feature. Consulting results

of experimental and computational researches on PPI, twenty-two features of protein do-

mains, genes, and proteins were chosen and formulated using ILP predicates. A large

database of more than 278,000 ground facts of twenty-two predicates is sufficient for the

accurate PPI prediction.

First, we give a brief introduction about Inductive Logic Programming and some

bioinformatics applications of ILP in Section 3.2.1. Then, the first task in the proposed

method is presented in Subsections 3.2.2, 3.2.3, and 3.2.4. Subsection 3.2.5 describes the

second task.

3.2.1 Inductive Logic Programming

Inductive logic programming is an intersection of machine learning and logic programming

[Muggleton, 1992]. Inductive logic programming uses logic programming as a uniform

representation for examples, background knowledge and hypotheses. Given an encoding of

the known background knowledge and a set of examples (positive and negative examples)

represented as a logical database of ground facts, an ILP system will derive hypotheses

in forms of logical rules that entail the entire positive and none of the negative examples.

The schema of ILP is the following

Positive examples + Negative examples + Background knowledge ⇒ Hypotheses

From inductive machine learning ILP inherits its goal to develop tools and techniques

to induce hypotheses from observations examples and to synthesise new knowledge from

experience By using computational logic as the representational mechanism for hypotheses

and observations inductive logic programming can overcome the two main limitations of

classical machine learning techniques such as the Top-Down-Induction of Decision Tree

(TDIDT) family:

1the terms ‘background knowledge’ and ‘ground facts’ (the second task) are used in terms of the
language of inductive logic programming.
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1. the use of a limited knowledge representation formalism essentially a propositional

logic and

2. difficulties in using substantial background knowledge in the learning processes

[Muggleton and Raedt, 1994].

Distinguishing features of ILP are its ability to represent the background (domain)

knowledge in the form of logic programs and the expressive power of discovered pattern’s

language [Dzeroski and Lavrac, 2001].

There have been many ILP systems applied to various problems in bioinformatics. ILP

is particularly suitable for bioinformatics tasks because of its ability to take into account

background knowledge and work directly with structured data [Page and Craven, 2003].

The ILP system GOLEM was applied to find the predictive theory about the relationship

between chemical structure and activity [King et al., 1992]. The training data consisted

of 44 trimethoprim analogues and their observed inhibition of E.coli dihydrofolate reduc-

tase. Eleven additional compounds were used as unseen test data. GOLEM obtained

rules that were statistically more accurate on the training data and on the test data

than a previously published linear regression model. Other central concerns of bioinfor-

matics were convincingly solved by ILP, such as protein secondary structure prediction

[Muggleton et al., 1993], and protein fold recognition [Turcotte et al., 1998], etc.

3.2.2 Extracting Domain Fusion and Domain-Domain Interac-

tion Data

Protein domains form the structural or functional units of proteins that partake in the

intermolecular interactions. The existence of certain domains in proteins can, therefore,

suggest the propensity of the proteins to interact or form a stable complex bringing about

certain biological functions. Owing to their important biological roles in PPI prediction

[Pawson et al., 2002, Marcotte et al., 1999], domain fusion and domain-domain interac-

tion features were used .

Let P denote the set of considered proteins pi. Let denote D the set of all protein

domains dk that belong to proteins pi. A pair of interacting proteins (pi, pj) is denoted

by pij, and a protein pair that does not interact with each other by ¬pij.

Domains of interacting proteins have more chance to fuse together than domains of

non-interacting proteins do. Therefore, once finding a pair of proteins, which have fused

domains, we can predict an interaction between them [Enright et al., 1999]. Domain fu-

sion data was extracted from Domain Fusion Database [Truong and Ikura, 2003]. Truong

et al. employed relational algebra to find domain fusions in protein sequence databases.
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We extracted domain fusion data for all protein pairs (pi, pj), pi, pj ∈ P . The following

predicate represents the domain fusion between two proteins

domain fusion(+protein, +protein, #FUSION).

Note that in the ILP system used – the learning engine Aleph for proposing hypothesis
2 – there are some mode declarations to build the bottom clauses, and a simple mode type

is one of the following: (1) the input variable (+), (2) the output variable (−), or (3)

the constant term (#). Predicate domain fusion means whether two input proteins, A

and B, have fused domains or not. This predicate is supported by a set of ground facts

Gdomain fusion, e.g., domain fusion (ap3m yeast, ap3b yeast, yes). After preprocessing step, the

set Gdomain fusion consists of 2,761 ground facts.

Let dkl and ¬dkl denote a domain-domain interaction and a non-interacting pair re-

spectively. The assumption that proteins interact with each other through interactions of

their domains is widely accepted and already validated. To predict PPI more reliably, we

extracted DDI data from iPfam database 3 which is a resource describing domain-domain

interactions observed in PDB entries. When two or more domains occur in a single struc-

ture, the domains are analyzed to see if they form an interaction. If the domains are

close enough to form an interaction, the bonds forming the interaction are calculated and

reported.

We considered two features of DDI. The first feature is whether a protein pair (pi, pj)

has a domain interaction dkl, and if yes, how many dkl it has. This information is formu-

lated by predicate

hasddi(+protein, +protein, #DDI).

where the #DDI value is the number of DDI mediating the same PPI pij. The set of ground

facts for this predicate Gddi includes 657 ground facts, e.g. hasddi(jsn1 yeast,yip1 yeast,2),

and hasddi(msh4 yeast,msh5 yeast,5), etc.

The interacting possibility of one protein may depend on the number of domain-

domain interactions occurring on it. Therefore, we considered the relationship between

PPI and the number of DDI of each interacting partner. This relationship is presented in

the following predicate

num ddi(+protein, #NUM DDI).

Denoted by Gnum ddi the set of ground facts of the above predicate contains 505 ground

facts. We found that there were proteins having many DDI, for example, num ddi(did4 yeast,

20) or num ddi(bud27 yeast, 39), and these proteins potentially interact with many other

proteins.

2http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
3http://www.sanger.ac.uk/Software/Pfam/iPfam/
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3.2.3 Extracting Proteomic and Genomic Data From Multiple

Databases

In addition to domain fusion and domain-domain interaction features, we mined genomic

and proteomic data from UniProt database, CYGD database, InterPro database, Gene

Ontology database, and Gene Expression database to detect useful genomic and pro-

teomic features for PPI prediction. Table 3.1 shows 19 predicates corresponding to ge-

nomic/proteomic data extracted from multiple databases.

As the world’s most comprehensive catalog of information on proteins UniProt

database [Bairoch et al., 2005], provides various protein data, e.g. functions, structures

(in Keyword - KW line); regions or sites of interest in the sequences (in Feature Table

- FT lines); Enzyme Commission (EC) numbers. Others are pointers to different data

collections such as GO, PIR, PROSITE, Pfam, and Interpro database (in Database cross-

Reference -DR line). Three predicates present general protein’s features that should effect

their interactions. Other predicates give references to other databases. Data from different

databases related to PPI are bound by these predicates. Some examples of these predicates

are keyword(ace1 yeast, transcription regulation), feature(ldb7 yeast, chain chromatin structure

remodeling complex), coded enzyme(uqcr1 yeast, ec1.10.2), and dr go(twoa5d yeast,go0005935),

etc.

The MIPS Comprehensive Yeast Genome Database (CYGD) 4 presents information

on the molecular structure and functional network of the entirely sequenced, well-studied

model eukaryote, and the budding yeast Saccharomyces cerevisiae. Among various infor-

mation provided by CYGD, the following should be mined to discover the relationship

between CYGD’s categories and protein-protein interactions, i.e. category of functions,

category of subcellular locations, category of phenotypes, category of complexes, and

category of proteins. A protein has more chance to interact with proteins in the same

category than with proteins in different categories. Here are some examples: subcell cat

(ahc1 yeast, cytoplasm), phenotype cat(cyk2 yeast, cell cycle defects), etc.

InterPro database 5 is a database of protein families, domains and functional sites.

We considered the association between InterPro annotations and GO terms. For example,

interpro go(ipr000009,go0007165), interpro go(ipr000009,go0000159).

Gene Ontology database 6 has three organizing principles: molecular function, bi-

ological process and cellular component. The terms in an ontology are linked by two

relationships, is a and part of. The GO relationship between interacting partners may

effect their interaction. Some examples are is a (go0000002, go0007005), part of (go0000032,

go0007047).

4http://mips.gsf.de /genre/proj/yeast/
5http://www.ebi.ac.uk/interpro/
6http://www.geneontology.org/
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Table 3.1: Predicates used as background knowledge in various genomic/proteomic data
sources

Database Background knowledge predicates #Ground fact
keyword(+protein,#Keyword)

A protein has a proteins keyword
feature(+protein,#Feature)

A protein has a protein feature
coded enzyme(+protein,#EC)

A protein has a enzyme commission number
dr prosite(+protein, -PROTSITE ID)

UniProt A protein has a PROSITE annotation number 43,539
dr interpro(+protein, -INTERPRO ID)

A protein has an InterPro annotation number
dr go(+protein,-GO TERM)

A protein has a GO term
dr pfam(+protein, -PFAM ID)

A protein has an Pfam annotation number
dr pir(+protein, -PIR ID)

A protein has a Pir annotation number
subcell cat(+protein, #SUBCELLCAT)

A protein has a subcellular structure in which it is found
function cat(+protein, #FUNCAT)

A protein has a certain function category
CYGD protein cat(+protein, #PROTEINCAT) 11,909

A protein has a certain protein category
phenotype cat(+protein, #FENCAT)

A protein has a certain phenotype category
complex cat(+protein, #COMPLEXCAT)

A protein has a certain complex category
InterPro interpro go(+INTERPRO ID, -GO TERM)

Relation of InterPro annotations and GO terms 4,965
is a(+GO TERM,-GO TERM)

GO is a relation between two GO terms
part of(+GO TERM,-GO TERM) 1,142
part of relation between two GO terms

Gene expression(+protein, +protein, #COEFFICIENT)

Expression Gene expression correlation coefficient of two proteins 200,000
num ppi(+protein, +protein, #NUM PPI)

A protein has a number of protein-protein interactions
DIP ig(+protein, +protein, #IG) 13,376

Interaction generality of two proteins is the number of protein
that interact with just two considered proteins

Interacting proteins are often co-expressed, hence gene expression coefficients between

two proteins are useful to predict PPI. The Gene Expression coefficients between two

proteins are referred to Jansen et al.’s work [Jansen et al., 2003] that contains 25,000,000

pairwise coefficients for about 18,773,128 protein pairs. In our work, we randomly ex-

tracted 200,000 gene expression coefficients in terms of ground facts represented by predi-

cates expression(+protein, +protein, #COEFFICIENT) for about 11,000 positives and

negatives in the training data sets.

Two last predicates represent information about the number of protein-protein inter-

actions and interaction generality of two interacting partners. Interaction generality is

the number of proteins that interact with both interacting partners in an interaction. The

interacting pairs are extracted corresponding to these predicates from DIP core data set

(see more in Section 3.3.1).
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3.2.4 Constructing Background Knowledge for Predicting Protein-

Protein Interactions

After defining twenty-two predicates, we exploited data in terms of ground facts for

these predicates from seven databases (two databases for domain features and five for

genomic/proteomic features).

Algorithm 1 Extracting domain feature data and genomic /proteomic feature data from
multiple sources.
Input:

Set of proteins {pi} ⊆ P .
Output:

Sets of ground facts GL = {Gl}, Gl ∈ {Gdomain fusion, Gddi, Gnum ddi, GUniProt, GCY GD,
GInterPro, GGO, Gexpression, Gig, Gnum ppi}.

1: Initialize all sets of ground facts Gl := ∅; D := ∅.
2: Extract all domains dk belonging to proteins pi; D := D ∪ {dk}.
3: for each protein pair (pi, pj)
4: for all dk ∈ pi and dl ∈ pj

5: if fused(dk, dl) = true then
Gdomain fusion := Gdomain fusion ∪ {(pi, pj)}.

6: if ∃ dkl then
Gddi := Gddi ∪ {(pi, pj)}
Count the number of DDI for proteins pi and pj for Gnum ddi, respectively.

7: for each protein pi ∈ P
8: Extract GUniProt and GCY GD from UniProt and CYGD database, respectively.
9: Extract mapping data between GO terms gi and Interpro identifiers ti related to pi

from InterPro database for GInterpro; GInterPro = GInterPro ∪ {ti, gi}.
10: for each protein pi ∈ P
11: for each protein pj ∈ P
12: Extract the relationship rij between GO terms (gi, gj) related to (pi, pj) from

GO database; GGO = GGO ∪ {rij(gi, gj)}.
13: Extract the expression correlation coefficients eij of (pi, pj);

Gexpression = Gexpression ∪ {pi, pj , eij}.
14: Extract the interaction generality of PPI nij of (pi, pj); Gig = Gig ∪ {pi, pj , nij}.
15: if ∃ pij then

num ppii := num ppii + 1;
16: Gnum ppi := Gnum ppi ∪ {(pi, num ppii)}.
17: return GL.

In succession, we denote the sets of ground facts extracted from UniProt database,

CYGD database, InterPro database, Gene Ontology database, and Gene Expression

database by GUniProt, GCY GD, GInterPro, GGO, and Gexpression, respectively. Algorithm 1

presents the procedure to extract data from multiple databases to construct background

knowledge.
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3.2.5 Predicting Protein-Protein Interaction With Integrative

Domain-Based ILP Framework

Algorithm 2 describes the integrative domain-based ILP framework for predicting PPI

from multiple genomic/proteomic databases. After initializing the set of rule R in Step

1, Step 2 and Step 3 are for generating positive and negative example sets Sinteract and

S¬interact, respectively (see more in Subsection 3.3.1). In Step 4, we constructed back-

ground knowledge Sbackground with sets of ground facts of twenty-two predicates. In Step

5, of our experiments, Aleph was applied to induce rules.

Algorithm 2 An integrative domain-based ILP framework for PPI prediction
Input:

Set of protein-protein interactions Sinteract = {pij}
Number of negative examples (¬pij) N

Sets of ground facts GL = {Gl}, Gl ∈ {Gdomain fusion, Gddi, Gnum ddi, GUniProt, GCY GD,
GInterPro, GGO, Gexpression, Gig, Gnum ppi}.

Output:
Set of rules R for protein-protein interaction prediction.

1: R := ∅.
2: Extract positive examples for the set Sinteract.
3: Generate N negative examples ¬pij ;

S¬interact = {¬pij}.
4: call Algorithm 1 to generate sets of ground facts Gl;

Sbackground = GL = {Gl}.
5: Run an ILP program with Sinteract, S¬interact and Sbackground to induce the set of rules R.
6: return R.

Aleph is an advanced ILP system that uses a top-down ILP covering algorithm. All

predicates appearing in hypothesized clauses have to be declared, and amongst them,

the target predicate is learned to induce rules. The target predicate in our work is

has int(+protein, +protein), meaning that two arbitrary proteins interact. Aleph

learns three inputs (positive examples, negative examples and background knowledge)

and induces rules (hypothesized clauses) in terms of the relationships between the target

predicate and other predicates declared in background knowledge.

3.3 Evaluation

We concentrated on predicting PPI for Saccharomyces cerevisiae, the budding yeast. We

did experimental comparative evaluations, two experiments for protein-protein interaction

prediction (in Section 3.3.1) and domain-domain interaction prediction (in Section 3.3.2).
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3.3.1 Predicting Protein-Protein Interactions

Experiment Design of Protein-Protein Interaction Prediction

To assess the performance of PPI prediction, we firstly did two comparative tests to

demonstrate: (1) the advantages of the integration of multiple proteomic and genomic

features and (2) the advantages of using protein domain features. The 10-fold cross

validation was conducted 10 times with each of two negative data sets to compare our

proposed method with other domain-based methods, particularly Association method

(AM) and Support vector machines (SVMs) method. Secondly, we conducted 10-fold

cross validation tests for ILP method with multiple genomic databases, but not using

domain features,[Tran et al., 2005] and then compared those results with our method in

terms of sensitivity and specificity.

In two comparative tests with AM and SVMs method, we used the core data of

DIP data set 7. This is a large and reliable set of interactions each of which was ob-

served by at least three different methods. Each interaction in DIP database is originally

presented by ORF name (Open Reading Frame). We excluded all the interactions in

which bait ORF or/and prey ORF is not found in UniProt database. The final positive

data set has 5,512 interacting pairs out of the original 5,963 pairs. We generated two

data sets of negatives (5,512 examples for each one) according to two popular methods

[Ben-Hur and Noble, 2006]. The first one is the set of random protein pairs that do not

belong to the positive data set Sinteract. The second one is the set of protein pairs of

which two proteins are located in different subcellular compartments. In the test with the

negatives generated by the second method, we excluded predicate subcell cat(+protein,

#SUBCELLCAT). Then, the negative data set of the second test was assured to be indepen-

dent of the background knowledge.

Result of Protein-Protein Interaction Prediction

With the same training data sets and the same set of extracted protein domains, we con-

ducted 10-fold cross validation tests for our method, AM and SVMs method. AM calcu-

lated the probability of protein pairs based on protein domains [Sprinzak and Margalit, 2001].

In our experiment, the probability threshold was set to 0.05. For SVMs method, we used

SV M light [Joachims, 1998]. The linear kernel with default values of the parameters was

used.

For Aleph, we selected minpos = 2 and noise = 0, i.e. the lower bound of the positive

example range to be covered by an acceptable clause is 2, and there are no negative

examples allowed to be covered by an acceptable clause. Other parameters in Aleph were

7http://dip.doe-mbi.ucla.edu/
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defaulted to have fair comparative comparisons with AM and SVMs method.

Figure 3.2: Comparative ROC curves of ILP,

SVMs and AM with 5,512 random negative ex-

amples.

The ROC curves of ILP, AM

and SVMs methods with 5,512 ran-

domly selected negative examples are

shown in Figure 3.2. ROC curve

(Receiver Operating Characteristic

curve) shows the tradeoff between

sensitivity and specificity (any in-

crease in sensitivity will be accompa-

nied by a decrease in specificity). The

sensitivity of a test is described as the

proportion of true positives it detects

out all the positives, measuring how

accurately it identifies positives. The

specificity of a test is the proportion

of true negatives it detects of all the

negatives, thus is a measure of how

accurately it identifies negatives.

Figure 3.3: Comparison of sensitivity and speci-

ficity of non-domain based method and our pro-

posed method with various sets of negative exam-

ples by 10 times 10-fold cross-validation.

The ROC curve of our method is

close to the left-hand border and then

the top border of the ROC space,

while the ROC curves of AM and

SVMs method are close to the 45-

degree diagonal of the ROC space.

The ROC curve demonstrates that

our method performs considerably

better than AM and SVMs method

do.

In the test with negative examples

chosen in separate sub-cellular com-

partments, we carried out 10 trials of

10-folds cross validation, then calcu-

lated the average sensitivity (SS) and

specificity (SP) of these 10 trials for each of our ILP method, AM, and SVMs method.

Our method outperformed with SS 84% and SP 90% compared to AM with SS 82% and

SP 34%, and SVMs method with SS 47% and SP 75%.

Reproducing the same experiments to non domain-based approach using ILP

[Tran et al., 2005] with the same training negatives (with different numbers of negatives)
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and positives (the data set of Ito et al. with at least 3 hit interactions), the results

of 10 times 10-fold cross-validation are demonstrated in Figure 3.3. They showed that

our integrative domain-based method achieved higher sensitivity, and higher or equal

specificity, than the non-domain based approach.

Furthermore, the number of unknown interacting protein pairs is, in fact, much larger

than the known ones. We also did comparative experiments with imbalanced training

sets. According to [Ben-Hur and Noble, 2006], the negative example set should be 4

times larger than the positive example set, thus we randomly selected 2,500 positives

from DIP core data set and random 10,000 negatives. Sensitivity and specificity of gained

method are 78% and 95% (in this case, sensitivity and specificity of AM are 75% and

30% respectively, and sensitivity and specificity of SVMs methods are 30% and 94%,

respectively). As a result, even in testing with imbalanced training data sets, our method

effectively predicted PPI.

3.3.2 Predicting Domain-Domain Interactions

Experiment Design of Domain-Domain Interactions Prediction

Domain-domain interaction (DDI) prediction is biologically significant to understand

protein-protein interactions in depth. Inheriting the ILP framework for PPI prediction,

we applied ILP framework to infer domain-domain interactions. Different from previous

works on DDI prediction which exploit only a single protein database, we exploited and

combined various domain and protein data. The experimental results of DDI prediction

are promising.

To assess the performance for DDI prediction, sensitivity and specificity were evaluated

through the 10-fold cross validation tests. We used about 3,000 interactions in InterDom

database as positive examples [Ng et al., 2003]. Positive examples are domain-domain

interactions in InterDom database that have score thresholds over 100 and are not false

positives. Because there is currently no experimental and computational method for

detecting non-interacting domain pairs, the negative examples were randomly generated.

A domain pair is considered a negative example if the pair does not exist in the interaction

set. Various numbers of negatives, 500, 1,000, 2,000 and 3,000 negatives, were chosen. We

also implemented the AM and SVMs method to compare sensitivity and sensitivity. We

input to AM and SVMs the same databases employed in ILP method. The probability

threshold is set to 0.05 for the simplicity of comparison. For SVM method, we used

SV M light [Joachims, 1998]. The linear kernel with default values of the parameters was

used.
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Result of domain-domain interactions prediction

In fact, the interaction of two domains depends on: (i) domain features of interacting

partners themselves, and (ii) protein features of host proteins consisting of those domains.

We modeled twenty predicates from seven databases (see more in Supplementary

materials 8). Among those, there are thirteen predicates as protein features extracted

from three genomic/proteomic databases of UniProt database, CYGD database, and GO

database and seven predicates for domain features corresponding to four domain databases

of Pfam9, PRINT10, PROSITE 11, and Interpro. In case of domain-domain interaction

prediction, we did not use domain-domain interaction and domain fusion data in ILP back-

ground knowledge. The target predicate of DDI prediction is interact domain(+domain,

+domain). With more than 100,000 ground facts, we effectively predicted domain-domain

interactions by ILP.

Results conducted from 10 times 10-fold cross-validation show that our method ob-

tained higher sensitivity and specificity in the comparison with AM and SVMs. The

performance in terms of specificity and sensitivity is also statistically tested by confi-

dence intervals. To estimate 95% confidence interval for each calculated specificity and

sensitivity, we used t distribution. Table 2 shows the tested specificity and sensitivity.

Table 3.2: The sensitivity and specificity are obtained for each randomly chosen set of
negative examples by 10 times 10-fold cross-validation.

# Neg Sensitivity Specificity
AM SVMs ILP AM SVMs ILP

500 0.49±.027 0.86±.010 0.83±.016 0.54±.074 0.24±.004 0.61±.075
1000 0.57±.018 0.63±.074 0.78±.042 0.44±.033 0.49±.009 0.68±.042
2000 0.50±.015 0.32±.014 0.69±.027 0.50±.021 0.73±.015 0.80±.018
3000 0.49±.021 0.22±.017 0.62±.027 0.53±.022 0.81±.013 0.84±.010

Avg. 0.51±.020 0.51±.029 0.73±.028 0.50±.038 0.57±.010 0.73±.036

Besides calculating cross-validated sensitivity and specificity, cross-validated accuracy

and precision were considered. All of our experiment results obtained high accuracy and

precision. The average accuracy and precision were 0.76 and 0.82, respectively.

8http://www.jaist.ac.jp/s0560205/PPIandDDI/
9http://www.sanger.ac.uk/Software/Pfam/

10http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/
11http:// au.expasy.org/prosite/
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3.4 Discussion

The experimental results have shown that our method potentially predicts PPI and DDI

with high sensitivity and specificity. Furthermore, the induced predictive rules encour-

aged us to discover many interesting biologically reciprocal relationships among protein-

protein interactions and protein domains, and other genomic/proteomic features related

to protein-protein interactions. Compare our results to information in biological liter-

atures, we found that ILP induced rules could be further applied to related studies in

biology. The full list of both PPI predictive rules and DDI predictive rules and the cov-

ered positives are available as Supplemental materials12 . Figure 3.4 shows some induced

rules for PPI prediction.

Studying the rules of PPI prediction that are related to domain-domain interaction, we

found many interesting rules (Rule 1, 2, and 3). In Rule 1, if a protein pair has at least one

DDI, in which protein A belongs to the subcellular compartment ‘cytoplasm’ and protein

B has the ‘coiled-coil’ domain(s), they have a chance to interact. Similar to Rule 1, Rule

2 shows that two proteins mediated by at least one DDI, A and B, will interact if one of

them is located in the compartment ‘nucleus’ and the other’s functions are ‘cell cycle and

DNA progressing’. The evidences for this rules are interactions (kar4 yeast,ime4 yeast),

(rsc6 yeast,rsc8 yeast), (cdc23 yeast,leur yeast), (cdc23 yeast,nip29 yeast).

Considering the group of proteins, which may be required for the production of pyri-

doxine (vitamin B6), i.e., sno1 yeast, snz3 yeast snz1 yeast, and snz2 yeast, we found that

each pair in this group has an interaction which satisfies Rule 3 and Rule 4. Rule 3 means

interaction of protein A and protein B may occur if the proteins satisfy three conditions.

First is that they interact with the same protein. Second is that they have at least one

DDI. Third is that one of them is categorized to function catalogue ‘cell rescue defense

and virulence’. We know that PPI plays an important role in drug design, so such rules

and their evidences are expected to be instrumental in discovering helpful relationships

between PPI, DDI and protein functions in pharmaceuticals.

Two rules with large number of covered positives prove that if two proteins, A and

B, are located in the same subcellular compartment, protein A potentially interacts with

protein B. There are 216 covered positives for ‘nucleus’ compartment, 284 ones for ‘cy-

toplasm’ compartment, and 15 ones for ‘mitochondria’ compartment. However, among

induced rules, we surprisingly found Rule 6 with 37 positives that showed the phenomenon

of two proteins being in different subcellular locations but interacting. This phenomenon

can occur when there is a certain translocation or post-translation modification of pro-

teins in different subcellular compartments. Some evidences are interactions (lsm2 yeast,

pat1 yeast), (ntc20 yeast, syf1 yeast), (yb89 yeast, yp33 yeast), (kar4 yeast, ime4 yeast),

12http://www.jaist.ac.jp/s0560205/PPIandDDI/
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Rule 1 [Pos cover = 26 Neg cover = 0]
has int(A,B) : − hasddi(A,B, C), gteq(C, 1), subcell cat(A, cytoplasm),
keyword(A, coiled coil).

Rule 2 [Pos cover = 8 Neg cover = 0]
hasint(A,B) : − hasddi(A,B, C), gteq(C, 1), subcell cat(B,nucleus),
function cat(A, cell cycle and DNA processing).

Rule 3 [Pos cover = 8 Neg cover = 0]
has int(A,B) : − ig(A,B, C), C = 1, hasddi(A,B, D), gteq(D, 1),
function cat(B, cell rescue defense and virulence).

Rule 4 [Pos cover = 8 Neg cover = 0]
has int(A,B) : − domain fusion(A,B, yes),
feature(B, chain probable pyridoxin biosynthesis protein).

Rule 5 [Pos cover = 199 Neg cover = 0]
has int(A,B) : − dr go(B,C), part of(C,D),
domain fusion(A,B, yes).

Rule 6 [Pos cover = 37 Neg cover = 0]
has int(A,B) : − subcell cat(B,nucleus), subcell cat(A, cytoplasm),
function cat(A, transcription).

Rule 7 [Pos cover = 14 Neg cover = 0]
has int(A,B) : − num ppi(A,C), C = 4, subcell cat(A, cytoplasm),
function cat(A, protein fate).

Rule 8 [Pos cover = 5 Neg cover = 0]
has int(A,B) : −function cat(B, protein fate), expression(A,B, C),
gteq(C, 0.688153).

Rule 9 [Pos cover = 4 Neg cover = 0]
has int(A,B) : − ig(A,B, C), C = 2, protein cat(A, polymerases),
phenotype cat(A, conditional phenotypes).

Rule 10 [Pos cover = 92 Neg cover = 0]
has int(A,B) : − ig(A,B, C), C = 1, hasddi(A,B, D), D = 1.

Figure 3.4: Some induced rules obtained with minpos = 3.
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(sas10 yeast, yb9x yeast).

Rule 8 means that if there is a high correlation between two proteins and one of

them has a function as ‘protein fate’, they have more chance to interact with each

other than random protein pairs. This rule reconfirms the theory that the expression

of two interacting proteins is highly correlated. Some of evidences of this rules are

interactions (uqcr1 yeast,uqcr2 yeast), (rsc6 yeast,grpe yeast), (ady3 yeast,atg17 yeast),

(va0d yeast,vate yeast), (yn97 yeast,bsc5 yeast)

From the analysis of DDI predictive rules, some interesting associations between DDI

and other domain and protein features are discovered.

Related to the domain feature ‘motif compound’, we found that the more motifs a

domain has, the more interactions the domain has with other domains. This means

that domains, which have many conserved motifs, tend to interact with others. The

interactions having these domains play an important role in forming stable domain-domain

interactions in particular, and protein-protein interactions in general.[Moon et al., 2005]

If two domains, A’ and B’, the domain A’ has a PRINTS annotation C, and C is with

eight motifs and the rest domain B’ belongs to proteins categorized in function category

‘protein synthesis’, they interact. This rule covers 23 positives

interact domain (A’,B’) :- prints (A’, C), motif compound

(C, compound(8)), function category (B’, protein synthesis).

The combination of inductive rules of ILP will be very useful to understand not only

PPI and DDI, but also protein functions, and biological processes.

3.5 Summary

In this chapter, we have presented an integrative domain-based method using ILP and

multiple genome databases to predict protein-protein interactions. The ILP framework

was extended for domain-domain interaction prediction. The experimental results demon-

strated that our proposed method could produce more comprehensible rules and outper-

formed other methods in protein-protein interaction prediction as well as domain-domain

interaction prediction.

In future, we would like to do more comparative evaluation with other methods. We

would like to investigate further the biological significance of novel protein-protein inter-

actions obtained by our method, especially the induced rules. Other work is applying

the ILP framework to other important tasks in biomedicine, such as determining protein

functions, determining the sites, interfaces of PPI, etc..
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Chapter 4

Constructing Signal Transduction

Networks Using Multiple Signaling

Feature Data

The essence of STN is underlain in some signaling features scattered in various data

sources and biological components overlapping among STN. The integration of those sig-

naling features presents a challenge. Most of previous works based on PPIs for STN did

not much take the signaling properties of signaling molecules and components overlapping

among STN into account. This chapter describes an effective computational method that

can exploit three biological facts of STN applied to human: rich-information of protein-

protein interaction networks, signaling features and sharing components. To this end,

we introduce a soft-clustering method for doing the task by exploiting integrated multiple

data, especially signaling features, i.e., protein-protein interactions, signaling domains,

domain-domain interactions, and protein functions. The gained results are considerable

showing that the method is promising to discover new STN and solve other related prob-

lems in computational and systems biology from large-scale protein interaction networks.

Other interesting results of early work on yeast STN are presented to show the advantages

of using signaling domain-domain interactions.
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4.1 Introduction

Signal transduction networks are the primary means by which eukaryotic cells respond to

external signals from their environment as well as coordinate complex cellular changes,

and are crucial for inter- and intra-cellular signaling [Allen et al., 2006]. These networks

are also important in the correct functioning of the cell and can produce appropriate

outcomes, such as cell division, apoptosis, or differentiation in response to a variety of

biological signals.

Because of the biologically significant roles of STN in cells, both biologists and bioin-

formaticians have taken much interest in finding out molecular components and/or the

relations among these molecular components in STN. Experimental methods have been

effective in generating detailed descriptions of specific linear signaling pathways; how-

ever our knowledge of complex signaling networks and their interactions remains in-

complete [Asthagiri and Lauffenburger, 2000]. Recently, the enormous amount of high-

throughput protein-protein interaction (PPI) data, one of important signaling features,

has been generated and provided invaluable resources for STN study [Ito et al., 2001],

[Liu and Zhao, 2004]. Consequently, there is a great need for developing computational

methods to take advantage of information-rich protein interaction data to study complex

signaling mechanisms inside STN.

Computational modeling has emerged as a powerful descriptive and predictive tool that

allows the study of complex systems. This approach is becoming increasingly useful in

many areas of biology, including in the study of signaling pathways given the identification

of a growing number interactions within and between signaling pathways in the cell.

The explicit modeling approach should allow the monitoring of the effects of multiple

signal inputs that may arrive simultaneously and/or sequentially and the subsequent

processing and integration of these signals. Such analysis would lead to understanding

of the complexity underlying the higher order functions of signaling networks, and may

even help identify novel properties that would not be observable by the study of isolated

signaling pathways [Neves and Iyengar, 2005].

Recently, the enormous amount of protein-protein interaction data [Liu and Zhao, 2004],

[Ito et al., 2001] has been generated and provides invaluable resources for STN study

[Ng and Tan, 2003]. Consequently, there is a great need for developing computational

methods to take advantage of information-rich protein interaction data for understanding

complex signaling mechanisms inside signal transduction networks.

Constructing STN based on PPI is an area of much ongoing research. A statistical

model, based on representing proteins as collections of domains or motifs, which predicts

unknown molecular interactions within these biological networks was proposed by Gomez

et al. [Gomez et al., 2001]. Using Markov chain Monte Carlo method, they then modeled
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the signal transduction networks (STN) in terms of domains in upstream and downstream

protein interactions. Steffen et al. developed a computational method for generating static

models of STN which utilizes PPI maps generated from large-scale two-hybrid screens and

expression profiles from DNA microarrays [Steffen et al., 2002]. Liu et al. applied a score

function that integrated protein-protein interaction data and microarray gene expression

data to predict the order of signaling pathway components [Liu and Zhao, 2004]. Concern-

ing protein modification time-course data, Allen et al. applied a method of computational

algebra to modeling of signaling networks [Allen et al., 2006]. Another work by Fukuda et

al. is to represent the model of signal transduction pathways based on a compound graph

structure. Their method is designed to capture directly the structure of pathways that

biologists bear in mind or that are described in articles [Fukuda and Takagi, 2001]. Based

on the signaling domain-domain interactions, Nguyen and Ho proposed a method that

takes advantage of singling features of molecules to discover STN [Nguyen and Ho., 2006].

One of the most recent works is to search for the optimal subnetworks from PPI according

to some cost functions [Zhao et al., 2008].

Although the previous work achieved many results, there are still some biological char-

acteristics of STN that the previous works did not take much into account. First, it is

known that the deeper level underlying the PPI to transmit signals in cells are func-

tional domains, so-called signaling domains, and their interactions [Pawson et al., 2002],

[Eungdamrong and Iyenga, 2004]. Data of those significant signaling features are struc-

tured, complexly relational, and sparse in different data sources. In order to construct

STN effectively, those data is needed to be appropriately integrated. Second, STN indeed

have many overlapping components including proteins and their interactions

[Neves and Iyengar, 2005]. This work aims to solve those two intricate problems of STN

to better construct STN from PPI networks. To this end, we introduce an effective compu-

tational method to construct STN that (1) exploits integrated multiple signaling features

of STN from heterogenous sources, i.e., protein-protein interactions, signaling domains,

domain-domain interactions, and protein functions, (2) detects overlapping components

using soft-clustering. Additionally, in previous work clustered objects were often indi-

vidual proteins, but our method handled clustered objects as the functional or physical

protein interactions because these interactions are the means to transmit signals in cells.

We evaluated the proposed method using human protein interaction network published

in the database Reactome. Five complex biological processes were tested to demonstrate

the performance. The clustered results are well-matched with these five processes. To

the best of our knowledge, this work is the first one that computationally solves the

STN problem for Homo Sapiens. The preliminary results open a prospect to study other

problems related to complex biological systems in Homo Sapiens.

The rest of the chapter is organized as follows. In Section 4.2, we present our pro-
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posed method to construct STN from human PPI networks and multiple databases using

soft-clustering. The evaluation of the experiments is showed in Section 4.3. Experimen-

tal results, as well as discussion, are presented in Section 4.3.2. In Section 4.3.2, we

first present current results for human STN, then some interesting results for yeast is

summarized. Section 4.5 gives some concluding remarks.

4.2 Materials and Methods

The method does two main tasks. The first one is to extract and preprocess signaling

feature data from various data sources. Those relational data in heterogenous types are

then weighted and normalized by the proposed functions. Based on data extracted in the

first task, the second is to combine weighted data and then cluster protein-protein inter-

actions into STN using soft-clustering. In this section, Subsection 4.2.2 and Subsection

3.2.5 describe two mentioned tasks in succession.

4.2.1 Soft-clustering and PPI Networks

Clustering methods can be divided into hierarchical and partitioning ones. In partitioning

clustering, there are two categories of hard-clustering and soft-clustering. On the one

hand, hard-clustering is based on classical set theory and assigns an instance to exactly

one cluster, e.g., k-means, SOMs, etc. On the other hand, soft-clustering can assign an

instance to several cluster and differentiate grade of representation (cluster membership),

e.g., fuzzy c-means, HMMs, etc. [Futschik and Carlisle, 2005].

In PPI networks, many proteins are believed to exhibit multiple functionalities in

several STN, interacting with different groups of proteins for different functions. As a

result, soft-clustering is appropriate to generate STN in terms of overlapping clusters

which share common interactions. Some soft clustering methods are well applied to PPI

networks.

The line graph generation is one of soft clustering techniques and has a number of

attractive features [Lin et al., 2006]. It does not sacrifice informational content, because

the original bidirectional network can be recovered at the end of the process. Furthermore,

it takes into account the higher-order local neighborhood of interactions. Additionally, the

graph it generates is more highly structured than the original graph. Finally, it produces

an overlapping graph partitioning of the interaction network, implying that proteins may

be present in multiple functional modules.

Ucar et al.’s work proposed a soft clustering method using hub-induced subgraphs

[Ucar et al., 2006]. Their approach consists of two stages. In the first stage, they refine

the PPI graph to improve functional modularity, using hub-induced subgraphs. They
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employ the Edge betweenness measure to identify dense regions within the neighborhoods.

In the second stage, they cluster the refined graph using traditional algorithms. Their end

goal is to isolate components with high degree of overlap with known functional modules.

An additional advantage of the refinement process is its ability to perform soft clustering

of hub proteins. Owing to this approach, they improved functional modularity in PPI

network.

Other soft clustering for PPI is an ensemble framework [Asur et al., 2007]. They

construct a variant of the PCA-agglo consensus algorithm to perform soft clustering of

proteins, which allows proteins to belong to multiple clusters. The hard agglomerative

algorithm places each protein into the most likely cluster to satisfy a clustering criterion.

However, it is possible for a protein to belong to many clusters with varying degrees. The

probability of a protein belonging to an alternate cluster can be expressed as a factor of

its distance from the nodes in the cluster. If a protein has sufficiently strong interactions

with the proteins that belong to a particular cluster, then it can be considered amenable

to multiple memberships.

4.2.2 Extracting signaling feature data from multi-data sources

STN have a complex two-level signaling machinery. The first level of complexity in cellsu-

lar signaling constructs from the large number of molecules and multiple types of interac-

tions between them. The second layer of complexity of signaling biochemistry is apparent

from the fact that signaling proteins often contain multiple functional domains, thus en-

abling each to interact with numerous downstream targets [Eungdamrong and Iyenga, 2004].

Considering these complexities, we extracted the following structured data of signaling

features.

1. Protein-protein interactions (PPI): the upper level consists of the components as

interfaces to transmit signals. PPI data were extracted from Reactome database1.

2. Domain-domain interactions (DDI): the deeper level consists of the functional do-

mains that perform as the basic elements in signal transduction. DDI data were

extracted from iPfam database2.

3. Signaling domain-domain interactions: the functional level consists of signaling do-

mains (specific functional domains) that act as key factors to transduce signals inside

STN. Signaling DDI data were extracted from SMART database3 and referred in

[Pawson et al., 2002].

1www.reactome.org/
2www.sanger.ac.uk/Software/Pfam/iPfam/
3smart.embl-heidelberg.de/
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Table 4.1: List of signaling features and their corresponding data sources.

Feature Database Description of database
Protein-protein Reactome database An online bioinformatics database
interactions of biology described in molecular

terms. The largest set of entries
refers to human biology.

Domain-domain iPfam database A resource describing domain-domain
interactions interactions observed in PDB entries.
Signaling domains SMART database SMART allows the identification and

and [Pawson et al., 2002] annotation of genetically mobile
domains and the analysis of domain
architectures.

Function of protein Uniprot database The world’s most comprehensive
catalog of information on proteins.

Functions of proteins in STN were also extracted from Uniprot database4 in terms of

keywords.

The extracted data are in different types, e.g., the numerical type for number of PPI,

interaction generality, number of signaling DDI or categorical type for protein functions.

Those data have complex relations, such as a protein may have many interactions and

then each interaction may have many DDI. In a domain interaction, interacting partners

may be a signaling domain or not. To exploit these relations, after extracting data from

multi-data sources, we weighted and normalized these relational data by weight functions.

Table 4.2 shows these proposed weight functions and the corresponding explanations.

• PPI weight function (wppi): The topological relation of proteins in the PPI net-

work was extracted in terms of the numbers of interactions of each partner and the

interaction generality.

• Signaling DDI weight function (wSddi): The relation between a PPI and their do-

mains was exploited to study more deeply STN in terms the number of DDI and

signaling DDI mediating this interactions.

• Keyword weight function (wfunc): The relation of a PPI and protein functions was

considered in terms of the keywords tagged in each partner and the keywords shared

between them.

4www.uniprot.org/
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Table 4.2: Signaling features and their weight functions.

Weight functions Notations and explanation
gij : Interaction generality, the number of proteins that interact
with just two interacting partners, pi and pj .

wppi(pij) =
g2

ij

ni∗nj
ni: The number of protein-protein interactions
of the protein pi.
nSddi: The number of signaling domain-domain

wSddi(pij) = nSddi+1
nddi+1 interactions shared between two interacting proteins.

nSddi: The number of domain-domain interactions
shared between two interacting proteins.

wfunc(pij) =
k2

ij

ki∗kj
kij : The number of sharing keywords kij of two interacting
partners, pi and pj .
ki: The number of keywords of the protein pi.

4.2.3 Combining signaling feature data to construct STN using

soft-clustering

After weighing signaling features, it is necessary to combine them all in a unified computa-

tional scheme to take advantage of those data. We integrated these data and represented

them in forms of feature vectors. Each interaction has its own feature vector that has

three elements corresponding to three features, vij = {wppi, wSddi, wfunc}. Subsequently,

we employed a soft-clustering algorithm to cluster the interactions based on their fea-

tures vectors. Soft-clustering can construct STN and detect the overlapping components

that can not be found by traditional hard-clustering. Note that we used Mfuzz soft-

ware package [Kumar and Futschik, 2007] to implement fuzzy c-means (FCM) clustering

algorithm in our experiments. Fuzzy c-means (FCM) clustering algorithm is a popular

soft-clustering algorithm.

Figure 3 summarizes the key idea of our method that does (1) extracting and weighing

signaling features and (2) integrating and soft-clustering them into STN. Given a large

protein-protein interaction network N, the outputs of our method are STN, which are

the subgraphs of edges as protein interactions and node as proteins. Step 1 is to obtain

the binary interactions from the protein-protein interaction network N. From Step 2 to

Step 5 is to do the first task, extracting and then weighing signaling data features by

functions shown in Table 4.2. These steps were done for all binary interactions to exploit

the relations between PPI and signaling features. Step 6 and Step 7 are to perform

the second task, combining weighted feature data, representing them in forms of feature

vectors vij = {wppi, wSddi, wfunc} and lastly doing soft-clustering into STN S. STN S are

returned in Step 8.
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Algorithm 3 The proposed method to construct STN from PPI networks using soft-
clustering and multi-signaling feature data.
Input:

Protein-protein network N.
Set of features F ⊂ {fppi, fSddi, ffunc}.

Output:
Set of signal transduction networks S.

1: Extract binary interactions {pij} from the protein-protein network N. P := {pij}.
2: For each interaction pij ⊂ P
3: Extract and formalize data for the PPI data feature fppi

Calculate the number of interactions ni, nj of each interacting
partner pi and pj, respectively.
Calculate the interacting generality gij of interaction pij.
Weigh the feature fppi by the numbers ni, nj, and gij.

4: Extract and formalize data for the signal DDI feature fSddi

Calculate the number of sharing domain-domain interactions nddi of two inter-
acting

partners, pi and pj.
Calculate the number of sharing signaling domain-domain interactions nSddi of

two
interacting partners, pi and pj.
Weigh the feature fSddi by the numbers nddi, nSddi.

5: Extract and formalize data for the function data feature ffunc

Calculate the number of keywords ki, kj of each interacting partner pi and pj,
respectively.
Calculate the number of sharing keywords kij of two interacting partners, pi and

pj.
Weigh the feature ffunc by the numbers ki, kj, and kij.

6: Combine and represent the all features in the feature vectors vij = {fppi, fSddi,
ffunc}.

7: Apply a soft-clustering algorithm with the set of feature vectors {vij} to cluster in-
teractions pij into signal transduction networks S.

8: return S.

4.3 Evaluation

To evaluate the performance of the method, we consider a complex PPI network to detect

STN out of other biological processes. The tested PPI network does not contain only

signaling processes but also other biological processes functioned inside the network as

the nature in cells. The clustered results should reflect this complicated phenomena,

well construct signaling processes and find overlapping components. We extracted five

heterogeneous processes in Reactome database and the experimental results demonstrated

that our method effectively constructed signaling processes from the PPI network. At
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the end of this section, we also shortly present some results achieved for yeast STN

included (1) signaling domain-domain interaction prediction, (2) yeast MAPK pathways

reconstruction.

4.3.1 Experiments for Human STN construction

The Reactome database consists of 68 Homo sapiens biological processes of 2,461 proteins.

They also published 6,188 protein interactions, among those there are 6,162 interactions

participating in biological processes. Investigating known biological processes in Reactome

database, there are 636 proteins partaking in at least 2 different processes, 400 proteins

in at least 3 processes, 119 proteins in 5 processes. These phenomenon prove that there

exists lot of proteins and their interactions overlapping among these processes.

In our experiments, we extracted a group of five biological processes which have from

30 to 50 proteins and include signaling networks. Table 4.3 shows some information

related to these five processes. Totally, this group consists of 145 distinct interactions

of 140 distinct proteins. Among these processes, there are overlapping interactions and

proteins. Figure 4.1 illustrates the interaction network of five processes.
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Figure 4.1: Protein interaction networks of the five testing processes.

Proteins partaking in these processes are extracted and looked for their interactions
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Table 4.3: Five tested biological processes and some related information.

Reactome annotation Description #Proteins #Interactions
REACT 1069 Post-translational protein 40 23

modification
REACT 1892 Elongation arrest and recovery 31 68
REACT 498 Signaling by Insulin receptor 39 44
REACT 769 Pausing and recovery of 31 68

elongation
REACT 9417 Signaling by EGFR 40 25

in the Reactome interactions set. We strictly extracted only the interactions that have

both interacting partners joining in processes because the method considers the proteins

but more importantly their interactions. The extracted interactions and their signaling

features were then input in the soft-clustering algorithm.

In this work, we applied Mfuzz software package to run fuzzy c-means (FCM) clus-

tering algorithm. It is based on the iterative optimization of an objective function to

minimize the variation of objects within clusters [Kumar and Futschik, 2007]. As a re-

sult, fuzzy c-means produces gradual membership values µij of an interaction i between 0

and 1 indicating the degree of membership of this interaction for cluster j. This strongly

contrasts with hard-clustering, e.g., the commonly used k-means clustering that generates

only membership values µij of either 0 or 1. Mfuzz is constructed as an R package im-

plementing soft clustering tools. The additional package Mfuzzgui provides a convenient

TclTk-based graphical user interface.

Concerning the parameters of Mfuzz, the number of clusters was 5 (because we are

considering 5 processes) and the so-called fuzzification parameter µij was chosen 0.035

(because the testing data is not noisy).

4.3.2 Experimental Results and Discussion for Human STN con-

struction

Actually, two processes REACT 1892 and REACT 498 share the same set of proteins

and the same interactions as well. Also, two signaling processes, REACT 9417 and RE-

ACT 498 have 16 common interactions. Nevertheless, the process ‘post-translational pro-

tein modification’ is separated with the rest processes. In such complex case, the method

should construct STN effectively and detect the overlaps among STN.

The threshold to output clusters is 0.1. The threshold means that if the membership

of an interaction i with a cluster j µij ≥ 0.1, this interaction highly correlates with the
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cluster j and it will be clustered to cluster j. Five clusters are outcomes and then matched

with 5 processes. The results are shown in Table 4.4.

Table 4.4 shows that we can construct signal transduction networks with the small er-

ror and can detect the nearly exact number of overlapping interactions. The combination

of signaling feature data distinguished signaling processed from other biological processes

and soft-clustering detected the overlapping components. When we checked the overlap-

ping interactions among the clusters, there were exact 16 interactions that are shared in

two signaling processes ‘signaling by Insulin receptor’ and ‘signaling by EGFR’. Also, the

same interaction set of the process ‘elongation arrest recovery’ and the process ‘pausing

and recovery of elongation’ are found in their clusters. In fact, REACT 1069 does not

overlap other processes but the results return three overlapping interactions, i.e., one with

REACT 1892 and REACT 769 and two with REACT 498 and REACT 9417.

Table 4.4: Clustered results for five tested biological processes.

Process True positive1 False negative2 False positive3 #Overlap Int4

REACT 1069 0.565 0.174 0.435 3/0
REACT 1892 1.000 0.103 0.000 70/68
REACT 498 0.818 0.068 0.182 17/16
REACT 769 1.000 0.103 0.000 70/68
REACT 9417 0.960 0.120 0.040 17/16

1 True positive: the number of true interactions clustered/the number of interactions of the

fact process.

2 False negative: the number of interactions missed in fact processes/the number of interactions

of the fact process.

3 False positive : the number of false interactions clustered/the number of interactions of the

fact process.

4 #Overlap Int: the number of overlapping interactions among the clusters/the number of

overlapping interactions among the fact processes.

Analyzing the case of interaction (P00734, P00734) shared among REACT 1069, RE-

ACT 498 and REACT 9417, we found some interesting findings. Protein P00734 (Pro-

thrombin) functions in blood homeostasis, inflammation and wound healing and joins

in biological process as cell surface receptor linked signal transduction (have GO term

GO:0007166). In Reactome database, interaction(P00734, P00734) does not happen in the

processes REACT 498 and REACT 9417, however according to the function of P00734,

it probably partakes in one or two signaling processes REACT 498 and REACT 9417.
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Although, the experiment carried out a case study of five biological processes; the

proposed method is flexible to be applied to the larger scale of human interaction networks.

In the intricate relations of many biological processes, the proposed method can well

construct signal transduction networks.

In this chapter, we proposed a general framework to construct STN from mutilple

signaling feature data using soft-clustering. The experiments with various parameters and

other soft-clustering algorithms (not only FCM algorithm in Mfuzz) should be tested.

4.3.3 Some Results of Yeast STN Reconstruction

In addition to the work on human STN, we also carried out the work on yeast STN. This

work consist of two parts: (1) signaling DDI prediction using ILP and (2) MARK yeast

reconstruction.

This work concentrates on study STN for Saccharomyces cerevisiae – a budding yeast.

The objective of this work is twofold. One objective is to present a method of predicting

signaling domain-domain interactions (signaling DDI) using inductive logic programming

(ILP), and the other is to present a method of discovering signal transduction networks

(STN) using signaling DDI.

Figure 4.2: Performance of ILP method

(minpos = 3 and noise = 0) compared

with AM methods for signaling DDI

prediction.

For signaling DDI prediction, we first exam-

ine five most informative genome databases, and

extract more than twenty four thousand possi-

ble and necessary ground facts on signaling pro-

tein domains. We then employ inductive logic

programming (ILP) to infer efficiently signaling

DDI. Sensitivity (88%) and accuracy (83%) ob-

tained from 10-fold cross validation show that our

method is useful for predicting signaling domain

interactions. Studying yeast MAPK pathways,

we predicted some new signaling DDI that do

not exist in the well-known InterDom database.

Assuming all proteins in STN are known, we pre-

liminarily build up signal transduction networks between these proteins based on their

signaling domain interaction networks. We can mostly reconstruct the STN of yeast

MAPK pathways from the inferred signaling domain interactions with coverage of 85%.

Figure 4.2 shows the results for signaling domain-domain interactions. Our experi-

mental results obtained higher sensitivity, specificity, accuracy and precision compared

with AM method [Sprinzak and Margalit, 2001].

From predicted (signaling) domain interaction networks, we raise the question of how
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completely they cover the STN, and how to reconstruct STN using signaling DDI. Our

motivation was to propose a computational approach to discover more reliable and stable

STN using signaling DDI. When studying yeast MAPK pathways, the results of our work

are considerable.

Figure 4.3: MAPK signal transduction pathways in yeast covered by signaling DDI net-
works. The rectangles denote proteins, the ellipses illustrate their domains and the sig-
naling domains are depicted in dark. The signaling DDI are the lines with arrows, the
missing interactions are dashed lines with arrows.

All extracted domains of proteins in MAPK pathways are inputs (testing examples)

in our proposed predictor using ILP method [Nguyen and Ho., 2006]. With 32 proteins

appearing in MAPK pathways, we extracted 29 different protein domains, and some of

them are shared among proteins. Some domains are determined to be signaling domains,

such as domain pf00069 belonging to many proteins, for example, ste11 yeast, fus3 yeast

or pbs 2, etc., and some of them are not signaling domains, such as TEA or MID2.

Figure 4.3 shows yeast MAPK (mitogen-activated protein kinase) covered by signaling

domain interactions. MAPK pathways involve pheromone response, filamentous growth,

and maintenance of cell wall integrity pathways. Table 4.5 shows the results of predicted

signaling DDI when reconstructing STN for the yeast MAPK pathways. Moreover, among

predicted signaling DDI for yeast MAPK pathways, there are some DDI which are newly

discovered, when compared with the InterDom database. For example, our predicted DDI

(pf00071,pf00768), (pf00768,pf00069), (pf00433,pf02200) do not exist in the InterDom

database.

Evaluating signaling domain interactions predicted from the testing set of MAPK do-
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mains, 88% of protein relations in the Cell Wall Integrity PKC pathway, the Pheromone

Response pathway, and the Filamentous Growth pathway are covered, and the Inva-

sion High Osmolarity HOG pathway has coverage of 80%. Outstandingly, lots of do-

main interactions are found in which their corresponding proteins interacted in DIP

(Database of Interacting Proteins) 5 and/or in CYGD (Comprehensive Yeast Genome

Database)footnotehttp://mips.gsf.de /genre/proj/yeast/, for example, seven signaling do-

main interactions in the Cell Wall Integrity PKC pathway belong to 39 protein-protein

interactions in CYGD database, and also belong to 47 protein-protein interactions in DIP.

For estimating the reliability of STN, the reliability score W STN (see in [Nguyen and Ho., 2006])

was calculated for yeast MAPK pathways. The reliability score of the Cell Wall Integrity

PKC pathway is the highest with W STN = 7.19.

Table 4.5: Results of predicted signaling DDI in the yeast MAPK pathways

The yeast MARK pathways Percentage of signaling #CYGD PPI #DIP PPI
pathways DDI predicted covered covered

Cell Wall Integrity PKC 88% 39 47
Pheromone Response 88% 41 42
Filamentous Growth 88% 40 38
Invasion High Osmolarity HOG 80% 40 53

The work is the first work that took effort to predict signaling DDI. The results on

yeast STN confirmed the role of signaling domain-domain interactions and it

4.4 Outlook

The Section 4.3.1 presents a small scale of interaction networks for five biological pro-

cesses, however, the method is easy to be applied to the larger scale of human interaction

networks. In the intricate relationships with various processes, the proposed method can

well detect signal transduction networks. The preliminary results encourage the further

studies on biological complex systems.

1. Consider the whole interaction networks or some functional subnetworks, we defi-

nitely can construct not only the known signal transduction networks but also new

ones. The components (proteins and their interactions) are shared among these

networks to perform various functions in different biological processes.

5http://dip.doe-mbi.ucla.edu/
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2. Given starting nodes (e.g., membrane proteins) and ending nodes (e.g, transcription

factors), the proposed method can specify the signal transduction networks and then

discover complete signaling pathways.

3. In human disease study, human interaction networks, signal transduction pathways

and diseases have very close associations. Signaling network dysfunction can result

in abnormal cellular transformation or differentiation, often producing a physiolog-

ical disease outcome. The further work on identification of disease-related subnet-

works are significant and can be investigated through the constructd signal trans-

duction networks.

4. Our proposed soft-clustering method is simple to integrate other useful biological

features and apply to other organisms.

We think that this presented work is feasible and potential to get more considerable

results with many extensions in biological complex systems research.

4.5 Summary

In this chapter, we have presented a soft-clustering method to construct signal transduc-

tion networks from protein-protein networks. Many structured data of signaling features

were extracted, integrated and exploited by soft-clustering to build STN. The experimen-

tal results demonstrated that our proposed method can construct STN effectively. The

overlapping parts among STN were well detected. In future work, we would like to further

investigate signaling features of proteins and protein interactions. Some other methods in

relational learning and statistical learning will be consider to improve the work in some

ways. It is also promising to discover the novel signal transduction networks from large

interaction networks.

As proposing the general framework to construct signal transduction networks from

protein interaction networks using soft-clustering, the method should be more carefully

tested with various parameters and other algorithms (not only FCM algorithm in Mfuzz).

Other computational measures also need calculated to better demonstrate efficiency of

the method. Yet, the experimental results show that the proposed method is promising

to construct signal transduction networks from protein-protein interaction networks.

In future work, we would like to further investigate signaling features of proteins

and protein interactions. It is also promising to discover the novel signal transduction

networks from large interaction networks. Not limited to signal transduction networks,

the entire signal transduction pathways in particular and other complex biological systems

in general, are able to be found when adding more information.
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Chapter 5

A Semi-Supervised Learning

Approach to Disease Gene

Prediction

Discovering the human genes that cause disease (or “disease genes”) is one of the emerg-

ing tasks in bioinformatics and biomedicine. In many ongoing research projects, protein-

protein interaction networks (PPI) are being exploited in the discovery process, because

there is a complex interplay between disease genes and PPI. Most current PPI-based meth-

ods only employ data regarding well-known disease genes, using supervised learning. How-

ever, there is a lot of valuable data containing information about unknown genes which

could potentially enhance disease gene predictions. Combining multiple data sources for

both known disease genes and unknown genes is expected to better predict which genes are

likely to be disease genes. We have developed a novel method to effectively predict disease

genes, by taking advantage of the wealth of existing data which may contain information

about unknown genes. To this end, our method makes the best of semi-supervised learning,

integrating data of human protein-protein interactions and various biological data extracted

from multiple proteomic/genomic data sources. An experimental evaluation demonstrated

that our proposed method outperformed other methods in terms of several measures in-

cluding sensitivity, specificity, precision, accuracy, and a balanced F-score. A considerable

number of potential disease genes were discovered and initially validated.
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5.1 Introduction

One of the ultimate goals of life science is to improve our understanding of the processes

and events related to disease. It is known that genetic diseases result from gene muta-

tions caused by several factors, such as environment. Genes that have been identified as

causing some diseases are called “disease-causing genes” or “disease genes” [NCBI, 2007].

Much biomedical work is focusing on monogenic diseases, investigating the position of a

single gene in a chromosome through use of the positional cloning technique or linkage

analysis, and on polygenic diseases using association analysis. However, we are still far

from uncovering the molecular mechanisms of most diseases, which remain an important

challenge to researchers.

The availability of important biological databases now allows research groups to de-

velop computational methods for predicting disease genes from various data sources. Early

work on disease gene prediction, typically methods based on sequences [Adie et al., 2005]

or annotations [Turner et al., 2003], investigated disease genes as separate and indepen-

dent entities.

However, it is well-known that biological processes are not the work of single molecules,

but rather are the product of complex molecular networks, especially protein-protein

interaction networks. Thus, there has been a shift from attempting to understand the

molecular networks of other species to understanding the networks that underlie human

diseases [Ideker and Sharan, 2008]. In particular, inspired by the findings for yeast PPI

networks, several research groups are now focusing on the exploitation of human PPI

networks to predict human disease genes via their corresponding proteins (intuitively,

those are called disease proteins).

Research on protein-protein interaction networks and diseases has been rapidly in-

creasing in the last two or three years. Many PPI-based methods have been proposed,

each with a different way of exploiting the key assumption that “the network-neighbor

of a disease gene is likely to cause the same or a similar disease”, see [Goh et al., 2007],

[Ideker and Sharan, 2008], and [Benjamin Schuster Bockler and Alex Bateman , 2008]. In

an early work, disease genes were uncovered by topological features in human PPI net-

works using the k -nearest neighbor algorithm [Xu and Li, 2006]. Because of the sparse-

ness of other proteomic/genomic data associated with certain diseases, several PPI-based

methods require the integration of heterogeneous biomedical data in order to understand

the complex interplay between genes/proteins and diseases [Kann, 2007]. A disease gene

classification system has been proposed, to integrate the topological features of protein in-

teraction networks with sequence and other features, and to analyze these features using

support vector machines [Smalter et al., 2007]. Lage et al. (2007) used the phenomic

ranking of protein complexes linked to human diseases to develop a Bayesian model
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for predicting new candidates for disorders. Borgwardt and Kriegel (2007) integrated

graph kernels for gene expression and human PPI to predict disease genes. In another

direction, some work has concentrated on using PPIs to discover disease genes for spe-

cific diseases, i.e., Alzheimer’s disease, using heuristic score functions [Chen et al., 2006],

[Krauthammer et al., 2004].

The aim of the work presented in this chapter is to develop a novel and effective com-

putational method for discovering disease genes, which takes into account recent biological

results on protein networks and diseases.

The starting point of this work is, how best to utilize the wealth of existing data that

may contain information about unknown genes. All previous work employed supervised

learning schemes, which exploited data regarding known disease genes to predict new

disease gene candidates. However, it has recently been shown by Oti et al. that genes

associated with a particular phenotype or function are not randomly positioned in the

PPI network, but tend to exhibit high connectivity; they cluster together and occur

in central network locations [Oti et al., 2006]. That overriding property suggests that

semi-supervised learning can be used in this prediction problem to exploit not only data

concerning discovered disease genes but also data which may concern disease genes that

are not yet known. In fact, this property solidifies the fundamental assumptions about

the consistency of semi-supervised learning and provides more evidence for taking into

account information regarding the unknown genes. Moreover, in addition to the protein

topological features extracted from PPI databases, semi-supervised learning enables a

systematic consideration of proteomic/genomic features related to diseases from various

available data sources, which further enriches this computational scheme.

This work not only proposes a new and effective method for disease gene prediction, but

also has generated significant new findings. We carefully carried out various experiments

with disease gene information extracted from the OMIM (Online Mendelian Inheritance in

Man) database (version 2007) [Hamosh et al., 2005]. Testing with all interacting partners

of disease proteins, we found 568 putative disease genes. Some encouraging results were

indirectly validated in various ways.

We performed two comparative experiments to evaluate the performance of the method.

First, 10 times stratified 10-fold cross validations were conducted using our new Semi-

Supervised Learning (SSL) method, the k-nearest neighbor (k-NN) method [Xu and Li, 2006],

and the Support Vector Machines (SVMs) method [Smalter et al., 2007]. The results show

that the SSL method outperforms the other two in terms of sensitivity, specificity, preci-

sion, accuracy, and a balanced F-score. Next, we compared our SSL method to the k-NN

method with different sizes of labeled sets, and did twenty trials for each experiment to

evaluate the accuracy. It turns out that the achieved accuracy of SSL is higher than that

of k-NN.
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There are about 25-30,000 genes in the human body. As reported in [Hamosh et al., 2005],

some 3,053 of them are known to cause disease, and for these we use the term “known

disease genes” or “disease genes”. The more that 20,000 remaining genes, which may or

may not cause disease, are called “unknown genes” in this chapter. Finally, genes that are

assumed not to cause any disease are referred to as “known non-disease genes” or simply

“non-disease genes”.

The rest of the chapter is organized as follows. In Section 5.2, we present our proposed

method to discover disease genes based on human PPI networks and multiple databases

using semi-supervised learning. The comparative evaluation of the experiments is showed

in Section 5.3.2. Predictive rules of PPI and DDI, as well as discussion, are presented in

Section 5.4. Section 5.5 gives some concluding remarks.

5.2 Materials and Methods

In this section, we will describe our method to predict disease genes using semi-supervised

learning. First, we give a brief introduction to semi-supervised learning, and explain why

it is suitable for predicting disease genes with PPI networks. Then, we intuitively describe

the proposed method for disease gene prediction. Finally, we present the score function

for estimating the biological significance of extracted features for disease gene prediction.

5.2.1 Semi-Supervised Learning and Disease Gene Prediction

Semi-supervised learning (SSL) is halfway between supervised and unsupervised learning.

It exploits both labeled data and unlabeled data to do either supervised learning or

unsupervised learning. A given data set X = {x1, ..., xl, xl+1, ..., xn} can always be divided

into two parts. The first one is the set of l data points Xl = {x1, ..., xl} which are labeled

by the label set Yl= {y1, ..., yl}, and the other one is the data set of u data points Xu =

{xl+1, ..., xn}, the labels of which are not known. The goal is to predict labels of unlabeled

data. Figure 5.1 shows the improvement of SSL in learning both labeled and unlabeled

data [Zhu, 2005].

Semi-supervised learning methods use unlabeled data to either modify or reprioritize

hypotheses obtained from labeled data alone. Although not all methods are probabilistic,

it is easier to look at methods that represent hypotheses by p(y—x), and unlabeled data

by p(x). Generative models have common parameters for the joint distribution p(x, y).

It is easy to see that p(x) influences p(y—x). Mixture models with EM is in this cate-

gory, and to some extent self-training. Many other methods are discriminative, includ-

ing transductive SVM, Gaussian processes, information regularization, and graph-based

methods. Original discriminative training cannot be used for semi-supervised learning,
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Figure 5.1: Semi-supervised learning.

since p(y—x) is estimated ignoring p(x). To solve the problem, p(x) dependent terms are

often brought into the objective function, which amounts to assuming p(y—x) and p(x)

share parameters [Zhu, 2005].

Some often-used semi-supervised learning methods include EM with generative mix-

ture models, self-training, co-training, transductive support vector machines, and graph-

based methods [Chapelle et al., 2006]. SSL is very useful in many real-word problems and

has recently attracted an increasing number of researchers since labeling often requires

much human labor, whereas unlabeled data is far easier to obtain [Chapelle et al., 2006].

In bioinformatics, SSL is also applied to solve many problems and has achieved consider-

able results, for example, in the study of protein classification [Weston et al., 2005] and

in the functional genomics [Mark-A and Scheffer, 2004], etc.

The necessary question to ask before using SSL is whether the method is appropriate

to the topology of PPI networks and the combination of multiple data features. The

topology of PPI networks satisfies the fundamental assumptions about the consistency

of SSL. These assumptions of consistency are: (1) nearby points are likely to have the

same label, and (2) points on the same structure (typically referred to as a cluster or

a manifold) are likely to have the same label [Zhou et al., 2004, Chapelle et al., 2006].

Considering the characteristics of disease gene distribution in PPI networks, we know

that genes associated with a particular phenotype or function, including the progression
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of disease, are not randomly positioned in the network. Rather, they tend to exhibit high

connectivity, cluster together, and occur in central network locations [Oti et al., 2006].

As a result, SSL is appropriate for exploiting PPI networks in disease gene prediction.

Moreover, considering the topological properties of human protein-protein interaction

networks, graph-based semi-supervised learning is suitable for the task of disease gene

prediction. Another strength is that SSL is capable of combining various data not only

of disease genes but also of their information-rich neighbors. The details of our proposed

method are presented in Section 5.2.

5.2.2 The Proposed Method for Predicting Disease Genes

The key premise is to enrich the disease gene classifier by (1) making use of both known

disease genes and as yet unidentified disease genes (unknown genes), and (2) integrating

multiple data sources in a semi-supervised learning scheme. The method addresses three

main tasks to successfully predict disease genes.

1. Extend the initial known disease protein set to be the set of both labeled data

(as known disease proteins), and unlabeled data (as newly extracted candidate

proteins). Based on the assumption of the phenotype and genotype similarity of

neighbors in PPI networks, the interacting partners of known disease proteins were

extracted to build an extensive candidate protein set. The interacting partners of

disease proteins are considered potentially reliable candidate proteins. This task is

to extract candidate proteins, rich data of which will be later exploited to comple-

ment known disease protein data.

2. Compile multiple disease-related feature data of all proteins in the extended set.

Going through the literature, we detected several features that may affect diseases.

However, data of these features is stored in various forms and scattered in different

data sources. This task is to extract, preprocess, collect and represent those feature

data in a unified form.

3. Integrate all of the rich compiled protein data in the extended set using SSL, to

predict disease genes. This task is to achieve the best performance of semi-supervised

learning in disease prediction by learning combined multiple features data of both

labeled and unlabeled data.

Corresponding to these three main tasks, we carried out three steps. Figure 5.2 il-

lustrates these steps: (1) Identify disease proteins, non-disease proteins, and candidate

proteins, (2) Extract the topological features and disease-related proteomic/genomic fea-

tures of proteins, and (3) Use semi-supervised learning to predict disease genes. Detailed
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procedures for these steps are also shown in Table 5.1. Given the known disease protein

set, Step 1 extends this set by adding more potential candidate proteins and also prepares

the negative example data set (see more in Subsection 5.3.1). In Step 2, we investigated

the seven data sources: OPHID [Brown and Jurisica, 2005], Uniprot1, Gene Ontology2

Pfam3, InterDom4, Reactome5, and Gene expression data in [Mariadason et al., 2002] to

extract nine features. The extracted data were preprocessed and weighted by our pro-

posed score functions (see more in Subsection 5.2.3). Finally, in Step 3 we combined the

feature data of all proteins in the extended set. Step 3 then builds a classifier using a

semi-supervised learning algorithm. Specifically, a graph-based semi-supervised learning

algorithm, the so-called Harmonic Gaussian method [Zhou et al., 2004], is appropriately

applied.

Figure 5.2: Three-step semi-supervised learning method for disease gene prediction.

5.2.3 Scores of Proteomic/Genomic Features

Several features are known to affect and cause diseases. However, data concerning those

features are scattered in a wide range of data sources. These data should be integrated into

1http://www.uniprot.org/
2http://www.geneontology.org/
3http://www.sanger.ac.uk/Software/Pfam/
4http://interdom.i2r.a-star.edu.sg/
5http://www.reactome.org/
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Table 5.1: Three main steps of the proposed semi-supervised learning method for disease
gene prediction.

Step 1: Identify disease proteins, non-disease proteins and disease protein candidates.
First, take available disease genes, e.g., from the OMIM database, as positive examples
(labeled data) and the unknown genes (unlabeled data), and map them to the correspond-
ing proteins identified by the Uniprot accessions. The genes which belong to the UEGH
set are excluded, because they are essential genes having features that differ significantly,
both from disease genes and from other genes [Tu et al., 2006]. As the result, we obtain
the set P+ of disease proteins and the set P of unknown proteins. Second, starting from a
protein interaction network, e.g., from the OPHID database, extract from P the set Pc of
interacting partners of disease proteins, and consider them as candidate proteins. Third,
randomly choose non-disease proteins (as negative examples) from the set P excluded
proteins in the set Pc. The number of proteins in the non-disease protein set P− is equal
to the number of proteins in the disease protein set P+. Denote by P∗ the set obtained
by the union of disease proteins, the candidate proteins, and the non-disease proteins,
i.e., P∗ = P+ ∪ P− ∪ Pc.

Step 2: Extract and represent the topological features and disease-related pro-
teomic/genomic features. For each protein in P∗, extract a number of topological features
and disease-related proteomic/genomic features in terms of their numerical scores. In
fact, each feature fk corresponds to a score scorek estimated from one of the seven data
sources: OPHID, Uniprot, GO, Pfam, InterDom, Reactome, and Gene Expression.

Step 3: Use semi-supervised learning to predict disease genes. Due to the network nature
of protein-protein interactions, graph-based methods of semi-supervised learning are ap-
propriate to the prediction task, using the data obtained from Steps 1 and 2. The output
is a set of new putative disease genes.

one computational scheme to better predict disease genes. Our proposed method makes

use of semi-supervised learning to combine information about various features from both

labeled and unlabeled data (as candidate proteins).

In addition to topological features of PPI extracted from the OPHID database, we

extracted eight other proteomic/genomic features that have comprehensive associations

with diseases from the six data sources: Uniprot (three features, sequence length, tagged

keyword, and codded enzyme), GO (one feature, GO term), Pfam (one feature, protein

domain), InterDom (one feature, domain-domain interaction), Reactome (one feature,

pathway), and Gene Expression (one feature, gene expression). Table 5.2 shows the

statistics of the extracted proteomic/genomic features from each data source. Columns

3 and 4 are the numbers of records extracted according to their respective features, and

the last two columns are the numbers of feature categories.

Among the 5,557 proteins in P∗, 31,465 data records were extracted for the keyword
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Table 5.2: Statistics of two sets P+ and P∗ with the eight extracted proteomic/genomic
features.

Database Feature fk #Record #Category
in P∗ in P+ in P∗ in P+

Uniprot f length 4412 1496
fKW 31465 13597 564 504
fEC 1123 451 133 106

Gene Otology fGO 17241 6404 2911 1817
Pfam fPfam 6817 2426 1796 1413

Reactome fPathway 1167 540 68 62
InterDom fDDI 3854 1322

Gene Expression f expression 696 52

features, and 1,123 for the enzyme features. These proteins share the same 564 keywords

and 133 enzymes, as shown in Table 5.2. The keyword and enzyme data are categorical;

for example, (P05067, alzheimer disease) and (P01011, disease mutation) where P05067,

P01011 are the Uniprot names, and “alzheimer disease”, “disease mutation” are their

keywords, or (O75688, ec3.1.3) where O75688 is the Uniprot name and ec3.1.3 is the

coded enzyme.

The features data are stored in different data types, i.e., numerical type such as se-

quence length and number of domain-domain interactions, or categorical type such as

keywords, pathways and coded enzymes. Accordingly, we defined the score functions to

weight and formalize the extracted features, and then represented them as feature vectors

in order to integrate the features into to a unified computational scheme.

The score functions of selected features are introduced below summarized in Table 5.3.

• The topological score: This score is computed based on protein-protein inter-

actions, and shows the topological association between a given protein and disease

proteins. We can assume that if one protein has many interactions with disease pro-

teins, and joins in the group of disease proteins, it is likely to be a disease protein.

Therefore, the higher PPI score a protein has, the more probable that it causes a dis-

ease. Human protein-protein interactions are extracted from the OPHID database

[Brown and Jurisica, 2005]. The score scoreppi(pi) for the feature fppi is defined as

in Table 5.3.

• The keyword score: Disease proteins may have the same keywords, and these

common keywords are tagged more frequently in the set of disease proteins than

other proteins. Keywords are scored by their frequency and assigned to each protein

pi by scorekw(pi) shown in Table 5.3.
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• The enzyme score: Enzymes perform a wide variety of functions inside living

organisms. The relationship between enzymes and diseases has been studied and

proved in many works. Like the keyword feature, some enzymes are shared among

the group of disease proteins. Score scoreec(pi) shows how probable it is that a

protein is a disease protein, in terms of coded enzymes (shown in Table 5.3).

• The sequence length score: We investigated the protein sequence length feature

to study how the sequence length of a protein relates to disease-causing mechanisms.

Score scorelength(pi) is the ratio of sequence length of a protein over the average

length of disease proteins (shown in Table 5.3).

• The GO term score: GO terms are divided into three groups: molecular function,

biological process, and cellular component. These terms present the general infor-

mation about the proteins, and the terms of disease proteins might focus on some

specific groups. The score for GO term feature is shown as scorego(pi) in Table 5.3.

• The protein domain score: Protein domains are the building blocks of proteins.

Disease proteins may structurally or functionally depend on their domains. If a

protein has many domains related to disease, it is more likely to be a disease protein.

Pfam domains dj of all considered proteins are extracted and scored by scorepfam(pi)

(shown in Table 5.3).

• The DDI score: Domain-domain interactions (DDI) underlie the interactions of

proteins, and themselves perform specific functions in cells. DDI may play an im-

portant role in the regulation of PPI in causing diseases. We extracted the DDI

data from the InterDom database and weighted them by scoreddi(pi) based on the

number of their DDI shared with disease proteins (shown in Table 5.3).

• The biological pathway score: Many disease processes arise from defects in

biological pathways. In the Reactome database, all proteins in the extended set

take part in 68 pathways. Among those pathways, 62 contain at least one disease

protein. The scorepathway(pi) of feature fpathway is based on the frequency of the

pathways observed in both P∗ and P+ (shown in Table 5.3).

There is no doubt about the association between disease and gene expression. The

gene expression data used is a gene expression profile that defines colon cell matura-

tion [Mariadason et al., 2002]. The gene expression feature was not scored because

its original data was formalized. The above score functions demonstrate the similar-

ity of candidate proteins and disease proteins. Combining all the features produces

a biologically significant data set for disease gene prediction.
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5.3 Evaluation

Performance of the proposed semi-supervised learning method was compared with that

of two closely related works using k -nearest neighbors (k -NN) [Xu and Li, 2006] and

support vector machines (SVMs) [Smalter et al., 2007] in terms of several measures.

5.3.1 Experiment Design

We carried out two comparative experiments. The first employed a 10 times stratified 10-

fold cross validation to evaluate SSL, k -NN, and SVMs in terms of sensitivity, specificity,

precision, accuracy, and a balanced F-score. In the second one, we varied the labeled set

size l and performed twenty trials to compare the accuracy of the proposed method and

the k -NN method [Xu and Li, 2006].

We prepared three data sets to carry out the experiments: (i) a set of disease genes,

(ii) a set of non-disease genes, and (iii) a set of protein-protein interactions.

The OMIM database (version 2007) is a catalog of human genes and genetic disorders.

In OMIM, the list of hereditary disease genes is described in the OMIM morbid map. As

reported in [Hamosh et al., 2005], there are 4,512 records with 3,053 unique OMIM iden-

tifiers in the catalog. A total of 3,053 human disease genes were mapped, to look for their

disease proteins identified by Uniprot names. The results showed 3,590 corresponding

disease proteins. Among them, 1,502 proteins have published interactions in the OPHID

database.

Compiling a list of non-disease genes is difficult. A recent study [Tu et al., 2006]

showed that the human genome may contain thousands of essential genes having features

that differ significantly, both from disease genes and from other genes. In the absence of a

set of well-defined essential human genes, they considered the set of ubiquitously expressed

human genes (UEHG), also known as housekeeping genes, as an approximation. Tu et

al. proposed to classify them as a unique group for comparisons of disease genes with

non-disease genes. Mapping to Uniprot names, there are 723 proteins corresponding to

UEHG. From the set of unknown genes, we randomly chose negative examples, which do

not belong to both the OMIM morbid map and the UEHG set. The number of negative

examples is equal to the number of positive examples.

Human protein-protein interactions were extracted from the OPHID database

[Brown and Jurisica, 2005]. Among 51,934 human protein-protein interactions stored in

OPHID, there are 13,368 interactions which have at least one interacting partner belonging

to the set of disease proteins. From 13,368 interactions, the initial set of 1,502 disease

proteins was extended to 5,775 proteins.

We used Weka [Witten and Frank, 2005] to run k -NN and SVMs (Sequential Minimal
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Optimization (SMO) algorithm). For k -NN, the different parameters k were chosen ex-

actly as in [Xu and Li, 2006]. For SVMs, the kernels were RBF and linear kernel functions,

and other parameters were default.

In the SSL implementation, SemiL software that developed by Huang and Kecman

[Huang and Kecman, 2004] was employed to run the Harmonic Gaussian method. SemiL

software is efficient for solving large-scale semi-supervised learning problems using graph

kernels. The Harmonic Gaussian method is suitable for the topological characteristics of

PPI networks and the combination of multiple feature scores. In the algorithm, data is

represented as a graph G = (V, E) with V as the set of nodes corresponding to both l

labeled data points and u unlabeled ones. An n× n symmetric weight matrix W on the

edges of the graph is given. W was defined as Wij = exp(− ‖ xi − xj ‖)2/2σ2 xi if xi 6=
xj, otherwise wij = 0, where xi, xj are data points. The nearby points in Euclidean space

are assigned large edge weights. Intuitively, unlabeled points that are nearby in the graph

have similar labels. In our experiment, the weight matrices W were calculated with two

different distance functions, i.e., Euclidean distance and Cosine distance, and the degree

of graph was 20.

5.3.2 Experiment Results

Five measures of prediction quality are as follows.

Sensitivity =
TP

TP + FN
, Precision =

TP

TP + FP
, F = 2 ∗ SS ∗ P

SS + P
,

Specificity =
TN

TN + FP
, Accuracy =

TP + TN

TP + FN + TN + FP

where TP, FN, TN, FP, SS, P denote true positive, false negative, true negative, false

positive, sensitivity and precision, respectively.

In the first experiment, performance of the methods was also statistically tested in

terms of confidence intervals, to give us an estimate of the amount of error involved

in our data. To estimate a 95% confidence interval for each calculated specificity and

sensitivity, we used t distribution. The 95% confidence intervals are shown in Table

5.4. The experimental results demonstrated that the SSL methods outperformed other

methods in disease gene prediction.

In the second experiment, from the training data set we randomly selected l data points

as labeled data, while the rest (n-l) were unlabeled data. Then, accuracy was estimated by

comparing the predicted labels and true labels. For each labeled set size l, we performed

20 trials. The result is the average accuracy of those 20 trials. These procedures were
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Table 5.4: The 10 time 10-folds cross validation performance of SSL methods (SSL1 with
Cosine distance and SSL2 with Euclidean distance) compared to two methods SVM and
k-NN .

Precision Accuracy Sensitivity Specificity F-measure
SSL1 0.812±.042 0.823±.019 0.852±.031 0.794±.041 0.829±.013
SSL2 0.806±.039 0.820±.019 0.850±.026 0.789±.036 0.825±.013

SVMs 0.713 ±.032 0.741±.023 0.804±.035 0.677±.038 0.756 ±.019

1-NN 0.779±.033 0.786±.032 0.798±.025 0.774±.042 0.789 ±.032
3-NN 0.768±.037 0.782±.020 0.806±.030 0.757±.037 0.787±.027
5-NN 0.771±.031 0.771±.017 0.819±.029 0.744±.037 0.789±.027
7-NN 0.761±.042 0.761±.024 0.822±.030 0.720±.022 0.782±.019
9-NN 0.776±.030 0.540±.025 0.770±.027 0.752 ±.034 0.763±.026

carried out for both the SSL method and the k -NN method [Xu and Li, 2006] on the same

test data sets.

Figure 5.3 shows the accuracy of our method and the k -NN method with various

parameters k. When the labeled set size is small (10% of the data set), semi-supervised

learning obtained non trivial accuracy, 78%. When the amount of labeled data is at least

half of the total data set, the accuracy of the SSL method is over 80%. By comparison,

SSL method obtained higher accuracy than k -NN method with all the labeled set sizes.

Moreover, the results also demonstrated that when little labeled data is available, semi-

supervised learning can predict disease genes with high accuracy, and performs better

than supervised learning.

5.4 Discussion

In addition to computational evaluation, we endeavored to look for biological evidence

to support our method. We found some interesting evidence when verifying the new

putative disease genes. Testing the whole network of protein interactions, we predicted

572 putative proteins corresponding to 568 putative genes.

For evaluating the findings, some indirect methods were used to demonstrate the

potential of putative disease genes. These strategies were: (i) validating the putative

disease gene’s keywords and pathways shared with known disease genes, (ii) checking

their functional categories and gene similarity via DAVID tools [Dennis et al., 2003];

(iii) testing them with Endeavour – Computer Program For Identifying Disease Genes

[Aerts et al., 2006], and (iv) looking their disease-related information up in the literature.

This section discusses some interesting findings.
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Figure 5.3: Accuracy of the proposed method with different sizes of labeled data for the
Euclidean and Cosine distance compared to the k -NN method.

First, we checked whether the putative disease proteins have keywords and path-

ways of known disease proteins. Among 47 Reactome pathways shared with known dis-

ease proteins, we found that the set of putative proteins belonged to many pathways

related to disease traits, such as ‘Signaling in Immune system’ (29 putative proteins),

e.g., O00459, P01112, P04439; ‘Hemostasis process’ (25 putative proteins), e.g., O00459,

P01112, P04085; and ‘Gene expression process’ (21 putative proteins), e.g., O60563. Sim-

ilarly, there are 270 Uniprot keywords that are tagged for known disease proteins. Among

them, many putative disease proteins share the same keywords, e.g., ‘alternative splicing ’

with 212 proteins, ‘polymorphism’ with 195 proteins, and ‘glycoprotein’ with 187 proteins.

The second validation is to check functional categories, and gene similarity of the

putative disease genes via DAVID tools. Interestingly, 29 genes were found in 67 records

in GAO – Genetic Association Database (version 2008)6. For example, IGFBP2 (insulin-

like growth factor binding protein 2, 36kda), and TNFSF8 (tumor necrosis factor (ligand)

superfamily, member 8) are related to the term ‘diabetes, type 1’ ; IFNAR1 (interferon

alpha, beta and omega receptor 1) is related to the term ‘Hepatitis B, Chronic’, and

ITGA3 (Integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor)) is related

to the term ‘breast cancer’. Checking the putative disease genes in OMIM, 2 genes are

related to 8 records found in database OMIM with the term ‘Colorectal cancer’, e.g.,

BAX (bcl2-associated x protein) and HRAS (v-Ha-ras harvey rat sarcoma viral oncogene

6http://geneticassociationdb.nih.gov
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homolog). The Figure 5.4 show some of genes related to term ‘immune’ in database GAO.

Figure 5.4: The testing putative disease genes with database GAO related to the term
‘immune’.

In the third evaluation, we used the Endeavour system to rank the putative disease

genes. Endeavour identifies disease genes by ranking them from the rank of each individual

data source. We did two tests with the Endeavour system. First, all the test data were

input into Endeavour and ranked with all data sources. There are 42 genes with p-value

≤ 0.05 which are found in the set of predicted disease genes. Some of them obtained a

very high rank with a statistically significant p-value. Table 5.5 shows top 10 putative

genes as ranked by Endeavour system.

To study how the candidate genes related to specific diseases, we then applied Endeav-

our to test 568 candidate genes for three diseases, i.e., cancer, diabetes, and Alzheimer’s.

In the Endeavour system, the score of each gene was precalculated by the Ouzounis and

Prospectr systems to investigate the similarity between the genes being tested and the

genes related to the three diseases in these two systems. It is interesting that the Endeav-

our system returned high ranked genes with p-value ≤ 0.01, for example, genes MYH10,

DYNC1H1, CACNA1D, LAMA4, GIPC1, NCOR1.

Finally, we looked to the biomedical literature to find the evidence for the putative dis-

ease genes. As in [Tu et al., 2006], ubiquitously expressed human genes (UEGH) should

be regarded as the most severe disease genes. Among 568 newly predicted disease pro-

teins, there are 6 proteins which correspond to UEHG genes: nherf human, ddx3x human,
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Table 5.5: List of some putative disease proteins and the corresponding disease genes.

#Rank Gene ID Q-int P-value
2 ENSG00000133026 1.16E-08 0.00026408
4 ENSG00000010810 3.70E-07 0.001516515
7 ENSG00000171094 2.47E-06 0.003953699
10 ENSG00000065361 4.90E-06 0.005591587
11 ENSG00000178568 5.64E-06 0.006002614
13 ENSG00000112769 6.97E-06 0.006679875
14 ENSG00000162434 7.68E-06 0.00701467
16 ENSG00000115306 9.49E-06 0.007801282
17 ENSG00000123384 9.80E-06 0.007931698
22 ENSG00000077522 1.26E-05 0.00899866

tyy1 human, 1433t human, ctbp1 human, spta2 human.

The hepatitis C virus (HCV) core protein influences the expression of host genes

[Owsianka and Patel, 1999]. Ddx3x human (ATP-dependent RNA helicase DDX3X)

acts as a cofactor for XPO1-mediated nuclear export of incompletely spliced HIV-1 Rev

RNAs, and is also involved in HIV-1 replication. This protein interacts specifically with

the HCV core protein, resulting in a change in intracellular location.

Protein tyy1 human acts as a repressor in the absence of adenovirus E1A protein,

but as an activator in its presence. A adenoviruses, a group of viruses that infect the

membranes (tissue linings) of the respiratory tract, the eyes, the intestines, and the urinary

tract, account for about 10% of acute respiratory infections in children, and are a frequent

cause of diarrhea.

Protein trrap human is the isolation of highly conserved 434 kDa protein; and it inter-

acts specifically with the c-Myc N terminus, and has homology to the ATM/PI3-kinase

family. Trrap human (related to gene trrap) also interacts specifically with the E2F-1

transactivation domain. Expression of transdominant mutants of the protein trrap human

or antisense RNA blocks c-Myc- and E1A-mediated oncogenic transformation. Then, tr-

rap was suggested as an essential cofactor for both the c-Myc and E1A/E2F oncogenic

transcription factor pathways [McMahon et al., 1998].

5.5 Summary

in this chapter, we have introduced a method based on semi- supervised learning, integrat-

ing multiple data features, for disease gene prediction. The method proposed here is not

restricted to any particular disease or particular group of data features. We investigated

and chose several features that are considered relevant to diseases. Later, when there
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are other, better features, the method is flexible enough to combine them as well. The

experimental results demonstrated that our proposed method performed well with high

accuracy, and at the same time, predicted some new disease genes. Moreover, the exper-

imental results with small amounts of labeled data demonstrated an improved ability to

study specific diseases when the known disease genes (as labeled data) are very limited.

In future work, we would like to validate the predicted disease genes in a wet-lab. Other

work will involve applying and comparing the performance of the Harmonic Gaussian

algorithm with other semi-supervised learning algorithms for disease genes prediction.

Various protein-protein interaction databases should be combined to widen knowledge of

the interaction networks of disease genes.
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Chapter 6

Conclusions and Future Work

6.1 Summary of the Dissertation

In this thesis, we have presented a study of protein-protein interactions and two related

problems in medicine, i.e., (1) protein-protein interaction prediction, (2) signal transduc-

tion network construction, and (3) disease-causing gene prediction. The study considered

the research problems in both theoretical and practical views. The theoretical view con-

cerned about the proposal of new methods for protein-protein interaction prediction, sig-

nal transduction network construction, and disease-causing gene prediction. The practical

views came from the effective application of these works in biomedicine. Among the six

chapters of the thesis, the main chapters are chapters 3, 4, and 5. The main contributions

of the thesis can be summarized as follows.

1. The first contribution is that we developed novel integrative domain-based method to

predict protein-protein interactions.

Our method was based on protein domains, the basic functional and structural parts

of proteins. In addition, we investigated and combined various informative genomic

and proteomic data from multiple data sources using inductive logical program-

ming. The advantages of the method demonstrated in both the computational and

biological aspects.

We took biological usability expertise along with ILP method to predict protein-

protein interactions in an efficient way. ILP is appropriate to unify different types

of data that are acquired from the great deal of expert knowledge. By integrat-

ing a large amount of data from seven databases, 278,000 ground facts of domain

fusion, domain-domain interaction features and various biologically significant ge-

nomic/proteomic features, were extracted and represented in forms of ILP predi-

cates. After obtaining the large set of ground facts, we applied the Aleph system to
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learn these ground facts (as background knowledge), negative and positive examples.

The Aleph system then induced predictive rules.

Through 10-fold cross validations, the performance measures, including Receiver

Operating Characteristic (ROC) curves, sensitivity and specificity, showed that our

method achieved better performance than other methods, such as support vector

machines method and association method. Moreover, thanks to ILP rules, the pre-

dictions were more interpretable and useful for biologists. Analyzing produced rules

(of both PPI and DDI), many interesting relationships among PPI, DDI, and pro-

tein functions, biological processes, were found. Our proposed method can be tuned

to predict PPI and DDI for diverse organisms and other genomic and proteomic

data sources.

This work was presented in Chapter 3.

2. The second contribution is that we developed an efficient soft-clustering method to

construct signal transduction networks from PPI networks.

Unlike previous method, the proposed method firstly considered different levels

of signaling machinery, particularly protein-protein interaction networks, domain-

domain interactions, signaling domains, protein functions, which are useful for STN

construction. Secondly, the sharing components among STN were detected by soft-

clustering. Our method did not separate the networks into individual proteins, but

carries out them in associations with other proteins in terms of their functional or

physical interactions. In addition, differed from existing methods, our work shifted

from yeast STN to human STN, a currently significant challenge.

For human STN, experimental evaluation showed the high performance of our pro-

posed method. The method is promising to discover new STN and build up the

complete pathways. For Yeast STN, the results of signaling domain-domain inter-

action prediction were comparative with other methods. To discover the roles of

signaling domains in STN, the signaling DDI occurring in yeast MAPK STN were

predicted and then matched with well-known MARK pathway.

This work was presented in Chapter 4.

3. The third contribution is that we developed a new effective method for discovering

disease genes by the exploitation of semi-supervised learning, protein-protein inter-

actions and multifarious disease-related features.

The key premise is to enrich the disease gene classifier by (1) making use of both

known disease genes and as yet unidentified disease genes (unknown genes), and (2)

integrating multiple data sources in a semi-supervised learning scheme.
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In order to utilize unlabeled data which are available with large volumes and cheap to

collect, we proposed a semi-supervised learning method to improve the performance

of disease gene predictions. Supportingly, many useful data were extracted for both

labeled and unlabeled data. These attractive advantages made our method better

than other existing works.

We performed two comparative experiments to evaluate the performance of the

method. First, 10 times stratified 10-fold cross validations were conducted using

our new semi-supervised learning method, the k-nearest neighbor method, and the

Support Vector Machines method . The results show that the SSL method outper-

forms the other two in terms of sensitivity, specificity, precision, accuracy, and a

balanced F-score. Next, we compared our SSL method to the k-NN method with

different sizes of labeled sets, and did twenty trials for each experiment to evaluate

the accuracy. It turns out that the achieved accuracy of SSL is higher than that of

k-NN.

The contributions of this work are not only high computational performance for

disease gene prediction but also new significant findings. Considering the whole

networks of disease proteins, we found out 568 putative disease genes. Some en-

couraging results were indirectly validated in various ways, including (i) validat-

ing the putative disease gene’s keywords and pathways shared with known disease

genes, (ii) checking their functional categories and gene similarity via DAVID tools

[Dennis et al., 2003]; (iii) testing them with Endeavour – Computer Program For

Identifying Disease Genes [Aerts et al., 2006], and (iv) looking their disease-related

information up in the literature.

This work was presented in Chapter 5.

6.2 Future Directions

Three proposed methods obtained good results in both computational and biological

aspects. Because of the objective and subjective reasons, they still remain some extension

to solve the problems completely. As one of the target of this thesis is to detect and

combine biologically significant features, some feature selection methods should be applied

to find the best features or the best groups of features (for all three problems 1, 2, and

3). However, the feature selection problem itself is another difficult problem in data

mining and require much effort. The other problem is the proposed score functions in

both problems 2 and 3. The better the score can reflect the significance of the features,

the better the integrations of the methods are. We also expecte that the investigation and

the development of other algorithms for ILP, soft-clustering, and semi-supervised learning
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can improve the results. One of important issues is how to validate the new findings

biologically. The cooperation with biologists and doctors will push up the findings to real

life. The concrete discussions about shortcomings and improvement can be found in each

chapter for each problem.

For long-term plan, we would like to pursue the following promising works.

For protein-protein interaction prediction. The future work is firstly to complete and

clean two created databases of ground facts on proteins and protein domains from multiple

genomic and proteomic databases. The other work is to choose good positive and negative

examples (i.e., labeled and unlabeled examples, respectively) of proteins and protein do-

mains. For the first plan, we will exploit other genome databases. One major requirement

for the methods is the databases of ground facts on proteins and protein domains should

be updated regularly according to updates of the above-mentioned databases. For the

second plan, we will develop a semi-supervised transduction method that uses a proposed

similarity measure between proteins to choose and increase the number of good negative

examples from multiple protein interaction databases, typically BIND, MINT, Yeast PPI,

DIP, and etc. Others are finding PPI network motifs, detecting stable and transient PPI.

For signal transduction network construction. We first would like to consider the whole

interaction networks or some functional subnetworks to discover new signal transduction

networks. Given starting nodes (e.g., membrane proteins) and ending nodes (e.g, tran-

scription factors), the proposed method can be improved to specify the signal transduction

networks and then discover complete signaling pathways. In human disease study, human

interaction networks, signal transduction pathways and diseases have very close asso-

ciations. Signaling network dysfunction can result in abnormal cellular transformation

or differentiation, often producing a physiological disease outcome. The further works

on identification of disease-related subnetworks are significant and can be investigated

through signal transduction networks.

For disease-causing gene prediction. One of the ultimate goals of biological sciences,

and certainly one with a high impact on society, is to improve our understanding of

the processes and events related to diseases. We approach diseases in terms of disease

pathogenic mechanisms by using knowledge from protein-protein interactions, as discov-

ery of the reciprocal relationship between protein-protein interaction networks, signal

transduction networks and disease-causing genes. Other clinical data are considered to

understand deeply disease pathogenic mechanisms. Other related work is to study the

disease pathogenic mechanisms based on the host PPI networks (human PPI networks)

and the pathogen PPI. The further expectation is to build up a complete decision support

system for for disease diagnostics and drug design.
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