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Abstract

Total order broadcast and multicast (also called atomic broadcast or atomic multicast) is an important prob-
lem in distributed systems, especially with respect to fault-tolerance. In short, the primitive ensures that messages
sent to a set of processes are delivered by all these processes in thesame total order.

The problem has inspired an abundant literature, with a plethora of proposed algorithms. This paper pro-
poses a classification of total order broadcast and multicast algorithms based on their ordering mechanisms, and
addresses a number of other important issues. The paper surveys about sixty algorithms, thus providing by far
the most extensive study of the problem so far. The paper discusses algorithms for both the synchronous and the
asynchronous system models, and studies the respective properties and behavior of the different algorithms.
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1 Introduction

Distributed systems and applications are notoriously difficult to build. This is mostly due to the unavoidable
concurrency in such systems, combined with the difficulty ofproviding a global control. This difficulty is
greatly reduced by relying on group communication primitives that provide higher guarantees than standard
point-to-point communication. One such primitive is called total order broadcast.1,2 Informally, the primitive
ensures that messages sent to a set of processes are delivered by all these processes in the same order. To-
tal order broadcast is an important primitive that plays, for instance, a central role when implementing the
state machine approach (also called active replication) [Lamport 1978a, Schneider 1990, Poledna 1994]). It
has also other applications, such as clock synchronization[Rodrigues et al. 1993], computer supported cooper-
ative writing, distributed shared memory, or distributed locking [Lamport 1978b]. More recently, it was also
shown that an adequate use of total order broadcast can significantly improve the performance of replicated
databases [Agrawal et al. 1997, Pedone et al. 1998, Kemme et al. 2003].

Literature on total order broadcast There exists a considerable amount of literature on total order broadcast,
and many algorithms, following various approaches, have been proposed to solve that problem. It is however
difficult to compare them as they often differ with respect totheir actual properties, assumptions, objectives, or
other important aspects. It is hence difficult to know which solution is best suited to a given application context.
When confronted to new requirements, the absence of a roadmapto the problem of total order broadcast has
often led engineers and researchers to either develop new algorithms rather than adapt existing solutions (thus
reinventing the wheel), or use a solution poorly suited to the application needs. An important step to improve the
present situation is to provide a classification of existingalgorithms.

1Total order broadcast is also known as atomic broadcast. Bothterminologies are currently in use. There is a slight controversy with
respect to using one over the other. We opt for the former, thatis, “total order broadcast,” because the latter is somewhat misleading. Indeed,
atomicity suggests a property related to agreement rather than total order (defined in Sect. 3), and the ambiguity has already been a source of
misunderstandings. In contrast, “total order broadcast” unambiguously refers to the property of total order.

2Total ordermulticastis sometimes used instead of total orderbroadcast. The distinction between the two primitives is explained later in
the paper. When the distinction is not important, we use the term total orderbroadcastin the paper.
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Related work Previous attempts have been made at classifying and comparing total order broadcast algo-
rithms [Anceaume 1993b, Anceaume and Minet 1992, Cristian et al. 1994, Friedman and van Renesse 1997, Mayer 1992].
However, none is based on a comprehensive survey of existingalgorithms, and hence they all lack generality.

The most complete comparison so far is due to [Anceaume and Minet 1992] (an extended version was later
published in French by [Anceaume 1993b]) who take an interesting approach based on thepropertiesof the
algorithms. The paper raises some fundamental questions upon which our work draws some of its inspiration.
It is however a little outdated now. Besides, the authors only study seven different algorithms, which are not
truly representative: for instance, none is based on a communication history approach (one of the five classes of
algorithms; details in Sect. 7.4).

[Cristian et al. 1994] take a different approach focusing onthe implementation of those algorithms rather than
their properties. They study four different algorithms, and compare them using discrete event simulation. They
find interesting results regarding the respective performance of different implementation strategies. Nevertheless,
they fail to discuss the respective properties of the different algorithms. Besides, as they compare only four
algorithms, this work is less general than Anceaume’s.

[Friedman and van Renesse 1997] study the impact that packing messages has on the performance of algo-
rithms. To this purpose, they study six algorithms, including those studied by [Cristian et al. 1994]. They measure
the actual performance of those algorithms and confirm the observations made by [Cristian et al. 1994]. They
show that packing several protocol messages into a single physical message indeed provides an effective way to
improve the performance of algorithms. The comparison alsolacks generality, but this is quite understandable as
this is not the main concern of that paper.

[Mayer 1992] defines a framework in which total order broadcast algorithms can be compared from a perfor-
mance point of view. The definition of such a framework is an important step towards an extensive and meaningful
comparison of algorithms. However, the paper does not go so far as to actually compare the numerous existing
algorithms.

Contributions In this paper, we propose a classification of total order broadcast algorithms based on the mech-
anism used to order messages. The reason for this choice is that the ordering mechanism is the characteristic
with the strongest influence on the communication pattern ofthe algorithm: two algorithms of the same class are
hence likely to exhibit similar behaviors. We define five classes of ordering mechanisms:communication history,
privilege-based, moving sequencer, fixed sequencer, anddestinations agreement.

In this paper, we also provide a vast survey of about sixty published total order broadcast algorithms. Wherever
possible, we mention the properties and the assumptions of each algorithm. This is however not always possible
because the information available in the papers is often notsufficient to accurately characterize the behavior of
the algorithm (e.g., in the face of a failure).

Structure The paper is logically organized into three main parts: specifications, mechanisms, and survey. More
precisely, the rest of the paper is structured as follows.

The first part of the paper is about definitions, specifications, and properties. Section 2 introduces impor-
tant concepts, terminology, and notations. Section 3 presents the most common specification of the total order
broadcast problem (also known as atomic broadcast). Based on this specification, Sections 4–6 discuss several
important properties (and other issues) and their impact onthe specification of the problem. More specifically,
Section 4 discusses possible additional properties of algorithms (e.g., uniformity, ordering), Section 5 is concerned
with the characteristics of destination groups (e.g., single versus multiple groups), and Section 6 illustrates the
impact of the system model on the specification when considering partitionable systems and Byzantine failures.

The second part describes mechanisms. In Section 7, we definethe following five classes of total order broad-
cast algorithms, according to the way messages are ordered:communication history, privilege-based, moving
sequencer, fixed sequencer, anddestinations agreement. Section 8 discusses the issue of fault-tolerance from a
general perspective.

In the third part, we review existing algorithms. More specifically, Section 9 gives a broad survey of total
order broadcast algorithms found in the literature. The algorithms are grouped along their respective classes, and
we discuss the principal characteristics of each algorithm.

In Section 10, we talk about various other issues that are relevant to total order broadcast, and Section 11
concludes the paper.
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M set of all valid messages.
Π set of all processes in the system.

sender(m) sender of messagem.
Dest(m) set of destination processes for messagem.
Πsender set of all sending processes in the system.
Πdest set of all destination processes in the system.

Table 1: Notation.

2 Basic Terminology and Notation

2.1 Notation

Table 1 summarizes some of the notation used throughout the paper.M is the set containing all possible valid
messages.Π denotes the set of all processes in the system, which can be arbitrarily large. Given some arbitrary
messagem, sender(m) designates the process inΠ from whichm originates, andDest(m) denotes the set of all
destination processes form.

In addition,Πsender is the set of all processes inΠ that can potentially send some message.

Πsender
def
=

⋃

m∈M

sender(m) (1)

Likewise,Πdest is the set of all potential destinations.

Πdest
def
=

⋃

m∈M

Dest(m) (2)

2.2 Basic System Models

A distributed system consists of a set of processesΠ = {p1, . . . , pn} that interact by exchanging uniquely identi-
fied messages through communication channels. There exist aquantity of models that restrict the behavior of the
system. The most important characteristics to consider areits synchrony and failure modes.

2.2.1 Synchrony

The synchrony of a model is related to the timing assumptionsthat are made on the behavior of processes and
communication channels. More specifically, one usually considers two major parameters. The first parameter is
theprocess speed interval, which is given by the difference in the speed of the slowest and the fastest processes
in the system. The second parameter is thecommunication delay, which is given by the time elapsed between the
emission and the reception of messages. The synchrony of thesystem is defined by considering various bounds
on these two parameters. For each parameter, one usually considers the following levels of synchrony:

1. There is a known upper bound which always holds.

2. There is an unknown upper bound which always holds.

3. There is a known upper bound which eventually holds forever.

4. There is an unknown upper bound which eventually holds forever.3

5. There is no bound on the value of the parameter.

A system wherein both parameters are assumed to satisfy (1) is called asynchronous system. At the other
extreme, a system in which process speed and communication delays are unbounded, i.e., (5), is called anasyn-
chronous system. Between those two extremes lie the definition of various partially synchronous system models
[Dolev et al. 1987, Dwork et al. 1988].

3There exist many other possible assumptions, such as:There is a known upper bound that holds infinitely often for periods of a known
duration.
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2.2.2 Process Failures

The failure modes of a system specify the kinds of failures that are expected to occur, as well as the conditions
under which these failures may or may not occur. A commonly used set of process failure classes is as follows:

• Crash failures.When a process crashes, it ceases functioning forever. This means that it stops performing
any activity including sending, transmitting, or receiving any message.

• Omission failures.When a process fails by omission, it omits performing some actions such as sending or
receiving a message.

• Timing failures.A timing failure occurs when a process violates one of the synchrony assumptions. This
type of failure is irrelevant in asynchronous systems.

• Byzantine failures.Byzantine failures are the most general type of failures. A Byzantine component is
allowed any arbitrary behavior. For instance, a faulty process may change the content of messages, duplicate
messages, send unsolicited messages, or even maliciously try to break down the whole system.

In practice, one often considers a particular case of Byzantine failures, calledauthenticatedByzantine
failures. Authenticated Byzantine failures allow Byzantine processes to behave arbitrarily. However, it
is assumed that processes have access to some authentication mechanism (e.g., digital signatures), thus
making it possible to detect the forgery of valid messages byByzantine processes. When mentioning
Byzantine failures in the sequel (mostly in Sect. 9), we implicitly refer toauthenticatedByzantine failures.

A correctprocess is defined as a process that never expresses any of thefaulty behaviors mentioned above.

Note 1 ((On the peculiarities of timing failures)) A system is characterized by its failure modes and the “amount
of synchrony” it exhibits. While the failure modes are normally orthogonal to the synchrony of the system, this is
not the case with timing failures which are directly relatedto the synchrony of the system. Indeed, timing failures
are characterized by a violation of the synchrony of the system.

2.2.3 Communication

There exist several definitions of communication channels,according to the guarantees they provide. We are
concerned with the types of communication channels mentioned below. Unless stated otherwise, it is assumed in
this paper that communication channels neither duplicate messages nor generate spurious ones.

Reliable channels Reliable channels guarantee that if a correct processp sends a messagem to a correct pro-
cessq, thenq will eventually receivem.4 It is often assumed that reliable communication is providedby the
network protocol stack (e.g., TCP/IP).

Lossy channels Lossy channels are channels subject to the loss of messages.Some common reasons for losing
messages are: network collisions, noisy channels, overloaded buffers, disconnected lines, corrupt routing tables,
or intermittent connections. Although message losses are often taken care of by mechanisms implemented in the
network stack (between physical and transport layers), situations may arise wherein the guarantees offered by the
network are inadequate or insufficient. One can distinguishbetween two types of lossy channels.

In the simplest case, communication channels have an upper boundk on the number of message loss. Coping
with such loses is easy, as it is sufficient to send a messagek + 1 times in order to ensure that at least one copy is
received. The model is poorly suited to represent systems inwhich message losses are not independent.

In contrast, fair-lossy channels allow for an unbounded number of message losses. In short, fair lossy commu-
nication channels are defined as follows [Basu et al. 1996]. The channels do not produce spurious messages, do
not replicate messages, and do not transform the content of messages. In addition, a fair lossy channel guarantees
that if an infinite number of messages are sent, an infinite subset of those messages is received.

4[Aguilera et al. 1997] call such channelsquasi-reliableto contrast them to reliable channels as defined by [Basu et al. 1996]. The latter
definition assumes thatm is eventually delivered to a correct processq even ifp is faulty, which is not very realistic.
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2.3 Oracles

Depending on the synchrony of the system, some distributed problems cannot be solved. Yet, these problems
become solvable if the system is extended with an oracle. In short, an oracle is a distributed component that pro-
cesses can query, and which gives some information that the algorithm can use to guide its choices. In distributed
algorithms, at least three different types of oracles are used: (physical) clocks, failure detectors, and coin flips.5

Since the information provided by these oracles is sufficient to solve problems that are otherwise unsolvable, such
oracles augment the power of the system model.

2.3.1 Physical Clocks

A clock oracle gives information about physical time. Each process has access to its local physical clock and
clocks are assumed to give a value that increases monotonically.

The values returned by clocks can also be constrained by further assumptions, such as being synchronized.
Two clocks areε-synchronized if, at any time, the difference between the values returned by the two clocks is
never greater thanε. Two clocks are perfectly synchronized ifε = 0. Conversely, clocks are not synchronized if
there is no bound onε.

Depending on the assumptions, the information issued by theclocks can or cannot be related to real-time. Syn-
chronized clocks are not necessarily synchronized with real-time. However, if all local clocks are synchronized
with real-time, then they are of course synchronized with each other.

Note that, with the advent of GPS-based systems, assuming clocks that are perfectly synchronized with real-
time is not unrealistic, even in wide-area systems. Indeed,[Verı́ssimo et al. 1997] achieve clock synchronization
with an accuracy of a few microseconds. In contrast, the accuracy usually obtained with software-based clock
synchronization mechanisms is several orders of magnitudelower.

2.3.2 Failure Detectors

A failure detector is an oracle which provides information about the current status of processes, for instance,
whether a given process has crashed or not.

The notion of failure detectors has been formalized by [Chandra and Toueg 1996]. Briefly, a failure detector
is modeled as a set of distributed modules, one moduleFDi attached to each processpi. Any processpi can query
its failure detector moduleFDi about the status of other processes.

Failure detectors are consideredunreliable, in the sense that they provide information that may not always
correspond to the real state of the system. For instance, a failure detector moduleFDi may provide the erroneous
information that some processpj has crashed whereas, in reality,pj is correct and running. Conversely,FDi may
provide the information that a processpk is correct, whilepk has actually crashed.

To reflect the unreliability of the information provided by failure detectors, we say that a processpi suspects
some processpj wheneverFDi , the failure detector module attached topi, returns the (unreliable) information
thatpj has crashed. In other words, a suspicion is a belief (e.g., “pi believes thatpj has crashed”) as opposed to a
known fact (e.g., “pj has crashed andpi knows that”).

There exist several classes of failure detectors, depending on how unreliable the information provided by the
failure detector can be. This is defined by two properties,completenessandaccuracy, which constrain the possible
mistakes. These properties are better explained by an example. The class of failure detectors♦S is defined by the
following properties [Chandra and Toueg 1996]:

(STRONG COMPLETENESS) Eventually every faulty process is permanently suspectedby all correct processes.

(EVENTUAL WEAK ACCURACY) There is a time after which some correct process is never suspected by any
correct process.

There exist other classes of failure detectors, but a complete description of all failure detectors that are pre-
sented by [Chandra and Toueg 1996] is well beyond the scope ofthis paper.

5Suggested by Bernadette Charron-Bost.
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2.3.3 Random Oracle

Another approach to extend the power of a system model consists in introducing the ability to generate random
values. For instance, processes could have access to a module that generates a random bit when queried (i.e., a
Bernoulli random variable).

This is used by a class of algorithms called randomized algorithms. Those algorithms can solve problems such
as consensus in a probabilistic manner. The probability that such algorithms terminate before some timet goes to
one ast goes to infinity (e.g., [Ben-Or 1983, Chor and Dwork 1989]). Note that solving a problem deterministi-
cally and solving it with probability 1 are not the same.

2.4 Agreement Problems

Agreement problems constitute a fundamental class of problems in distributed systems. There exist many different
agreement problems that share a common pattern: processes have to reach some common decision, the nature
of which depends on the problem. In this paper, we mostly consider the following four important agreement
problems:reliable broadcast, Byzantine agreement, consensus, andtotal order broadcast.

2.4.1 Reliable Broadcast

As the name indicates, reliable broadcast is defined as a broadcast primitive. In short, reliable broadcast of mes-
sagem guarantees thatm is delivered by all correct processes if the processsender(m) is correct. Ifsender(m)
is not correct, thenm must be delivered either by all correct processes or by none of them.

2.4.2 Byzantine Agreement

The problem of Byzantine agreement is also commonly known asthe “Byzantine generals problem” [Lamport et al. 1982].
In this problem, every process has ana priori knowledge that a particular processs is supposed to broadcast a
single messagem. Informally, the problem requires that all correct processes deliver the same message, which
must bem if the senders is correct.

As the name indicates, Byzantine agreement has mostly been studied in relation with Byzantine failures. A
variant of Byzantine agreement, calledterminating reliable broadcastis sometimes studied in a context limited to
crash failures.

2.4.3 Consensus

Informally, the problem of consensus is defined as follows.6 Every processpi begins by proposing a valuevi.
Then, all non-faulty processes must eventually decide on the same valuev, which must be one of the proposed
values.

2.4.4 Total Order Broadcast

The problem of total order broadcast, also known as atomic broadcast, is an agreement problem. In short, it is
defined as a reliable broadcast problem which must also ensure that all delivered messages are delivered by all
processes in the same order. The exact specification of the problem is given in Section 3.

2.4.5 Important Theoretical Results

There are at least four fundamental theoretical results that are directly relevant to the problem of total order broad-
cast and consensus. First, total order broadcast and consensus are equivalent problems, i.e., if there exists an
algorithm that solves one problem, then it can be transformed to solve the other problem.7 [Dolev et al. 1987]
show that total order broadcast can be transformed into consensus, and [Chandra and Toueg 1996] show that
consensus can be transformed into total order broadcast. Second, there is no deterministic solution to the prob-
lem of consensus in asynchronous systems if just a single process can crash [Fischer et al. 1985]. Nevertheless,

6Note that there exist other specifications of the consensus problem in the literature. However, a more detailed discussion on this issue is
irrelevant here.

7The equivalence also holds in asynchronous systems with arbitrary failures, see [Chandra and Toueg 1996].
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consensus can be solved in asynchronous systems extended with failure detectors [Chandra and Toueg 1996],
with partial synchrony [Dolev et al. 1987, Dwork et al. 1988], or using randomization (see Sect. 2.3.3). Finally,
[Chandra et al. 1996] have shown that the weakest failure detector to solve consensus in an asynchronous system
is of class♦S.8

2.5 A Note on Asynchronous Total Order Broadcast Algorithms

In many papers about total order broadcast, the authors claim that their algorithm solves the problem in asyn-
chronous systems with process failures. This claim is of course incorrect (see previous section), or incomplete at
best.

From a formal point-of-view, most practical systems are asynchronous because it is not possible to assume
that there is an upper bound on communication delays. In spite of this, why do many practitioners still claim
that their algorithm can solve agreement problems in real systems? This is because many papers do not for-
mally address the liveness issue of the algorithm, or regardit as sufficient to consider some informal level of
synchrony, captured by the assumption that “most messages are likely to reach their destination within a known
delayδ” [Cristian et al. 1997, Cristian and Fetzer 1999]. This model is known as the timed asynchronous model
[Cristian and Fetzer 1999] and is related to a synchronous model with timing failures. Indeed, assuming that
messages will meet a deadlineT + δ with a given probabilityP [T + δ] is equivalent to assuming that messages
will miss the deadlineT + δ (i.e., a timing failure) with a known probability1 − P [T + δ]. This does not put a
bound on the occurrence of timing failures, but puts a probabilistic restriction on the occurrence of such failures.
However, formally this is not enough to establish correctness.

2.6 Process Controlled Crash

Process controlled crash is the ability given to processes to kill other processes or to commit suicide. In other
words, this is the ability to artificially force the crash of aprocess. Allowing process controlled crash in a system
model augments its power. Indeed, this makes it possible to transform severe failures (e.g., omission, Byzantine)
into less severe failures (e.g., crash), and to emulate an “almost perfect” failure detector. However, this power
does not come without a price.

Automatic transformation of failures [Neiger and Toueg 1990] present a technique that uses process con-
trolled crash to transform severe failures (e.g., omission, Byzantine) into less severe ones (i.e., crash failures). In
short, the technique is based on the idea that processes havetheir behavior monitored. Then, whenever a process
begins to behave incorrectly (e.g., omission, Byzantine),it is killed.9

However, this technique cannot be used in systems with lossychannels, or subject to partitions. Indeed, in
such contexts, processes might be killing each other until not a single one is left alive in the system.

Emulation of an almost perfect failure detector A perfect failure detector (P) satisfies both strong complete-
ness and strong accuracy (no process is suspected before it crashes [Chandra and Toueg 1996]). In practical sys-
tems, perfect failure detectors are extremely difficult to implement because of the difficulty to distinguish crashed
processes from very slow ones. [Fetzer 2003] proposes a protocol to emulate a perfect failure detector in a timed
asynchronous model with process controlled crash. His protocol uses watchdog (hardware or software) and en-
sures that no process is suspected before it crashes. Process controlled crash makes it also possible to emulate an
almostperfect failure detector that satisfies a weaker accuracy property:

(QUASI-STRONG ACCURACY) No correct process is ever suspected by any correct process.

The idea of the emulation is simple. LetX be a failure detector that satisfies strong completeness andany
form of accuracy: wheneverX suspects a processp, thenp is killed (forced to crash). As a result, false suspicions
are correcteda posteriori, and the above “quasi-strong accuracy” property is satisfied. A primary partition group
membership service with process controlled crash (see Sect. 8.2) typically emulates such a failure detector, which
is used by several total order broadcast algorithm (see Sect. 9).

8The weakest failure detector to solve consensus is usually said to be♦W, which differs from♦S by satisfying a weak completeness
property instead of Strong Completeness. However, [Chandraand Toueg 1996] prove the equivalence of♦S and♦W.

9The actual technique is more complicated than that, but this gives the basic idea.
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Cost of a Free Lunch Process controlled crash is often used in practice in the context of total order broadcast
algorithms. However, the mechanisms has a price.

To understand this, it is first necessary to distinguish between two types of crash failures: genuine and pro-
voked failures.Genuine failuresare failures that naturally occur in the system, without anyintervention from a
process. Conversely,provoked failuresare caused by some process, e.g., they are the result of process controlled
crash.

A fault-tolerant algorithm can only tolerate the crash of a bounded number of processes.10 In a system with
process controlled crash, this limit includes not only genuine failures, but also provoked failures. This means that
each provoked failure actuallydecreasesthe number of genuine failures that can be tolerated. In other words, it
reduces the actual fault-tolerance of the system.

3 Specification (Total Order Broadcast)

In this section, we give the formal specification of the totalorder broadcast problem. Although there exist many
variants of Total Order Broadcast depending on factors suchas the system model, this section describes the prob-
lem in its simplest form, i.e., crash failures and closed system. Then, in Sections 4 through 6, we consider several
issues that have an influence on the algorithms, such as Byzantine failures, uniformity, or network partitions.

Formally, total order broadcast is defined in terms of two primitives, which are calledTO-broadcast(m) and
TO-deliver(m), wherem ∈ M is some message. When a processp executesTO-broadcast(m) (respectively
TO-deliver(m)), we may say thatp TO-broadcastsm (respectively TO-deliversm). We assume that every mes-
sagem can be uniquely identified, and carries the identity of its sender, denoted bysender(m). In addition, we
assume that, for any given messagem and any run,TO-broadcast(m) is executed at most once. In this context, to-
tal order broadcast is defined by the following properties [Hadzilacos and Toueg 1994, Chandra and Toueg 1996]:

(VALIDITY ) If a correct process TO-broadcasts a messagem, then it eventually TO-deliversm.

(UNIFORM AGREEMENT) If a process TO-delivers a messagem, then all correct processes eventually TO-
deliverm.

(UNIFORM INTEGRITY) For any messagem, every process TO-deliversm at most once, and only ifm was
previously TO-broadcast bysender(m).

(UNIFORM TOTAL ORDER) If processesp andq both TO-deliver messagesm andm′, thenp TO-deliversm
beforem′ if and only if q TO-deliversm beforem′.

Validity and Uniform Agreement are liveness properties. Roughly speaking this means that, at any point in
time, no matter what has happened up to that point, it is stillpossible for the property to eventually hold [Charron-Bostet al. 2000].
Uniform Integrity and Uniform Total Order are safety properties. This means that, if at some point in time the
property does not hold, no matter what happens later, the property cannot eventually hold. Note that [Charron-Bost et al. 2000]
have shown that, in the context of failures, some (non-uniform) properties that are commonly believed to be safety
properties are actually liveness properties. They have proposed refinements of the concept of safety and liveness
that avoid the counterintuitive classification.

Note 2 The above definition is the most common definition of total order broadcast. However, in spite of its
popularity, the definition is known to be prone to an important flaw called contamination. This issue is discussed
in Sect. 4.2, where we give a better formulation for the orderproperty.

4 Properties of Algorithms

4.1 Uniformity

In the above definition of total order broadcast, the properties of agreement and total order areuniform. This
means that these properties do not only apply to correct processes, but also to faulty ones. For instance, with
Uniform Total Order, a process is not allowed to deliver any message out of order, even if it is faulty. Conversely,

10The recovery of processes and the dynamic join of new processes are discussed in Section 8.2.
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Figure 1: Violation of Uniform Agreement (example)

(non-uniform) Total Order applies only to correct processes, and hence does not put any restriction on the behavior
of faulty processes.

Uniform properties are required by some classes of applications such as atomic commitment. However, since
enforcing uniformity in an algorithm often has a considerable performance cost, it is also important to consider
weaker problems specified using non-uniform properties. Non-uniform properties may lead to inconsistencies at
the application level. However, this is not always a problem, particularly if the application knows how to correct
such inconsistencies. Non-uniform Agreement and Total Order are specified as follows:

(AGREEMENT) If a correct process TO-delivers a messagem, then all correct processes eventually TO-deliverm.

(TOTAL ORDER) If two correct processesp andq both TO-deliver messagesm andm′, thenp TO-deliversm
beforem′ if and only if q TO-deliversm beforem′.

The combinations of uniform and non-uniform properties define four different specifications to the problem of
fault-tolerant total order broadcast. Those definitions constitute a hierarchy of problems, as discussed extensively
by [Wilhelm and Schiper 1995].

Figure 1 illustrates a violation of the Uniform Agreement property with a simple example. In this example,
the sequencerp1 sends a messagem using total order broadcast. It first assigns a sequence number tom, then
sendsm to all processes, and finally deliversm. Processp1 crashes shortly afterwards, and no other process
receivesm (this is possible, see Sect. 2.2.3). As a result no correct process (e.g.,p2) will ever be able to deliver
m. Uniform Agreement is violated, but not (non-uniform) Agreement: nocorrectprocess ever deliversm (p1 is
not correct).

Note 3 [Guerraoui 1995] shows that any algorithm that solves Consensus with♦P (respectivelyS, ♦S), also
solves uniform consensus with♦P (respectivelyS, ♦S).

It is easy to show that this result also holds for total order broadcast. Assume that there exists an algorithm
that solves non-uniform total order broadcast (non-uniform Agreement, non-uniform Total Order) with♦P, S
or ♦S, but does not solves uniform total order broadcast. Using the transformation of total order broadcast to
consensus (see Sect. 2.4.5) this algorithm could be used to obtain an algorithm that solves non-uniform consensus
but not consensus. A contradiction.

Note however that the result does not hold for total order broadcast algorithms that rely on a perfect or almost
perfect failure detector (see Sect. 2.6).

4.2 Contamination

The problem of contamination comes from the observation that, even with the strongest specification (i.e., with
Uniform Agreement and Uniform Total Order), total order broadcast does not prevent a faulty processp from
reaching an inconsistent state (i.e., before it crashes). This is a serious problem becausep can “legally” TO-
broadcast a message based on this inconsistent state, and thuscontaminatecorrect processes [Gopal and Toueg 1991,
Anceaume and Minet 1992, Anceaume 1993b, Hadzilacos and Toueg 1994].

4.2.1 Illustration

Figure 2 illustrates an example [Charron-Bost et al. 1999, Hadzilacos and Toueg 1994] where an incorrect pro-
cess contaminates the correct processes. Processp3 delivers messagesm1 andm3, but notm2. So, its state is

11



m4

m4

m4

m3

m3

m3

m2

m2

p
1

p
2

p
3

m1

m1

m1 crash

Figure 2: Contamination of correct processes (p1, p2) by a message (m4) based on an inconsistent state (p3

deliveredm3 but notm2).

inconsistent when it multicastsm4 to the other processes before crashing. The correct processesp1 andp2 deliver
m4, thus getting contaminated by the inconsistent state ofp3. It is important to stress again that the situation
depicted in Figure 2 satisfies even the strongest specification.

4.2.2 Specification

It is possible to extend or reformulate the specification of total order broadcast in such a way that it disallows
contamination. This can be achieved in two ways. The first option is to forbid faulty processes from sending
messages if their state is inconsistent. This is however difficult to formalize as a property. Hence the second
solution is usually preferred, which consists in preventing any process from delivering a message that may lead to
an inconsistent state.

Aguilera, Delporte-Gallet et al. [2000] propose a reformulation of Uniform Total Order which, unlike the
traditional definition, is not prone to contamination as it does not allow gaps in the delivery sequence:

(GAP-FREEUNIFORM TOTAL ORDER) If some process delivers messagem′ after messagem, then a process
deliversm′ only after it has deliveredm.

As an alternative, an older formulation uses the history of delivery and requires that, for any two given pro-
cesses, the history of one is a prefix of the history of the other. This is expressed by the following property
[Anceaume and Minet 1992, Cristian et al. 1994, Keidar and Dolev 2000]:

(PREFIX ORDER) For any two processesp andq, eitherhist(p) is a prefix ofhist(q) or hist(q) is a prefix of
hist(p), wherehist(p) andhist(q) are the sequences of messages delivered byp andq, respectively.

Note 4 The specification of total order broadcast using Prefix Orderin fact precludes the dynamic join of pro-
cesses (e.g., with a group membership). This can be circumvented, but the resulting property is much more
complicated. For this reason, the simpler alternative proposed by Aguilera, Delporte-Gallet et al. [2000] is
preferred.

4.2.3 Algorithms

Among the numerous algorithms studied in the paper, a large majority of them ignore the problem of contamina-
tion in their specification. In spite of this, most of them avoid contamination. The algorithms either (1) prevent
all processes from reaching an inconsistent state, or (2) prevent processes with an inconsistent state from sending
messages to other processes.

4.3 Other Ordering Properties

The Total Order property (see Sect. 3, p.10) restricts the order of message delivery based solely on the destina-
tions, that is, the property is independent of the sender processes. The definition can be further restricted by two
properties related to the senders, namely,FIFO Order andCausal Order.
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4.3.1 FIFO Order

Total Order alone does not guarantee that messages are delivered in the order in which they are sent (i.e., in
first-in/first-out order). Yet, this property is sometimes required by applications in addition to Total Order. The
property is called FIFO Order:

(FIFO ORDER) If a correct process TO-broadcasts a messagem before it TO-broadcasts a messagem′, then no
correct process deliversm′ unless it has previously deliveredm.

4.3.2 Causal Order

The notion of causality in the context of distributed systems has been first formalized by [Lamport 1978b].
It is based on the relation “precedes”11 (denoted by−→) defined in his seminal paper and extended later in
[Lamport 1986b]. The relation “precedes” is defined as follows.

Definition 1 Let ei andej be two events in a distributed system. The transitive relation ei −→ ej holds if any
one of the following three conditions is satisfied:

1. ei andej are two events on the same process, andei comes beforeej ;

2. ei is the sending of a messagem by one process andej is the receipt ofm by another process; or,

3. There exists a third eventek such that,ei −→ ek andek −→ ej (transitivity).

This relation defines an irreflexive partial ordering on the set of events. The causality of messages can be
defined by the “precede” relationship between their respective sending events. More precisely, a messagem is
said to precede a messagem′ (denotedm ≺ m′) if the sending event ofm precedes the sending event ofm′.

The property of causal order for broadcast messages is defined as follows [Hadzilacos and Toueg 1994]:

(CAUSAL ORDER) If the broadcast of a messagem causally precedes the broadcast of a messagem′, then no
correct process deliversm′ unless it has previously deliveredm.

Hadzilacos and Toueg [Hadzilacos and Toueg 1994] also provethat the property of Causal Order is equivalent
to combining the property of FIFO Order with the following property of Local Order.

(LOCAL ORDER) If a process broadcasts a messagem and a process deliversm before broadcastingm′, then no
correct process deliversm′ unless it has previously deliveredm.

Note 5 (State-machine approach)Causal total order broadcast is for instance required by thestate machine
approach [Lamport 1978a, Schneider 1990]. However, we think that some application may require causality,
some others not.

4.3.3 Source ordering

Some papers (e.g., [Garcia-Molina and Spauster 1991, Jia 1995]) make a distinction between single source and
multiple source ordering. These papers define single sourceordering algorithms as algorithms that ensure total
order only if asingleprocess broadcasts messages. This is a special case of FIFO broadcast, easily solved using
sequence numbers. Source ordering is not particularly interesting in itself, and hence we do not discuss the issue
further in this paper.

11Lamport initially called the relation “happened before” [Lamport 1978b], but he renamed it “precedes” in later work [Lamport 1986b,
Lamport 1986a].
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5 Properties of Destination Groups

So far, we have presented the problem of total order broadcast, wherein messages are sent to all processes in the
system:

∀m ∈ M (Dest(m) = Π) (3)

A multicastprimitive is more general in the sense that it can send messages to any chosen subset of the
processes in the system:

∃m ∈ M (sender(m) 6∈ Dest(m)) ∧ ∃mi,mj ∈ M (Dest(mi) 6= Dest(mj)) (4)

Although in wide use, the distinction between broadcast andmulticast is not precise enough. This leads us
to discuss a more relevant distinction, namely between closed versus open groups, and between single versus
multiple groups.

5.1 Closed versus Open Groups

In the literature, many algorithms are designed with the implicit assumption that messages are sentwithin a group
of processes. This originally comes from the fact that earlywork on this topic was done in the context of parallel
machines [Lamport 1978a] or highly available storage systems [Cristian et al. 1995]. However, a large part of
distributed applications are now developed by consideringmore open interaction models, such as the client-server
model, N -tier architectures, or publish/subscribe. For this reason, it is necessary for a process to be able to
multicast messages to a group it does not belong to. Consequently, we consider it an important characteristic of
algorithms to be easily adaptable to open interaction models.

5.1.1 Closed Group Algorithms

In closed groups algorithms, the sending process is always one of the destination processes:

∀m ∈ M (sender(m) ∈ Dest(m)) (5)

So, these algorithms do not allow external processes (processes that are not member of the group) to multicast
messages to the destination group.

5.1.2 Open Group Algorithms

Conversely, open group algorithms allow any arbitrary process in the system to multicast messages to a group,
whether or not the sender process belongs to the destinationgroup:

∃m ∈ M (sender(m) 6∈ Dest(m)) (6)

Open group algorithms are more general than closed group algorithms: the former can be used with closed groups
while the opposite is not true.

5.2 Single versus Multiple Groups

Most algorithms present in the literature assume that all messages are multicast to one single group of destination
processes. Nevertheless, a few algorithms are designed to support multiple groups. In this context, we consider
three situations:single group, multiple disjoint groups, multiple overlapping groups. We also discuss how useless
trivial solutions can be ruled out with the notion ofminimality. Since the ability to multicast messages to multiple
destination sets is critical for certain classes of applications, we regard this ability as an important characteristic
of an algorithm.
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5.2.1 Single group ordering

With single group ordering, all messages are multicast to one single group of destination processes. As mentioned
above, this is the model considered by a vast majority of the algorithms that are studied in this paper. Single group
ordering can be defined by the following property:12

∀mi,mj ∈ M (Dest(mi) = Dest(mj )) (7)

5.2.2 Multiple groups ordering (disjoint)

In some applications, the restriction to one single destination group is not acceptable. For this reason, algorithms
have been proposed that support multicasting messages to multiple groups. The simplest case occurs when the
multiple groups aredisjoint groups, which can be expressed as follows:

∀mi,mj ∈ M (Dest(mi) 6= Dest(mj ) ⇒ Dest(mi) ∩ Dest(mj ) = ∅) (8)

In fact, adapting algorithms designed for one single group to work in a system with multiple disjoint groups
is almost trivial.

5.2.3 Multiple groups ordering (overlapping)

In case of multiple groups ordering, it can happen that groups overlap. This can be expressed by the following
predicate:

∃mi,mj ∈ M (Dest(mi) 6= Dest(mj ) ∧ Dest(mi) ∩ Dest(mj ) 6= ∅) (9)

The real difficulty of designing total order multicast algorithms for multiple groups arises when the groups can
overlap. This is easily understood when one considers the problem of ensuring total order at the intersection of
groups. In this context, [Hadzilacos and Toueg 1994] give three different properties for total order in the presence
of multiple groups:Local Total Order, Pairwise Total Order, andGlobal Total Order.13

(LOCAL TOTAL ORDER) If correct processesp and q both TO-deliver messagesm andm′ andDest(m) =
Dest(m ′), thenp TO-deliversm beforem′ if and only if q TO-deliversm beforem′.

Local Total Order is the weakest of the three properties. It requires that total order be enforced only for
messages that are multicast within the same group.

Note also that multiple unrelated groups can be considered as disjoint groups even if they overlap. Indeed,
destination processes belonging to the intersection of twogroups can be seen as having two distinct identities;
one for each group. It follows that an algorithm for distinctmultiple groups can be trivially adapted to support
overlapping groups with Local Total Order.

As pointed out by [Hadzilacos and Toueg 1994], the total order multicast primitive of the first version of Isis
[Birman and Joseph 1987] guaranteed Local Total Order.14

(PAIRWISE TOTAL ORDER) If two correct processesp andq both TO-deliver messagesm andm′, thenp TO-
deliversm beforem′ if and only if q TO-deliversm beforem′.

Pairwise Total Order is strictly stronger than Local Total Order. Most notably, it requires that total order be
enforced for all messages delivered at the intersection of two groups.

As far as we know, there is no straightforward algorithm to transform a total order multicast algorithm that
enforces Local Total Order into one that also guarantees Pairwise Total Order (except for trivial solutions; see
Sect. 5.2.4). [Hadzilacos and Toueg 1994] observe that, forinstance, Pairwise Total Order is the order property
guaranteed by the algorithm of [Garcia-Molina and Spauster1989, Garcia-Molina and Spauster 1991].

12This definition and the following ones are static. They do nottake into account the fact that processes can join groups andleave groups.
Nevertheless, we prefer these simple static definitions, rather than more complex ones that would take dynamic destination groups into account.

13The ordering properties cited here are subject to contamination, see Section 4.2. Contamination can be avoided by formulating these
properties similarly to the Gap-free Uniform Total Order property.

14It should be noted that, if the transformation is trivial froma conceptual point-of-view, the implementation was certainly a totally different
matter, especially in the mid-80’s.
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Pairwise Total Order alone may lead to unexpected situations when there are three or more overlapping desti-
nation groups. For instance, [Fekete 1993] illustrates theproblem with the following scenario. Consider three pro-
cessespi, pj , pk, and three messagesm1,m2,m3 that are respectively sent to three different overlapping groups
G1 = {pi, pj}, G2 = {pj , pk}, andG3 = {pk, pi}. Pairwise Total Order allows the following histories on
pi, pj , pk:

pi : · · ·TO-deliver(m3) −→ · · · −→ TO-deliver(m1) · · ·
pj : · · ·TO-deliver(m1) −→ · · · −→ TO-deliver(m2) · · ·
pk : · · ·TO-deliver(m2) −→ · · · −→ TO-deliver(m3) · · ·

This situation is prevented by the specification of Global Total Order [Hadzilacos and Toueg 1994], which is
defined as follows:

(GLOBAL TOTAL ORDER) The relation< is acyclic, where< is defined as follows:m < m′ if and only if any
correct process deliversm andm′, in that order.

Note 6 [Fekete 1993] gives another specification for total order multicast which also prevents the scenario
mentioned above. The specification, called AMC, is expressed as an I/O automaton [Lynch and Tuttle 1989,
Lynch 1996] and uses the notion of pseudo-time to impose an order on the delivery of messages.

5.2.4 Minimality and trivial solutions

Any algorithm that solves the problem of total order broadcast in a single group can easily be adapted to solve the
problem for multiple groups with the following approach:

1. form a super-group with the union of all destination groups;

2. whenever a messagem is multicast to a group, multicast it to the super-group, and

3. processes not inDest(m) discardm.

The problem of such a solution is its lack of scalability. Indeed, in very large distributed systems, even if destina-
tion groups are individually small, their union is likely tocover a very large number of processes.

To avoid this sort of solution, [Guerraoui and Schiper 2001]require the implementation of total order multicast
for multiple groups to satisfy the following minimality property:

(STRONG M INIMALITY ) The execution of the algorithm implementing total order multicast for a messagem
involves onlysender(m), and the processes inDest(m).

This property is often too strong: it disallows a lot of interesting algorithms that use a small number of external
processes for message ordering (e.g., algorithms which disseminate messages along some propagation tree). A
weaker property would allow an algorithm to involve a small set of external processes.

5.2.5 Transformation algorithm

[Delporte-Gallet and Fauconnier 2000] propose a generic algorithm that transforms a total order broadcast algo-
rithm for a single closed group into one for multiple groups.The algorithm splits destination groups into smaller
entities and supports multiple groups with Strong Minimality.

6 Other Specifications for Total Order Broadcast

The specification in Section 3 is the standard specification of total order broadcast in astaticsystem, that is, a sys-
tem in which all processes are created at system initialization. broadcast. In this section, we briefly discuss other
specifications of total order broadcast, namely the case of dynamic groups, partitionable systems and Byzantine
failures.
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6.1 Dynamic Groups and Partitionable Systems

A dynamicgroup is a group of processes with a membership that can change during the computation: processes
can be added to a group and removed from the group (e.g., due tofailures). This requires to adapt the specification
of total order broadcast.

In the case of a dynamic group, the successive memberships ofthe group are called theviewsof the group [Chock-
ler, Keidar, and Vitenberg [2001] ]. Views are defined by thegroup membershipproblem, which has two variants:
(1) theprimary partition membership problem, and (2) thepartitionablemembership problem. In the primary
partition group membership, one of the partitions is recognized as primary, and processes are allowed to deliver
messages only if they belong to the primary partition. In contrast, the partitionable group membership allows all
processes to deliver messages, regardless of the partitionthey belong to.

With dynamic groups, the basic communication abstraction is calledview synchrony, which can be seen as the
counterpart of reliable broadcast in static systems. Reliable broadcast is defined by the Validity, Agreement and
Integrity properties of Sect. 3. Roughly speaking, View Synchrony adopts a similar definition while relaxing the
Agreement property.15

Total order broadcast in a system with dynamic groups can hence be specified as view synchrony plus an
additional order property. Chockler, Keidar, and Vitenberg [2001] define three order properties in a partitionable
system: Strong Total Order (messages are delivered in the same order by all processes that deliver them), Weak
Total Order (the order requirement is restricted within a view), and Reliable Total Order (extends the Strong Total
Order property to require processes to deliver a prefix of a common sequence of messages within each view).
In other words, Strong Total Order corresponds somehow to the Uniform Total Order property of Sect. 3, and
Reliable Total Order somehow to the Prefix Ordering propertyof Sect. 4.2. Other properties, such as Validity,
are also defined differently in partitionable systems. Thisis explained is considerably more detail by Chockler,
Keidar, and Vitenberg [2001] and [Fekete et al. 2001].

6.2 Byzantine Failures

Tolerating Byzantine failures has several important implications on the specification of the problem, in particular
on uniformity and contamination.

Uniformity Algorithms tolerant to Byzantine failures can guarantee none of the uniform properties given in
Sect. 3. This is understandable as no behavior can be enforced on Byzantine processes. In other words, nothing
can prevent a Byzantine process from (1) delivering a message more than once (violates Integrity), (2) delivering
a message that is not delivered by other processes (violatesAgreement), or (3) delivering two messages in the
wrong order (violates Total Order).

[Reiter 1994] proposes a more useful definition of uniformity for Byzantine systems. He distinguishes be-
tween crash and Byzantine failures. He says that a process ishonestif it behaves according to its specification,
andcorrupt otherwise (i.e., Byzantine), where honest processes can also fail by crashing. In this context, uniform
properties are those which are enforced by all honest processes, regardless whether they are correct or not. This
definition is more sensible that the stricter definition of Sect. 3, as nothing is required from corrupt processes.

Contamination Contamination is impossible to avoid in the context of arbitrary failures, because a faulty pro-
cess may be inconsistent even if it delivers all messages correctly. It may then contaminate the other processes by
broadcasting a bogus message that seems correct to every other process [Hadzilacos and Toueg 1994].

7 Mechanisms for Message Ordering

In this section, we propose a classification of total order broadcast algorithms in the absence of failures. The first
question that we ask is:“who builds the order?”More specifically, we are interested in the entity which generates
the information necessary for defining the order of messages(e.g., timestamp or sequence number).

We identify three different roles that a participating process can take with respect to the algorithm: sender,
destination, or sequencer. Asenderprocess is a processps from which a message originates (i.e.,ps ∈ Πsender ).

15Discussing this primitive in detail is beyond the scope of this survey (see paper by Chockler, Keidar, and Vitenberg [2001] for details).
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Figure 3: Classes of total order broadcast algorithms.

A destinationprocess is a processpd to which a message is destined (i.e.,pd ∈ Πdest ). Finally, asequencer
process is not necessarily a sender or a destination, but is somehow involved in the ordering of messages. A
given process may simultaneously take several roles (e.g.,senderand sequencerand destination). However, we
represent these roles separately as they are conceptually different.

According to the three different roles mentioned above, we define three basic classes for total order broadcast
algorithms, depending whether the order is respectively built by a sequencer, the sender, or destination processes.
Among algorithms of the same class, significant differencesremain. To account for this problem, we introduce
a further division, leading to five subclasses in total. These classes are named as follows (see Fig. 3):fixed
sequencer, moving sequencer, privilege-based, communication history, anddestinations agreement. Privilege-
based and moving sequencer algorithms are commonly referred to as token-based algorithms.

The terminology defined in this paper is partly borrowed fromother authors. For instance, “communication
history” and “fixed sequencer” was proposed by [Cristian andMishra 1995]. The term “privilege-based” was
suggested by Malkhi. Finally, [Le Lann and Bres 1991] group algorithms into three classes based on where the
order is built. Unfortunately, their definition of classes is specific to a client-server architecture.

In the remainder of this section, we present each of the five classes, and illustrate each class with a simple
algorithm. The algorithms are merely presented for the purpose of illustrating the corresponding category, and
should not be regarded as full-fledged working examples. Although inspired from existing algorithms, they are
largely simplified. Besides, none of these algorithms are fault-tolerant.

Note 7 (Atomic blocks) The algorithms are written in pseudocode, with the assumption that blocks associated
with a when-clause are executed atomically. This assumption simplifies the algorithms with respect to concur-
rency.

7.1 Fixed Sequencer

In a fixed sequencer algorithm, one process is elected as the sequencer and is responsible for ordering messages.
The sequencer is unique, and the responsibility is not normally transfered to another processes (at least in the
absence of failure).

The approach is illustrated in Fig. 4 and Fig. 5. One specific process takes the role of a sequencer and builds
the total order. To broadcast a messagem, a sender sendsm to the sequencer. Upon receivingm, the sequencer
assigns it a sequence number and relaysm with its sequence number to the destinations. The latter then deliver
messages according to the sequence numbers. This algorithmdoes not tolerate the failure of the sequencer.

In fact, three variants of fixed sequencer algorithms exist.We call these three variants “UB” (unicast-
broadcast), “BB” (broadcast-broadcast), and “UUB” (unicast-unicast-broadcast), taking inspiration from [Kaashoek and Tanenbaum 1996

In the first variant, called “UB” (see Fig. 6(a)), the protocol consists of a unicast to the sequencer, followed by
a broadcast from the sequencer. This variant generates few messages, and it is the simplest of the three approaches.
It is, for instance, adopted by [Navaratnam et al. 1988], andcorresponds to the algorithm in Fig. 5.
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Figure 4: Fixed sequencer algorithms.

Sender:

procedureTO-broadcast(m) { To TO-broadcasta messagem }

send (m) to sequencer

Sequencer:

Initialization:
seqnum := 1

when receive(m)

sn(m) := seqnum

send(m, sn(m)) to all
seqnum := seqnum + 1

Destinations (code of processpi):

Initialization:
nextdeliverpi := 1

pendingpi := ∅

when receive(m, seqnum)

pendingpi := pendingpi ∪ {(m, seqnum)}

while ∃(m ′
, seqnum ′) ∈ pendingpi : seqnum ′ = nextdeliverpi do

deliver (m′)
nextdeliverpi := nextdeliverpi + 1

Figure 5: Simple fixed sequencer algorithm.
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Figure 6: Common variants of fixed sequencer algorithms.

In the second variant, called “BB” (Fig. 6(b)), the protocolconsists of a broadcast to all destinations plus the
sequencer, followed by a second broadcast from the sequencer. This generates more messages than the previous
approach, except in broadcast networks. However, it can reduce the load on the sequencer, and makes it easier to
tolerate the crash of the sequencer. Isis (sequencer) [Birman et al. 1991] is an example of the second variant.

The third variant, called “UUB” (Fig. 6(c)), is less common than the others. In short, the protocol consists
of the following steps. The sender requests a sequence number from the sequencer (unicast). The sequencer
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replies with a sequence number (unicast). Then, the sender broadcasts the sequenced message to the destination
processes.16

7.2 Moving Sequencer

Moving sequencer algorithms are based on the same principleas fixed sequencer algorithms, but allow the role
of sequencer to be transferred between several processes. The motivation is to distribute the load among them.
This is illustrated in Figure 7 where the sequencer is chosenamong several processes. The code executed by
each process is however more complex than with a fixed sequencer, which explains the popularity of the latter
approach. Notice that, with moving sequencer algorithms, the roles of sequencer and destination processes are
normally combined.

The algorithm of Figure 8 shows the principle of moving sequencer algorithms. To broadcast a messagem, a
sender sendsm to the sequencers. Sequencers circulate a token message that carries a sequence number and a list
of all messages for which a sequence number has been attributed (i.e., all sequenced messages). Upon reception
of the token, a sequencer assigns a sequence number to all received yet unsequenced messages. It sends the newly
sequenced messages to the destinations, updates the token,and passes it to the next sequencer.

Note 8 Similar to fixed sequencer algorithms, it is possible to develop a moving sequencer algorithm according to
one of three variants. However, the difference between the variants is not as clearcut as it is for a fixed sequencer.
It turns out that among the moving sequencer algorithms surveyed, all of them follow the equivalent of the variant
BB of fixed sequencer. Hence we do not discuss this issue any further.

Note 9 As mentioned, the main motivation for using a moving sequencer is to distribute the load among several
processes, thus avoiding the bottleneck caused by a single process. This is illustrated by several studies (e.g.,
[Cristian et al. 1994, Urb́an et al. 2000]). One could then wonder when a fixed sequencer algorithm should be
preferred to a moving sequencer algorithm. There are, in fact, at least three possible reasons. First, fixed se-
quencer algorithms are considerably simpler, leaving lessroom for implementation errors. Second, the latency of
fixed sequencer algorithms is often better, as shown by [Urbán et al. 2000]. Third, it is often the case that some
of the machines are more reliable, more trusted, better connected, or simply faster than others. When this is the
case, it makes sense to use one of them as a fixed sequencer (seeMTP in §9.1.2).

7.3 Privilege-Based

Privilege-based algorithms rely on the idea that senders can broadcast messages only when they are granted
the privilege to do so. Figure 9 illustrates this class of algorithms. The order is defined by the senders when
they broadcast their messages. The privilege to broadcast (and order) messages is granted to only one process
at a time, but this privilege circulates from process to process among the senders. In other words, due to the
arbitration between senders, building the total order requires to solve the problem of FIFO broadcast (easily
solved with sequence numbers at the sender), and to ensure that passing the privilege to the next sender does not
violate this order.

The algorithm of Figure 10 illustrates the principle of privilege-based algorithms. Senders circulate a token
message that carries a sequence number for the next message to broadcast. When a process wants to broadcast a
messagem, it must first wait until it receives the token message. Then,it assigns a sequence number to each of
its messages and sends them to all destinations. Following this, the sender updates the token and sends it to the
next sender. Destination processes deliver messages in increasing sequence numbers.

Note 10 In privilege-based algorithms, senders usually need to know each other in order to circulate the privilege.
This constraint makes privilege-based algorithms poorly suited to open groups, in which there is no fixed and
previously known set of senders.

Note 11 In synchronous systems, privilege-based algorithms are based on the idea that each sender process is
allowed to send messages only during some predetermined time slots. These time slots are attributed to each pro-
cess in such a way that no two processes can send messages at the same time. By ensuring that the communication
medium is accessed in mutual exclusion, the total order is easily guaranteed. The technique is also known astime
division multiple access(TDMA).

16The protocol to tolerate failures is complex.
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Senders Destinations

Sequencers

Figure 7: Moving sequencer algorithms.

Sender:

procedureTO-broadcast(m) { To TO-broadcast a messagem }

send (m) to all sequencers

Sequencers (code of processsi):

Initialization:
receivedsi := ∅
if si = s1 then

token.seqnum := 1

token.sequenced := ∅
sendtoken to s1

when receivem
receivedsi := receivedsi ∪ {m}

when receivetoken from si−1

for eachm
′ in receivedsi \ token.sequenced do

send(m ′
, token.seqnum) to destinations

token.seqnum := token.seqnum + 1

token.sequenced := token.sequenced ∪ {m ′}

sendtoken to si+1 (mod n)

Destinations (code of processpi):

Initialization:
nextdeliverpi := 1

pendingpi := ∅

when receive(m, seqnum)

pendingpi := pendingpi ∪ {(m, seqnum)}

while ∃(m ′
, seqnum ′) ∈ pendingpi s.t. seqnum ′ = nextdeliverpi do

deliver (m′)
nextdeliverpi := nextdeliverpi + 1

Figure 8: Simple moving sequencer algorithm.

Note 12 It is tempting to consider that privilege-based and moving sequencer algorithms are equivalent, since
both rely on a token passing mechanism. However, they differin one significant aspect: the total order is built by
senders in privilege-based algorithms, whereas it is builtby sequencers in moving sequencer algorithms. This has
at least two major consequences. First, moving sequencer algorithms are easily adapted to open groups. Second,
in privilege-based algorithms the passing of token is necessary to ensure the liveness of the algorithm whereas,
with moving sequencer algorithms, it is mostly used for improving performance, e.g., by doing load balancing.

Note 13 With privilege-based algorithms, it is difficult to ensure fairness. Indeed, if a process has a very large
number of messages to broadcast, it could keep the token for an arbitrary long time, thus prevented other processes
from broadcasting their own messages. To overcome this problem, algorithms often enforce an upper limit on the
number of messages and/or the time that some process can keepthe token. Once the limit is passed, the process is
compelled to release the token, regardless of the number of messages that remain to be broadcast.
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Senders Destinations

Figure 9: privilege-based algorithms.

Senders (code of processsi):

Initialization:
tosendsi := ∅
if si = s1 then

token.seqnum := 1
sendtoken to s1

procedureTO-broadcast(m) { To TO-broadcast a messagem }

tosendsi := tosendsi ∪ {m}

when receivetoken
for eachm

′ in tosendsi do
send(m ′

, token.seqnum) to destinations
token.seqnum := token.seqnum + 1

tosendsi := ∅
sendtoken to si+1 (mod n)

Destinations (code of processpi):

Initialization:
nextdeliverpi := 1

pendingpi := ∅

when receive(m, seqnum)

pendingpi := pendingpi ∪ {(m, seqnum)}

while ∃(m ′
, seqnum ′) ∈ pendingpi s.t. seqnum ′ = nextdeliverpi do

deliver (m′)
nextdeliverpi := nextdeliverpi + 1

Figure 10: Simple privilege-based algorithm.

7.4 Communication History

Similarly to privilege-based algorithms, the delivery order is determined by the senders in communication history
algorithms. However, in contrast to privilege-based algorithms, processes can broadcast messages at any time,
and total order is ensured by delaying the delivery of messages. The messages usually carry a (physical or logical)
timestamp. The destinations observe the messages generated by the other processes and their timestamps, i.e., the
history of communication in the system, to learn when delivering a message will no longer violate the total order.

There are two fundamentally different variants of communication history algorithms. In the first variant, called
causal history, communication history algorithms use a partial order defined by the causal history of messages
and transform this partial order into a total order. Concurrent messages are ordered according to some prede-
termined function. In the second variant, known asdeterministic merge, processes send messages timestamped
independently (thus not reflecting causal order) and delivery takes place according to a deterministic policy of
merging the streams of messages coming from each process. A simple example policy consists in delivering the
next message fromp1, then the next one fromp2, etc., iterating over all processes in a round robin fashion.

Figure 11 illustrates a typical communication history algorithm of the first variant. The algorithm, inspired
by [Lamport 1978b], works as follows. The algorithm uses logical clocks [Lamport 1978b] to “timestamp” each
messagem with the logical time of theTO-broadcast(m) event, denotedts(m). Messages are then delivered in the
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Senders and destinations (code of processp; assumes FIFO channels):

Initialization:
receivedp := ∅ { Messages received by processp }

deliveredp := ∅ { Messages delivered by processp }

LCp [p1 . . . pn ] := {0 , . . . , 0} { LCp [q ]: logical clock of processq, as seen by processp }

procedureTO-multicast(m) { To TO-multicast a messagem }

LCp [p] := LCp [p] + 1

ts(m) := LCp [p]

send FIFO(m, ts(m)) to all

when receive(m, ts(m))

LCp [p] := max(ts(m),LCp [p]) + 1

LCp [sender(m)] := ts(m)

receivedp := receivedp ∪ {m}

deliverable := ∅
for eachmessagem′ in receivedp \ deliveredp do

if ts(m ′) ≤ minq∈Π LCp [q ] then
deliverable := deliverable ∪ {m ′}

deliver all messages indeliverable, in increasing order of(ts(m), sender(m))

deliveredp := deliveredp ∪ deliverable

Figure 11: Simple communication history algorithm.

order of their timestamps. However, we can have two messagesm andm′ with the same timestamp. To arbitrate
between these messages, the algorithm uses the lexicographical order on the identifiers of sending processes. In
Figure 11, we refer to this order as the(ts(m), sender(m)) order, wheresender(m) is the identifier of the sender
process.

Note 14 The algorithm of Figure 11 is not live. Indeed, consider a scenario where a single processp broadcasts
a single messagem, and no other process ever broadcasts any message. According to the algorithm in Figure 11,
a processq can deliverm only after it has received, from every process, a message that was broadcastafter the
reception ofm. This is of course impossible if at least one of the processesnever broadcasts any message. To
overcome this problem, communication history algorithms proposed in the literature usually send empty messages
when no application messages are broadcast.

Note 15 In synchronous systems, communication history algorithmsrely on synchronized clocks, and use physical
timestamps instead of logical ones. The nature of such systems makes it unnecessary to send empty messages in
order to ensure liveness. Indeed, this can be seen as an example of the use of time to communicate [Lamport 1984].

7.5 Destinations Agreement

In destinations agreement algorithms, as the name indicates, the delivery order results from an agreement between
destination processes (see Figure 12). We distinguish three different variants of agreement: (1) agreement on a
message sequence number, (2) agreement on a message set, or (3) agreement on the acceptance of a proposed
message order.

Figure 13 illustrates an algorithm of the first variant: for each message, the destination processes reach an
agreement on a unique (yet not consecutive) sequence number. The algorithm is adapted from Skeen’s algorithm
(§9.5.1), albeit it operates in a decentralized manner. Briefly, the algorithm works as follows. To broadcast a
messagem, a sender sendsm to all destinations. Upon receivingm, a destination assigns it a local timestamp
and sends this timestamp to all destinations. Once a destination process has received a local timestamp form
from all destinations, a unique global timestampsn(m) is assigned tom, calculated as the maximum of all
local timestamps. Messages are delivered in the order of their global timestamp, that is, a messagem can only be
delivered once it has been assigned its global timestampsn(m) and no other undelivered messagem′ can possibly
receive a timestampsn(m ′) smaller or equal tosn(m). As with the communication history algorithm (Figure 11),
the identifier of the message sender is used to break ties between messages with the same global timestamp.
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Senders Destinations

Figure 12: Destinations agreement algorithms.

Sender:

procedureTO-broadcast(m) { To TO-broadcast a messagem }

send (m) to destinations

Destinations (code of processpi):

Initialization:
stampedpi := ∅

receivedpi := ∅

LCpi := 0 { LCpi : logical clock of processpi }

when receivem
tsi(m) := LCpi

receivedpi := receivedpi ∪ {(m, tsi(m))}

send(m, tsi(m)) to destinations
LCpi := LCpi + 1

when received(m, tsj (m)) from pj

LCpi := max(tsj ,LCpi + 1 )

if received(m, ts(m)) from all destinationsthen
sn(m) := max

k=1 ···n
tsk (m)

stampedpi := stampedpi ∪ {(m, sn(m))}

receivedpi := receivedpi \ {m}

deliverable := ∅
for each (m′

, sn(m′)) ∈ stampedpi s.t.∀m ′′ ∈ receivedpi : sn(m ′) < tsi(m
′′) do

deliverable := deliverable ∪ {(m ′
, sn(m ′))}

deliver all messages indeliverable in increasing order of(sn(m), sender(m))

stampedpi := stampedpi \ deliverable

Figure 13: Simple destinations agreement algorithm.

The most representative algorithm of the second variant of agreement is the algorithm proposed by [Chandra and Toueg 1996]
(§9.5.4). The algorithm transforms total order broadcast into a sequence of consensus problems. Each consensus
allows the processes to agree on a set of messages, i.e., consensus numberk allows the processes to agree on a
setMsgk. For k < k′, the messages inMsgk are delivered before the messages inMsgk′

. The messages in a
setMsgk are delivered according to some predetermined order (e.g.,in the order of their identifiers).

With the third variant of agreement, a tentative message delivery order is first proposed (usually by one of the
destinations). Then, the destination processes must agreeeither to accept or to reject the proposal. In other words,
this variant of destinations agreement relies on an atomic commitment protocol.

Note 16 The line is thin between the second and the third variant of agreement. For instance, Chandra and
Toueg’s total order broadcast algorithm relies on consensus, as described above. However, when combined with
the rotating coordinator consensus algorithm using♦S, the resulting algorithm can be seen as an algorithm of the
third form. Indeed, the coordinator proposes a tentative order (given as a set of message plus message identifiers)
that it tries to validate. Thus it is important to note that two seemingly identical algorithms may use different
forms of agreement, simply because they are described at different levels of abstraction.
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7.6 Time-free versus time-based ordering

We introduce a further distinction between algorithms, orthogonal to the above classification. The distinction is
between algorithms that use the physical time for message ordering, and algorithms that do not use the physical
time. For instance, in Sect. 7.4 (see Fig. 11) we have presented a simple communication-history algorithm based
on logical time. It is indeed possible to design a similar algorithm that uses thephysical time instead (and
synchronized clocks).

In short, we distinguish algorithms withtime-based orderingthat rely on physical time, and algorithms with
time-free orderingthat do not use the physical time.

8 Mechanisms for Fault-Tolerance

The total order broadcast algorithms described in Section 7are not tolerant to failures: if a single process crashes,
the properties specified in Section 3 are not satisfied. To be fault-tolerant, total order algorithms rely on various
techniques. In this section we present the most important ofthese techniques. Note that it is somehow difficult
to discuss these techniques without getting into specific implementation details. Nevertheless, we try to keep the
discussion as general as possible.

8.1 Failure detection

A recurrent pattern in all distributed algorithms is for a processp to wait for a message from some other processq.
If q has crashed, processp is blocked. Failure detection is one basic mechanism to preventp from being blocked.

Unreliable failure detection has been formalized by [Chandra and Toueg 1996] in terms of two properties:
accuracyandcompleteness(see Sect. 2.3.2). Completeness is related to the blocking problem mentioned above.
The role of accuracy is more difficult to summarize. Roughly speaking, accuracy prevents algorithms from running
forever, without solving the problem (livelock).

Unreliable failure detectors might be too weak for some total order broadcast algorithms, which requirereli-
ablefailure detection information, provided by aperfectfailure detector, known asP (see Sect. 2.6).

8.2 Group Membership Service

The low-level failure detection mechanism is not the only way to address the blocking problem mentioned in
the previous section. Blocking can also be prevented by relying on a higher level mechanism, namely agroup
membership service.

A group membership service is a distributed service that is responsible for managing the membership of groups
of processes (see Sect. 6.1 and paper by Chockler, Keidar, and Vitenberg [2001] ). The successive memberships
of a group are called theviewsof the group. Whenever the membership changes, the service report changes to all
group members, by providing them with the new view.

A group membership service usually provides strong completeness: if a processp member of some group
crashes, the membership services provides to the survivingmembers a new view from whichp is excluded. In
the primary-partition model (see Sect. 6.1), the accuracy of failure notifications is ensured by forcing the crash of
processes that have been incorrectly suspected and excluded from the membership, a mechanism calledprocess-
controlled crash(see Sect. 2.6). Moreover in the primary-partition model, the group membership service provides
consistent notifications to the group members: the successive views of a group are notified in thesame orderto
all its members.

To summarize, while failure detectors provide unreliable and inconsistent failure notifications, a group mem-
bership service provides consistent failure notifications. Moreover, total order algorithms that rely on a group
membership service for fault tolerance, exploit another property that is usually provided together with the mem-
bership service, namelyview synchrony(see Sect. 6.1). Roughly speaking, view synchrony ensures that between
two successive viewsv and v′, processes in the two views deliver the same set of messages.Group mem-
bership service and view synchrony have been used for implementing complex group communication systems
(e.g., Isis [Birman and van Renesse 1993], Totem [Moser et al. 1996], Transis [[Dolev and Malkhi 1994];[1996] ;
[Amir et al. 1992]], Phoenix [Malloth et al. 1995, Malloth 1996]).
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8.3 Resilient communication patterns

As shown in the previous sections, an algorithm can rely on a failure detection mechanism or on a group member-
ship service to avoid the blocking problem. To be fault-tolerant, another solution is to avoid any potential blocking
pattern.

Consider for example a processp waiting for n − f messages, wheren is the number of processes in the
system, andf the maximum number of processes that may crash. If all correct processes send a message top,
than the above pattern is non-blocking (and does not requireany failure detector mechanism or group membership
service). We call this pattern aresilientpattern.

Note that, to be fault-tolerant, a total order broadcast algorithm can use more than one of the mechanisms
mentioned here, e.g., failure detection and resilient patterns.

8.4 Message stability

Avoiding blocking is not the only problem that fault-tolerant total order broadcasts algorithms have to address.
Figure 1 (page 11) illustrates a violation of the Uniform Agreement property. The problem here is not related to
blocking.

The mechanism that solves the problem is calledmessage stability. A messagem is said to bek-stableif
m has been received byk processes. In a system in which at mostf processes may crash,f+1-stability is the
important property to detect: if some messagem is f+1-stable, thenm is received by at least one correct process.
With such a guarantee an algorithm can easily ensure thatm is eventually received by all correct processes.f+1-
stability is often simply calledstability. The detection of stability is generally based on some acknowledgment
scheme or token passing.

8.5 Consensus

The mechanisms described so far are low-level mechanisms onwhich fault-tolerant total broadcast algorithms
may rely.

Another option for a fault-tolerant total order broadcast algorithm is to rely on higher level mechanisms that
solve all the problems related to fault tolerance (i.e., theproblems mentioned above). The consensus problem
(see Sect. 2.4.3) is such a mechanism. Some algorithms solvetotal order broadcast by a transformation into a
consensus problems. This way, fault tolerance, including failure detection and message stability detection, is
completely hidden within the consensus abstraction.

8.6 Mechanisms for lossy channels

Apart from the mechanisms used to tolerate process crashes,we need to say a few words about mechanisms to
tolerate channel failures. First, it should be mentioned that several total order broadcast algorithms assume an
underlying layer that takes care of lossy channels: these algorithms assume reliable channels, i.e., message loss
is not discussed. Some other algorithms are build directly on top of lossy channels, and so address message loss
explicitly.

To address message loss, the standard solution is to rely on apositive or a negative acknowledgment mecha-
nism. With positive acknowledgment, the reception of messages is acknowledged; with negative acknowledgment,
the detection of a missing message is signaled. The two schemes can be combined.

Token-based algorithms (i.e., moving sequencer or privilege-based algorithms) rely on the token passing to
detect message losses: the token can be used to convey acknowledgments, or to detect missing messages. So
token-based algorithms use the token for ordering purpose,but also for implementing reliable channels.

9 Survey of Existing Algorithms

This section provides an extensive survey of total order broadcast algorithms. We present about sixty algorithms
published in scientific journals or conference proceedingsover the past three decades. We have done every pos-
sible efforts to be exhaustive, and we are quite confident that this paper dresses a good picture of the field at the
time of writing. However, because of the continuous flow of papers on the subject, we might have overlooked one
algorithm or two.
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© yes.
4 somewhat. explained in the text.
× no.

spec. special. explained in the text.
inf. informal. explained in the text.
NS not specified. means also “not discussed.”
n/a not applicable.
+a positive acknowledgment.
-a negative acknowledgment.

GM group membership.
FD failure detector/detection.

Cons. consensus.
RCP resilient communication patterns.

ByzA. Byzantine agreement.

Table 2: Abbreviations used in Tables 3–5.

In Tables 3–5, we present a synthetic overview of all surveyed algorithms, where we summarize the important
characteristics of each algorithm. The tables present onlyfactual information about the algorithms, as it appears
in the relevant papers. In particular, the tables do not present information that is the result of extrapolation, or non-
obvious deduction. The exception is when we had to interpretinformation to overcome differences in terminology.
Also, properties that are discussed in the original paper, yet not proved correct, are reported as “informal” in the
tables. For the sake of conciseness, several symbols and abbreviations have been used throughout the tables; they
are explained in Table 2. For each algorithm, Tables 3–5, provide the following information:

• General information, i.e., the ordering mechanism (see Sect. 7), and whether themechanism is time-based
or not (Sect. 7.6).

• TheGeneral informationrows are followed by rows describing the assumptions that the algorithm is based
on, i.e., what isprovidedto it:

– The System modelrows specify the synchrony assumptions, the assumptions made about process
failures and communication channels. The rowpartitionableshows if the algorithm works in a system
with dynamic groups and partitionable membership semantics (see Sect. 6.1). In particular, algorithms
in which only processes in a primary partition can work are not considered partitionable.

– The rows calledCondition for livenessdiscuss the assumptions necessary to ensure the liveness ofthe
algorithm:

1. The rowlive...X means that the liveness of the algorithm requires the liveness of the building
block X (on which the algorithm relies). For example,live... consensusmeans that the algorithm
is live if the consensus building block on which the algorithm relies is itself live.

2. The rowother adds the following information:NS = not specifiedmeans that liveness is not
discussed in the paper;n/a = not applicablemeans that no additional assumption is needed to
ensure liveness (this applies mostly to algorithms that assume a synchronous model);4 = some-
what andspec. = specialrefers to a discussion of liveness below in the paper;recoverymeans
that the algorithm is blocking, i.e., liveness requires therecovery of crashed processes;♦P refers
to the failure detector needed to ensure liveness.

– The next group of rows indicate thebuilding block(s)used by the algorithm. The building blocks
considered are:view synchrony(Sect. 8.2), which encompasses agroup membershipservice;reliable
broadcast(Sect. 2.4.1);causal broadcast(Sect. 4.3.2);consensus(Sect. 2.4.3); orother. Other can
be either TDMA =time division multiple access(Note 11, Sect. 7.3), ByzA. =Byzantine agreement
(Sect. 2.4.2), or spec. =special, which means that the explanation is in the text below.

• After discussing what is provided“to” the algorithms, we discuss what is provided“by” the algorithms.
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– The first rows give theProperties ensuredby the algorithms. As discussed in Section 3, total order
broadcast is specified by the following properties: Validity, Uniform Agreement, Uniform Integrity,
Uniform Total Order. Validity and Uniform Integrity do not appear in the table. The reason is that
these properties are rarely discussed in the papers (authors usually assume they are trivially ensured).

We first discuss Agreement and Uniform Agreement, then TotalOrder and Uniform Total Order.
Finally, we mention whether the algorithm additionally ensures FIFO order or causal order. In all
these entries, one would might expect either ayesor ano. Unfortunately many papers do not provide
proofs (often only informal arguments), which means that these properties can be questioned. In this
case,inf. = informal appears in the table. If an algorithm does not discuss the properties of total order
broadcast at all, the corresponding entry mentionsNS = not specified. If the non-uniform property
is only discussed informally, then the corresponding entryfor the uniform property is left empty (in
an informal discussion, the distinction between the uniform and the non-uniform property usually
does not appear).©/× (=yes/no) appears in some entries for the uniform property, meaning that
these algorithms provide several levels of Quality of Service (QoS), which include a uniform and a
non-uniform version of the algorithm, where the non-uniform version is more efficient. Moreover,
for being able to compare non-partitionable algorithms with partitionable algorithms, we consider the
properties enforced by the former when executed in a non-partitionable system model.

For the rowsFIFO order andcausal order, © = yesappears only if this characteristic is explicit in
the paper. Otherwise the entry is simply left blank. Finally, if an algorithm is not fault-tolerant, then
the distinction between the uniform and the non-uniform properties does not make sense. In this case
the entry mentionsn/a = not applicable.

– The rows calleddestination groupstell whether the algorithm supports the total order broadcast of
a message to multiple groups (rowmultiple), and whether the algorithms supportopengroups (see
Sect. 5). The entry is left blank if the issue is not discussedexplicitly in the paper.

• The last group of rows, calledFault-tolerant mechanisms, discusses the mechanisms used to provide fault
tolerance. The rowprocessmentions the mechanisms used to tolerate process crashes (see Sect. 8). Note
that some of these fault-tolerant mechanisms also appear asbuilding blocks. However, not all building
blocks have been reported as fault-tolerant mechanisms (e.g., reliable broadcast, causal broadcast).17

The rowcomm.mentions the mechanisms used to address message losses. Most of the algorithms assume
underlying reliable channels, in which case the entry mentionsn/a = not applicable. The acronyms+a
and-a indicate a positive, respectively negative, acknowledgment mechanism. The other entries areflood
(flooding),special(explanation in the text below), and GM =group membership. In the context of unreliable
channels, the GM mechanism is used in the case were some processp waits for a message from some
other processq: if no message is received (e.g., due to loss), thenp requests the exclusion ofq from the
membership.

In Sections 9.1 through 9.6, we give a brief description of each individual algorithm, and complement the
information provided in the tables. Unlike the tables, the textual descriptions also present information that we
have deduced from the relevant papers. In some cases, the lack of technical details about the algorithms (in
particular in case of failures) leads us toextrapolatetheir behavior. In this case, we avoid being too assertive
(e.g., using conditional) and kindly recommend the reader to take this speculative information with appropriate
circumspection.

We think that it is useful to stress again the respective roles of the tables and the accompanying text in Sec-
tions 9.1 to 9.6. The tables providefactual information about each algorithm, as it was published in therelevant
papers. In contrast, the text provides complementary information, including information that we haveextrapo-
lated. In particular, the text explains the originality of each algorithm, and complements items that are left vague
in the tables (i.e., those points are vague in the paper). In particular, for some of the algorithms, the properties
reported in the tables are weaker than those the algorithm might ensure. In such a case, the text below mentions
(and discusses) the stronger property that might hold. We insist on this point as misunderstanding the respective
roles of text and tables might give the wrong impression thattext and tables are in contradiction.

17The decision of what is a fault-tolerance mechanism and what is not is somehow arbitrary. We have decided to keep the number of
mechanisms mentioned in Section 8 low, i.e., to mention only on key mechanisms.
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Amoeba MTP TandemGarcia-M. Jia Isis Navarat.PhoenixRampart Chang RMP DTP Pin- On- Train Totem TPM Gopal RTCAST MARS

algorithm Spauster (seq.) et al. Maxem. wheel demand Toueg

§9.1.1§9.1.2§9.1.3§9.1.4§9.1.5§9.1.6§9.1.7§9.1.8§9.1.9§9.2.1§9.2.2§9.2.3§9.2.4§9.3.1§9.3.2§9.3.3§9.3.4§9.3.5§9.3.6§9.3.7
Ordering mechanism
class fixed sequencer moving sequencer privilege-based
time-based ©

System model
synchrony asynchronous timed asynchronous round synchronous

asynchronous synch.synch. clocks
crash © © © © © © © © © © © © © © © © © © © ©
omission © ©
Byzantine ©

partitionable ©

reliable © © © © © © ©
FIFO © © © © © ©
authent. ©

Condition needed for liveness
live ... GM GM GM
other NS 4 NS recovery NS NS NS NS NS NS NS NS NS n/a n/a n/a
Building blocks
view sync. © © ©
reliable b.
causal b. ©
consensus
other TDMA
Properties ensured
Agreement inf. inf. inf. © NS inf. inf. © © inf. inf. inf. © inf. inf. © © © © NS
Unif. A × NS ©/× © × ©/× © © © NS
Total Order inf. © inf. © © inf. inf. © © inf. inf. © inf. inf. inf. © © © © NS
Unif. TO × × × ©/× © © ©/× © © © NS
FIFO order 4 © © ©
causal ord. 4 © © ©

Destination groups
multiple © © 4
open ©

Fault tolerance mechanism
process GM spec. GM block. GM GM GM GM GM GM GM GM GM GM GM GM GM Cons. GM GM
comm. +a,-a -a +a -a -a n/a n/a n/a n/a +a,-a +a,-a +a,-a -a +a,-a GM -a +a,-a n/a GM n/a

Table
3:

O
verview

oftotalorder
broadcastalgorithm

s
(part
I).
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Lamport Psync Newtop Ng ToTo Total ATOP COReL determ. HAS Redund. Quick-S ABP Atom QoS Newtop hybrid indulg. opt. TO

algorithm (sym.) merge chan. preserv. (asym.) unif. TOin WAN

§9.4.1§9.4.2§9.4.3§9.4.4§9.4.5§9.4.6§9.4.7§9.4.8§9.4.9§9.4.10§9.4.11§9.4.12§9.4.13§9.4.14§9.4.15§9.6.1§9.6.2§9.6.3§9.6.4
Ordering mechanism
class communication history hybrid
time-based © © © © ©

System model
synchrony asynchronous synchronous spec. sync. synchronous asynchronous

sync. clocks sync. clocks
crash © © © © © © © © © © © © © © © © ©
omission © ©
Byzantine spec. spec. ©

partitionable © © © © © ©

reliable © © © © © © © n/a © © © © © ©
FIFO © © © © n/a © © © ©

Condition needed for liveness
live ... GM Cons.
other NS NS NS NS NS spec. n/a n/a n/a n/a n/a n/a NS NS NS
Building blocks
view sync. © © © © © ©
reliable b. © ©
causal b. ©
consensus 4 ©
other spec. ByzA.
Properties ensured
Agreement inf. 4 © © © 4 × © © © © © © © × © inf. © inf.
Unif. A n/a 4 × © ©/× n/a n/a © n/a × × ©/× © © n/a × ©

Total Order inf. inf. © inf. © © inf. © © © © © © © © © inf. © inf.
Unif. TO n/a × ©/× © © n/a × × ©/× × © × × ©

FIFO order © © © © © © ©
causal ord. © © © © © ©

Destination groups
multiple © © ©
open ????
Fault tolerance mechanism
process n/a FD GM FD GM RCP GM GM n/a RCP RCP ByzA. GM GM GM GM GM Cons. NS
comm. n/a +a n/a n/a n/a +a,-a n/a n/a n/a flood. spec.. n/a +a n/a n/a n/a n/a n/a n/a

Table
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verview
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broadcastalgorithm
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(part
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Skeen Luan Le LannChandraRodrigues ATR Scal- Fritzke optim. prefix generic thrifty weak AMp Quick-A

algorithm Gligor Bres Toueg Raynal atom et al. ABcast agreem. bcast generic order. xAMp

§9.5.1§9.5.2§9.5.3§9.5.4§9.5.5§9.5.6§9.5.7§9.5.8§9.5.9§9.5.10§9.5.11§9.5.12§9.5.13§9.5.14§9.5.15
General
class destinations agreement
time-based
System model
synchrony asynchronous asynchronous w/failure detectors async. sync. async.

w/oracle w/ByzA.
crash © © © © spec. © © © © © © © © © ©
omission © ©
Byzantine ©

partitionable
reliable © © © © © © © © © © © n/a
FIFO © © n/a
Condition needed for liveness
live ... Cons. Cons. Cons.Cons.Cons. Cons. Cons.
other NS NS NS ♦P 4 4 spec. n/a
Building blocks
view sync.
reliable b. © © © © © © ©
causal b.
consensus © © © © © © ©
other spec.
Properties ensured
Agreement inf. inf. × © © © © © © © © © © © ©
Unif. A n/a × © © © © × © © © © © ©/×
Total Order inf. inf. © © © © © © © © © © © © ©
Unif. TO × × © © © © × © © © © × ©/×
FIFO order © ©
causal ord. © ©

Destination groups
multiple © © ©
open © ©

Fault tolerance mechanism
process GM FD RCP Cons. Cons. GM Cons.Cons.Cons. Cons. Cons. n/a RCP GM Cons.
comm. n/a -a RCP n/a gossip. n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table
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9.1 Fixed Sequencer Algorithms

Regardless of the variant they adopt (see Sect. 7.1), all sequencer algorithms assume an asynchronous system
model and use time-free ordering. They tolerate crash failures, except for Rampart which additionally tolerates
Byzantine failures. Also, they all rely on process-controlled crash to cope with failures; either explicitly (e.g., Tan-
dem), or through a group membership and exclusion (e.g., Isis, Rampart).

9.1.1 Amoeba

The Amoeba [Kaashoek and Tanenbaum 1996] group communication system supports algorithms of the first two
variants of fixed sequencer algorithms. The first one corresponds to the variant UB (unicast-broadcast) illustrated
in Figure 6(a) (Sect. 7.1). The second variant corresponds to BB (broadcast-broadcast), see Figure 6(b). The two
variants share the same properties.

Amoeba assumes lossy channels and implements message retransmission as part of the total order broadcast
algorithm. Amoeba uses a combination of positive and negative acknowledgments. The actual protocol is quite
complex because it is combined with flow control, and also tries to minimize the communication cost. Amoeba
tolerates failures using a group membership service. Suspected processes are excluded from the group as the
result of the unilateral decision of a single process.

The properties of the Amoeba algorithms are only discussed informally in the paper. However, since messages
are delivered before they are stable, the algorithm can onlysatisfy the non-uniform properties of Agreement and
Total Order.

9.1.2 MTP

MTP [Armstrong et al. 1992] is an algorithm primarily designed for video streaming and other similar multimedia
applications. The algorithm assumes that the system is not uniform with respect to the probability of process fail-
ures. In particular, it assumes that a process, called the master process, never fails. The master is then designated
as the sequencer, and the protocols follows variant UUB (unicast-unicast-broadcast, see Fig. 6(c); p.19). When
a processp has a messagem to broadcast,p requests a sequence number form from the sequencer. Once it has
obtained the sequence number, it sendsm together with the sequence number, to all destinations and the master.
At the same time, destination processes learn about the status of previous messages and deliver those that have
been accepted by the master.

The protocol tolerates crash failures of destination processes and senders, since all parts involving decisions are
executed by the master. The failure of the master is briefly discussed at the end of the paper. The authors suggest
that the master could be rendered more resilient by introducing redundancy and using replication techniques.

9.1.3 Tandem

The Tandem global update protocol [Carr 1985] is a fixed sequencer algorithm of variant UUB (see Fig. 6(c)).
The algorithm allows at most one application message to be broadcast at a time, and thus does not need sequence
numbers. Later, [Cristian et al. 1994] describe a variant UBof Tandem that allows concurrent broadcasts (and
thus needs sequence numbers).

9.1.4 Garcia-Molina and Spauster

The algorithm proposed by [Garcia-Molina and Spauster 1991] is based on a propagation graph (a forest) to sup-
port multiple overlapping groups. The propagation graph isconstructed is such a way that each group is assigned
a starting node. Senders send their messages to the corresponding starting nodes and messages travel along the
edges of the propagation graph. Ordering decisions are resolved along the path. When used in a single group set-
ting, the algorithm behaves like other fixed sequencer algorithms (i.e., the propagation graph is a tree of depth 1).

The algorithm assumes an asynchronous model and requires synchronized clocks. However, synchronized
clocks are only needed to yield bounds on the behavior of the algorithm when crash failures occur. Neither the
ordering mechanism nor the fault tolerance mechanism actually need them.

In the event of failures, the algorithm behaves in an unconventional manner. Indeed, if a non-leaf processp
crashes, then its descendants in the propagation graph do not receive any message untilp has recovered. Hence,
the algorithm tolerates process crashes only if those processes are guaranteed to eventually recover.
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9.1.5 Jia

[Jia 1995] proposed another algorithm based on propagationgraphs, which creates simpler graphs than the algo-
rithm of Garcia-Molina and Spauster (see§9.1.4). Unfortunately, the algorithm originally proposedby [Jia 1995]
is incorrect. [Chiu and Hsiao 1998] provide a correction to the algorithm which works only in a more restricted
model (i.e., only closed groups). Also, [Shieh and Ho 1997] provide a correction to the message complexity
calculated by [Jia 1995].

Jia’s algorithm relies on the notion of meta-groups, which is defined in the paper as “the set of processes
which have exactly the same group memberships” (i.e., the set of processes which belong to the exact same set
of destination groups). The meta-groups are organized intopropagation trees, according to the membership they
represent. The flow of messages is streamlined down the trees, thus creating the delivery order.

[Jia 1995] describes a form of group membership mechanism which is used to redefine the parts of the prop-
agation graph that must change when a process is deleted. Jiaalso suggests that, unlike Garcia-Molina and
Spauster’s algorithm (§9.1.4), the nodes in the tree consist of entire meta-groups rather than single processes.
Thus, messages would not be stopped unless all members in an intermediary meta-group fail. The issue is how-
ever only addressed informally.

9.1.6 Isis (sequencer)

[Birman et al. 1991] describe several broadcast primitivesof the Isis system, including a total order broadcast
primitive called ABCAST. The ABCAST primitive is implemented using a fixed sequencer algorithm (different
from the algorithm used in earlier versions of the system; see §9.5.1, p.40). The Isis (sequencer) algorithm is
a fixed sequencer algorithm of variant BB (see Fig. 6(b), p.19), which uses a causal broadcast primitive. The
algorithm assumes crash failures.

Being constructed over a causal broadcast primitive, the Isis ABCAST algorithm preserves causal order. More-
over, although the algorithm does not support total order for multiple overlapping groups, causal order is never-
theless preserved in this context. The total order broadcast algorithm ensures only the non-uniform properties of
Agreement and Total Order.

For fault tolerance, the total order broadcast algorithm relies on a group membership service and on the
property of view synchrony (Sect. 8.2).

Finally, the authors also briefly mention that moving the role of the sequencer in the absence of failures might
be a way to avoid a bottleneck. However, the idea is not developed further.

9.1.7 Navaratnam et al.

[Navaratnam et al. 1988] propose a fixed sequencer protocol of variant UB (see Fig. 6(a)).
The fault tolerance of the algorithm relies on a group membership service and the ability to exclude wrongly

suspected processes. Similar to Amoeba (§9.1.1), the decision to exclude a suspected process can be taken unilat-
erally by one single process.

The properties of this algorithm are discussed informally,and it is easy to see that it satisfies the non-uniform
properties of Agreement and Total Order. The authors also make a brief remark suggesting that the algorithm does
not guarantee uniform properties, but the wording is a little ambiguous and the information provided in the paper
is not sufficient to verify this interpretation.

9.1.8 Phoenix

Phoenix [Wilhelm and Schiper 1995] consists of three algorithms which provide different levels of guarantees.
The first algorithm (weak order) only guarantees Total Orderand Agreement. The second algorithm (strong
order) guarantees both Uniform Total Order and Uniform Agreement. Then, the third algorithm (hybrid order)
combines both guarantees on a per message basis.

The three algorithms are based on a group membership serviceand view synchrony (see Sect. 6.1).

9.1.9 Rampart

Unlike other sequencer algorithms, which only assume crashfailures, the algorithm of Rampart [Reiter 1994,
Reiter 1996] is designed to tolerate Byzantine failures. This sets this algorithm somewhat apart from the other
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sequencer algorithms.
Rampart assumes an asynchronous system model with reliableFIFO channels, and a public key infrastructure

where every process initially knows the public key of every other process. In addition, communication chan-
nels are assumed to be authenticated, so that the integrity of messages between two honest (i.e., non-Byzantine)
processes is always guaranteed.

Unlike most early work on Byzantine failures, Rampart treats honest and Byzantine processes separately. In
particular, the paper defines uniformity as a property that applies to honest processes only (see explanations in
Sect. 6.2). With this definition, Rampart satisfies both Uniform Agreement and Uniform Total Order.

The algorithm is based on a group membership service, which requires that at least one third of all processes in
the current view reach an agreement on the exclusion of some process from the group. This condition is necessary
because Byzantine processes could otherwise purposely exclude correct processes from the group.

9.2 Moving Sequencer Algorithms

We describe here four moving sequencer algorithms, all of which are time-free. To the best of our knowledge,
there is no time-based moving sequencer algorithm. It is actually questionable whether time-based ordering would
even make sense for algorithms of this class.

The four algorithms behave in a very similar fashion. Actually, Pinwheel (§9.2.4), RMP (§9.2.2), and DTP
(§9.2.3) are all three based on Chang and Maxemchuck’s algorithm (§9.2.1), which they all improve in a different
way. Pinwheel is optimized for a uniform message arrival pattern, RMP provides various levels of guarantees,
and DTP provides a faster detection of message stability. The four algorithms also handle process failures very
similarly, using a reformation algorithm (see§9.2.1).

The four algorithms tolerate message loss by relying on a message retransmission protocol that combines
positive and negative acknowledgments. More precisely, the token carries positive acknowledgments, but when
a process detects the miss of a message, it sends a negative acknowledgment to the token site. The negative ac-
knowledgment scheme is used for message retransmission, whereas the positive scheme is used to detect message
stability.

9.2.1 Chang and Maxemchuck

The algorithm proposed by [Chang and Maxemchuk 1984] is based on the existence of a logical ring along which
a token is passed. The process that holds the token, also known as the token site, is responsible for sequencing
the messages that it receives. The passing of the token simultaneously serves two different purposes: (1) the
transmission of the sequencer role, and (2) the detection ofmessage stability. Point 2 requires that the logical ring
spans all destination processes. This requirement is however not necessary for ordering messages (point 1), and
hence the algorithm qualifies as a sequencer-based algorithm according to our classification.

When a process failure is detected (perhaps wrongly) or when aprocess recovers, the algorithm goes through
a reformation phase. The reformation phase redefines the logical ring and elects a new initial token holder. The
reformation algorithm can be seen as an ad-hoc implementation of a group membership service.

The properties of the total order broadcast algorithm are discussed only informally. Nevertheless, it seems
plausible that the algorithm ensures Uniform Total Order and Uniform Agreement.

9.2.2 RMP

RMP [Whetten et al. 1994] differs from the other three algorithms in that it is designed to operate with open
groups. Beside, the authors claim that “RMP provides multiple multicast groups, as opposed to a single broadcast
group.” However, according to their description, supporting multiple multicast groups is merely a characteristic
associated with the group membership service. It is hence dubious that “multiple groups” is used with the meaning
that total order is guaranteed for processes that are at the intersection of two groups (see discussion in Sect. 5.2).

Depending on the user’s choice, RMP satisfies Agreement, Uniform Agreement, or neither of these properties.
However, in order to ensure the strong guarantees, RMP must assume that a majority of the processes remain
correct and always connected. Also, RMP does not preclude the contamination of the group.
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9.2.3 DTP

Unlike the other three algorithms, DTP [Kim and Kim 1997] does not rely on a logical ring for the passing of the
token. Instead, the algorithm follows a heuristic whereby the token is always passed to the process seen as the
least active. Doing this ensures that messages are acknowledged more quickly when the activity (i.e., broadcasting
messages) is not uniform among processes.

9.2.4 Pinwheel

The originality of Pinwheel [Cristian et al. 1997] is that the token circulates among the processes at a speed
proportional to the global activity of the sending processes (i.e., broadcasting rate).

Pinwheel assumes that a majority of the processes remains correct and connected at all time (majority group).
The algorithm is based on the timed asynchronous model of [Cristian and Fetzer 1999]. Although it relies on
physical clocks for timeouts, Pinwheel does not need to assume that these clocks are synchronized. Furthermore,
the algorithm is time-free since time is not used for ordering messages.

Pinwheel can ensure Uniform Total Order, given an adequate support from its group membership (not detailed
in the paper). Beside, Pinwheel only satisfies (non-uniform) Agreement, but the authors argue that the algorithm
could easily be modified to satisfy Uniform Agreement [Cristian et al. 1997]. Doing this would only require that
destination processes wait until a message is known to be stable before delivering it. The authors claim that the
algorithm preserves causal order, but this is valid only under certain restrictions that make the problem trivial to
solve.18

9.3 Privilege-Based Algorithms

As for moving sequencer algorithms, most privilege-based algorithms are based on a logical ring, and for most of
them rely on some kind of group membership or reconfigurationprotocol to handle process failures.

9.3.1 On-demand

The On-demand protocol [Cristian et al. 1997], unlike otherprivilege-based algorithms, does not rely on a logical
ring. Instead, processes with a message to broadcast must obtain the token by issuing a request to the current
token holder. As a consequence of this approach, the protocol is more efficient if senders send long bursts of
messages and such bursts rarely overlap. Also, in contrast with the other algorithms,all processesmust be aware
of the identity of the token holder. So, the passing of the token is done using a broadcast.

The on-demand protocol relies on the same model as the Pinwheel protocol (§9.2.4). In other words, it assumes
a timed asynchronous system model, and physical clocks for timeouts.

A similar algorithm, called Reqtoken, is also described by [Friedman and van Renesse 1997].

9.3.2 Train

The Train protocol [Cristian 1991] is inspired by the image of a train that transports messages and circulates
among processes. More concretely, a token (a.k.a., the train) moves along a logical ring and carries the messages.
When a process gets the token, it receives the new messages carried by the token, acknowledges them, and appends
its own messages to the token. Then, it passes the token to thenext process. The Train protocol, where messages
are carried by the token, comes in clear contrast with the other algorithms of the same class, where messages are
broadcast directly to the destinations. The Train protocolis hence less attractive than the others in a broadcast
network.

9.3.3 Totem

The specificity of Totem [Amir et al. 1995] compared to other privilege-based algorithms is that it is designed for
partitionable systems. The ordering guarantee ensured is Strong Total Order. Totem provides both(non-uniform)
agreement and total order (calledagreed order) anduniformagreement and total order (calledsafe order) when
operated in a non-partitionable system. Causal order is also ensured.

18In systems with a single closed group where processes are onlyallowed to communicate using total order broadcast, causal order is
satisfied trivially by simply enforcing FIFO order.
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The algorithm uses a membership protocol, which has the responsibility to detect processor failures, network
partitioning and loss of the token. When such failures are detected, the membership protocol reconstructs a new
ring, generates a new token, and recovers messages that had not been received by some of the processors when
the failure occurred.

The authors observe that while moving sequencer algorithms(in which holding the token is not required to
broadcast a message) have good latency at low loads, latencyincreases at high load and in the presence of proces-
sor crashes. Moreover, according to [Agarwal et al. 1998], the ring and the token passing scheme make privilege-
based algorithm highly efficient in broadcast LANs, but lesssuited to interconnected LANs. To overcome this
problem, they extend Totem to an environment consisting of multiple interconnected LANs. The resulting algo-
rithm performs better in such an environment, but otherwisehas the same properties as the original single-ring
one.

9.3.4 TPM

TPM [Rajagopalan and McKinley 1989] is closely related to Totem. The main difference is that TPM is not
partitionable (it only supports primary partition membership). Moreover, TPM only providesuniformagreement
and total order. Finally, while TPM only supports a closed group, the authors discuss some ideas on how to extend
the algorithm to support multiple closed groups.

[Rajagopalan and McKinley 1989] also propose a modificationof TPM in which retransmission requests are
sent separately from the token, in order to improve the behavior in networks with a high rate of message loss.

9.3.5 Gopal and Toueg

Gopal and Toueg’s [1989] algorithm is based on the round synchronous model. The round synchronous model
is a computation model in which the execution of processes issynchronized according to rounds. During each
round, every process performs the same actions: (1) send a message to all processes, (2) receive a message from
all non-crashed processes, and then (3) perform some computations.

The algorithm works as follows. For each round, one of the processes is designated as thetransmitter. The
transmitter of some roundr is the only process which is allowed to broadcast new application messages in round
r. In that round the other processes broadcast acknowledgments of previous messages. Messages are delivered
once they are acknowledged, three rounds after their initial broadcast.

9.3.6 RTCAST

RTCAST [Abdelzaher et al. 1996] was designed for applications that need real-time guarantees. The algorithm
assumes a synchronous system with synchronized clocks. These strong guarantees allow for simplification in the
protocol. The paper also shows how the maximum token rotation time can be used for admission control and
schedulability analysis of real-time messages (with the goal to guarantee the delivery deadline of these messages).

9.3.7 MARS

MARS [Kopetz et al. 1990] is based on the principle oftime division multiple-access(TDMA; see Note 11, p.20).
TDMA consists in having predetermined periodic time slots assigned to each process. Processes are then allowed
to send or broadcast messages messages only during their owntime slots. The system assumes that processes
have synchronized clocks whereby they are able to accurately determine the beginning and the end of their own
time slot. In addition, communication is assumed to be reliable and with bounded delays.

Based on the mutual exclusion provided by the TDMA model and the communication model, total order
broadcast is easily implemented. The ordering mechanism can be seen as similar to Gopal and Toueg’s algorithm
(§9.3.5), but in a time-based model and where communication uses time rather than messages [Lamport 1984].

[Kopetz et al. 1990] do not discuss the behavior of their total order broadcast algorithm in the presence of
failures. This makes it difficult to determine whether the algorithm is uniform or not. We believe that it is
not uniform, simply because uniformity induces a cost in performance that the authors are unlikely to consider
affordable.
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9.4 Communication History Algorithms

9.4.1 Lamport

The principle of Lamport’s algorithm [Lamport 1978b], which uses logical clocks, has been explained in Sec-
tion 7.4 (see Fig. 11). Actually, the paper describes a mutual exclusion algorithm. However it is straightforward
to derive a total order broadcast algorithm from the mutual exclusion algorithm. Since the delivery order of a
messagem is determined by the timestamp of the broadcast event ofm, the total order is an extension of causal
order. The algorithm is not tolerant to failures.

A similar algorithm is described by [Attiya and Welch 1994],when comparing consistency criteria.

9.4.2 Psync

The Psync algorithm [Peterson et al. 1989] is used in severalgroup communication systems: Consul [Mishra et al. 1993],
Coyote [Bhatti et al. 1998], and Cactus [Hiltunen et al. 1999]. In Psync, processes dynamically build a causality
graph of messages they receive. Psync then delivers messages according to a total order that is an extension of the
causal order.

Psync assumes an asynchronous system model with (permanent) crash failures and (transient) lossy commu-
nication. To tolerate process failures, the algorithm seems to assume a perfect failure detector, although this is
not said explicitly in the paper. To implement reliable channels, the algorithm uses negative acknowledgments (to
request the retransmission of lost messages).

Psync is specified only informally. Nevertheless, we believe that the protocol ensures Total Order in the
absence of failures. The behavior in the face of failures is unfortunately not described with enough detail to
make a confident claim about it. Agreement is a little more complex. In the absence of message loss, Psync
ensures Agreement. However, with certain combinations of process crash and message loss, it is possible that
some correct processesdiscardmessages that are otherwise delivered by others. Hence, when message loss are
considered, Agreement can be violated. This problem is discussed in details by the authors, who relate it to an
instance of the “last acknowledgment problem.”

[Malhis et al. 1996] provide an analysis of the performance of Psync in the presence of message loss. They
conclude that Psync performs well if broadcast are frequentand message loss rare, but performs poorly when
broadcast are infrequent and message loss common. They showthat the performance can be improved by sending
empty messages regularly, as is done by other communicationhistory algorithms (see Note 14 in Sect. 7.4).

9.4.3 Newtop (symmetric)

[Ezhilchelvan et al. 1995] propose two algorithms: a symmetric one and an asymmetric one. The symmetric
algorithm extends Lamport’s algorithm (§9.4.1) in several ways: makes it fault-tolerant, allows a process to be
member of multiple groups, and allows the broadcast of a message to multiple groups. As for Lamport’s algorithm,
Newtop preserves causal order.

Newtop is based on a partitionable group membership service(see Sect. 6.1, p.17). The Newtop platform
leaves it to applications to decide whether or not they should maintain more than one subgroup in such a situation.
Newtop satisfies the property of Weak Total Order mentioned in Sect. 6.1.

The asymmetric algorithm belongs to a different class, and is hence discussed there (see§9.6.1). The two
algorithms (symmetric and asymmetric) can easily be combined to allow the use of the symmetric algorithm in
some groups, and the asymmetric algorithm in other groups.

9.4.4 Ng

[Ng 1991] presents an communication history algorithm thatuses a minimum-cost spanning tree to propagate
messages. The ordering of messages is based on Lamport’s clocks, similar to Lamport’s algorithm. However,
messages and acknowledgment are propagated, respectivelygathered, using a minimum-cost spanning tree. The
use of a spanning tree improves the scalability of the algorithm and makes it adequate for wide-area networks.
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9.4.5 ToTo

The ToTo algorithm [Dolev et al. 1993] ensures Weak Total Order (see Section 6.1; called “agreed multicast” in
[Dolev et al. 1993]). It is build on top of the Transis partitionable group communication system [Dolev and Malkhi 1996].
ToTo extends the order of an underlying causal broadcast algorithm. It is based on dynamically building a causal-
ity graph of received messages. The Transis system offers both a uniform and a non-uniform variant of the
algorithm. A particularity of ToTo (non-uniform variant) is that, to deliver a messagem, a process must have
received acknowledgments form from as few as a majority of the processes in the current view (instead of all
view members).

9.4.6 Total

The Total algorithm [Moser et al. 1993] is built on top of a reliable broadcast algorithm called Trans (Trans in
defined together with Total). However, Trans is not used as a black box (which explains that we did not list
reliable broadcast as a building block in Table 4). Trans uses an acknowledgment mechanism that defines a partial
order on messages. Total extends the partial order of Trans into a total order. Two variants are defined: the more
efficient one toleratesf < n/3 crashes and the other toleratesf < n/2 crashes.

The Total algorithm fulfills the Agreement property (in fact, Uniform Agreement) with high probability. Ac-
tually Total requires that the underlying Trans reliable broadcast protocol provides probabilistic guarantees about
not reordering messages. This has some similarities with the notion ofweak ordering oracles(see Section 9.5.13).

[Moser and Melliar-Smith 1999] propose an extension of Total to tolerate Byzantine failures.

9.4.7 ATOP

ATOP [Chockler et al. 1998] is an algorithm following the deterministic merge approach (Sect. 7.4). The focus of
the paper is adapting the algorithm to different and possibly changing sending rates. A pseudo-random number
generator is used in computing the delivery order.

The paper is mostly concerned with ensuring an ordering property. This property is Strong Total Order, defined
in the context of partitionable systems (Sect. 6.1). The algorithm ensures FIFO order, and ensures causal order
only trivially (see Footnote 18, p.35).

9.4.8 COReL

The COReL algorithm [Keidar and Dolev 2000] is built on top ofa partitionable group membership service like
Transis. The underlying service should also offer Strong Total Order (Sect. 6.1) as well as causal order. COReL
gradually builds a global order (Reliable Total Order) by tagging messages according to three different color levels
(red, yellow, green). A message starts as red (no knowledge about its position in the global order) then passes
to yellow (received and acknowledged when the process is a member of a majority component) and green (all
members of the majority component acknowledged the message, and its position in the global order is known).
Green messages are delivered to the application. Messages are retransmitted and promoted to green whenever
partitions merge. All acknowledgments sent by the algorithm are piggybacked. COReL provides the following
liveness guarantee: if eventually there is a stable majority component, all messages sent by the members of this
component are delivered.

COReL also supports process recovery if processes are equipped with stable storage. This requires that pro-
cesses log each message that is sent (before sending the message) and each message that is received (before
sending an acknowledgment).

[Fekete et al. 2001] formalize a variant of the COReL algorithm and the guarantees offered by the underlying
group membership service, using I/O automata.

9.4.9 Deterministic merge

In the deterministic merge algorithm [Aguilera and Strom 2000], each message received deterministically defines
the sender of the next message to be accepted. Senders put a physical timestamp on their messages, and upon
receiving such a message, the destination process computes(using the timestamp) the next sender from which it
will accept a message. The algorithm is most efficient if clocks are synchronized (but works even if clocks are
not synchronized) and each sender sends messages at some fixed rate known a priori (the rate may be different for

38



each sender). To make the algorithm live, senders need to send empty messages if they have no message to send
(these messages divide the execution into independentepochs). The algorithm, as described, is not fault-tolerant.

9.4.10 HAS

[Cristian et al. 1995] propose a collection of total order broadcast algorithms (called HAS) that assume a syn-
chronous system model withε-synchronized clocks. The authors describe three algorithms—HAS-O, HAS-T ,
and HAS-B—that are respectively tolerant to omission failures, timing failures, and authenticated Byzantine fail-
ures. These algorithms are based on the principle ofinformation diffusion, which is itself based on the notion of
flooding or gossiping. In short, when a process wants to broadcast a messagem, it timestamps it with the time of
emissionT according to its local clock, and sends it to all neighbors. Whenever a process receivesm for the first
time, it relays it to its neighbors. Processes deliver messagem at timeT +∆, according to their local clock (where
∆ is constant that depends on the topology of the network, the number of failures tolerated, and the maximum
clock drift ε).

The paper proves that the three HAS algorithms satisfy Agreement. The authors do not prove Total Order but,
by the properties of synchronized clocks and the timestamps, Uniform Total Order is not too difficult to enforce.
However, if the synchronous assumptions do not hold, the algorithms could violate the safety of the protocol (i.e.,
Total Order) rather than just its liveness.

9.4.11 Redundant broadcast channels

[Cristian 1990] presents an adaption of the HAS-O algorithm (omission failures) to broadcast channels. The
system model assumes the availability off + 1 independent broadcast channels (or networks) that connectall
processes together, thus creatingf + 1 independent communication paths between any two processes(wheref is
the maximum number of failures). Compared to HAS-O, the algorithm for redundant broadcast channels issues
significantly less messages.

9.4.12 Quick-S

[Berman and Bharali 1993] present several closely related total order broadcast algorithms in a variety of system
models. In synchronous systems (3 variants in the paper) thealgorithms are similar to the HAS algorithms:
messages are timestamped (with physical or logical timestamps, depending on the system model), and a message
timestamped withT can be delivered atT + ∆ for some value of∆. The difference is that they use a Byzantine
agreement algorithm with bounded termination time to send messages. There are algorithms that work with
Byzantine failures and ones that work with crash failures only; the latter ensure Uniform Prefix Order. For
Byzantine failures, the algorithm ensures only non-uniform properties. This is because, unlike thespecification
of Rampart (§9.1.9), thespecificationused by Quick does not distinguish between Byzantine processes and those
that only fail by crashing.

The paper also presents an algorithm for asynchronous systems. However, this algorithm belongs to the class
of destinations agreement algorithms and is discussed there (Quick-A;§9.5.15).

9.4.13 ABP

The principle of ABP [Minet and Anceaume 1991b, Anceaume 1993a] is close to the principle of Lamport’s al-
gorithm (§9.4.1): messages are delivered according to timestamps attached to messages by their sender. Each
process manages a local sequence number variable, used to timestamp messages. Let processp broadcast mes-
sagem. In the first phase,m and its timestamp valuetsm are sent to all. Any processq receivingm replies
with some messagem′ that it might have previously broadcast with the same timestamp value (tsm′ = tsm ), if
any. Upon reception of all replies from correct processes, processp knows the setMsg(tsm) of all messages
with the same timestamp valuetsm , and delivers these messages (in the order of the identifier of the sender of the
messages). Processp also broadcasts the setMsg(tsm), allowing the other processes to deliver the same sequence
of messages.
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9.4.14 Atom

In Atom [Bar-Joseph et al. 2002], streams of messages from all senders are merged in a round-robin fashion. To
make the algorithms live, senders need to send empty messages if they have no message to send. This approach
can be seen as a special case ofdeterministic merge(see§9.4.9).

9.4.15 QoS preserving atomic broadcast

[Bar-Joseph et al. 2000] present another algorithm, based on the same ordering mechanism as Atom (§9.4.14).
As its name indicates, the QoS preserving algorithm provides support for quality of service (QoS), unlike Atom.
On the other hand, the QoS preserving algorithm does not guarantee Agreement (i.e., uniform or not), and only
non-uniform Total Order.

9.5 Destinations Agreement Algorithms

9.5.1 Skeen

Skeen’s algorithm, described by [Birman and Joseph 1987], was used in an early version of the Isis toolkit. The
algorithm corresponds roughly to the algorithm in Fig. 13 (p.24). The main difference is that Skeen’s algorithm
computes the global timestamp in a centralized manner, whereas the algorithm in Fig. 13 does it in a decentralized
way. Fault tolerance is achieved using a group membership service, which excludes suspected processes from the
group.

[Dasser 1992] propose a simple optimization of Skeen’s algorithm called TOMP, where additional information
is appended to protocol messages in order to deliver application messages a little earlier.

9.5.2 Luan and Gligor

[Luan and Gligor 1990].
The algorithm is based on majority voting. The idea is the following. Upon execution ofTO-broadcast(m),

messagem is sent to all processes. Upon reception ofm by some processq, m is put intoq’s receiving buffer.
The message delivery order is then decided by a voting protocol, which can be initiated by any of the processes.
In case of concurrent initiation of the protocol, an arbitration rule is used.

Voting is initiated by broadcasting an “invitation” message. Consider this message broadcast by processp.
Processes reply by sending the content of their receiving buffer to p. Processp waits for a majority of replies.
Based on the messages received, processp then constructs a sequence of message identifiers, and broadcasts this
sequence. A process receiving the sequence sends an acknowledgment top. Oncep has received acknowledg-
ments from a majority of processes, the proposed sequence iscommitted.

To summarize, the protocol tries to reach consensus among the destination processes on a sequence of mes-
sages. However, the authors did not identify consensus as a subproblem to solve, which makes the protocol more
complex. The consequence is also that the conditions under which liveness is ensured are not discussed (and
difficult to infer).

9.5.3 Le Lann and Bres

[Le Lann and Bres 1991] wrote a position paper discussing total order broadcast in a system with omission faults.
The paper sketches a total order broadcast algorithm based on quorums.

9.5.4 Chandra and Toueg

[Chandra and Toueg 1996] propose a transformation of atomicbroadcast into a sequence of consensus problems,
where each consensus decides on a set of messages, easily transformed into a sequence of messages. The trans-
formation uses reliable broadcast. The idea of the transformation was described in Section 7.5, and is not repeated
here.

The algorithm assumes an asynchronous system model, reliable broadcast, and a black box that solves con-
sensus. The algorithm is extremely elegant, in the sense that all difficult issues related to fault tolerance are hidden
into the consensus black box.
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There has been several proposals to optimize this algorithm. For example, [Mostefaoui and Raynal 2000]
propose an optimistic approach, where the consensus algorithm is split into two parts. The first phase is optimized,
but does not always succeed. If this happens, the full consensus algorithm is executed.

9.5.5 Rodrigues and Raynal

[Rodrigues and Raynal 2000] present a total order broadcastalgorithm in a model where processes have access to
stable storage and may recover after a crash. The algorithm is very close to the Chandra-Toueg algorithm (§9.5.4):
it uses the same transformation of total order broadcast to consensus. The only difference is that, because of
the crash-recovery model, the algorithm relies on the crash-recovery consensus algorithm of Aguilera, Chen, and
Toueg [2000] ).

9.5.6 ATR

[Delporte-Gallet and Fauconnier 1999] describe the ATR algorithm, which is based on an abstraction calledSyn-
chronized Phase system (SPS). The SPS abstraction is defined in an asynchronous system. AnSPS decomposes
the execution of an algorithm in rounds, almost like a synchronous round model. The ATR algorithm distinguishes
between even and odd rounds. In even rounds, processes send ordered sets of messages to each other. Upon recep-
tion of these messages, each process constructs a sequence of messages. In the subsequent odd round, processes
try to validate the order and deliver messages.

9.5.7 SCALATOM

SCALATOM [Rodrigues et al. 1998] is based on Skeen’s algorithm (§9.5.1) and supports the broadcast of mes-
sages to multiple groups. The algorithm satisfies the StrongMinimality property (Sect. 5.2.4). The global times-
tamp is computed using a variant of Chandra and Toueg’s [1996] consensus algorithm (§9.5.4). SCALATOM
corrects an earlier algorithm called MTO [Guerraoui and Schiper 1997].

9.5.8 Fritzke et al.

[Fritzke et al. 2001] also propose an algorithm for the broadcast of messages to multiple groups. The algorithm
satisfies the Strong Minimality property (Sect. 5.2.4). Consider a messagem broadcast to multiple groups. First,
the algorithm uses consensus to decide on the timestamp ofm within each destination group. The destination
groups then exchange information to compute the final timestamp, and a second consensus is executed in each
group to update the logical clock.

9.5.9 Optimistic atomic broadcast

Optimism is a technique known since several years in the context of concurrency control [Bernstein et al. 1987]
and file system replication [Guy et al. 1993]. However, it wasonly considered recently in the context of total order
broadcast [Pedone 2001].

The optimistic atomic broadcast of Pedone and Schiper [Pedone and Schiper 1998, Pedone and Schiper 2003]
is based on the experimental observation that messages broadcast in a LAN are usually received in the same order
by every process. When this assumption is met, the algorithm delivers messages extremely fast. However, if the
assumption does not hold, the algorithm is less efficient than other algorithms (but still delivers messages in total
order).

Unlike most optimistic algorithms, the optimistic atomic broadcast of [Pedone and Schiper 2003] is optimistic
internally. This means that the optimistic mechanism of the algorithm is not apparent to the application. In other
words, there is no weakening of the delivery properties.

9.5.10 Prefix agreement

[Anceaume 1997] defines a variant of consensus, calledprefix agreement, wherein processes agree on a stream of
values rather than on a single value. Considering streams rather than single values makes the prefix agreement
algorithm particularly well suited to solve total order broadcast. The total order broadcast algorithm uses prefix
agreement to repeatedly decide on the sequence of messages to be delivered next.
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9.5.11 Generic Broadcast

Generic broadcast [[Pedone and Schiper 1999]; [2002] ] is not a total order broadcast per se. Instead, the algorithm
assumes aconflict relation on the messages, and two messagesm andm′ are delivered in the same order at each
destination process only if they conflict. Two messagesm andm′ that do not conflict are not ordered by the
algorithm. If all messages conflict, then generic broadcastprovides the same guarantee as total order broadcast. If
no messages conflict, then generic broadcast provides the guarantees of (uniform) reliable broadcast. The strong
point of this algorithm is that performance varies according to the required “amount of ordering”: the generic
broadcast algorithm uses a consensus algorithm only in caseof conflicts.

9.5.12 Thrifty generic broadcast

Aguilera, Delporte-Gallet et al. [2000] propose also a generic broadcast algorithm. When conflicting messages are
detected, [Pedone and Schiper 2002] solve generic broadcast by reduction to consensus, while [Aguilera et al. 2000]
solve generic broadcast by reduction to total order broadcast. In addition, the algorithm isthrifty in the sense that,
if there is a time after which broadcast messages do not conflict with each other, then eventually atomic broad-
cast is no longer used. The algorithm of [Pedone and Schiper 2002] also satisfies this property with respect to
consensus, but the property was not identified in the paper.

9.5.13 Weak ordering oracles

[Pedone et al. 2002] define aweak ordering oracleas an oracle that orders messages that are broadcast, but is
allowed to make mistakes (i.e., the messages broadcast may be delivered out of order). This oracle models the
behavior observed in local-area networks, where broadcastmessages are often spontaneously delivered in total
order. The paper shows that total order broadcast can be solved using a weak ordering oracle. If the optimistic
assumption is met, the proposed algorithm, which assumesf < n

3
, solves total order broadcast in two communi-

cation steps.
Interestingly, the algorithm has the same structure as the randomized consensus algorithm proposed by [Rabin 1983].

The authors mention also that the weak ordering oracle couldbe used to design an total order broadcast algorithm
that has the same structure as the randomized consensus algorithm proposed by [Ben-Or 1983].

9.5.14 AMp/xAMp

The AMp [Veŕıssimo et al. 1989] and xAMp [Rodrigues and Verı́ssimo 1992] algorithms rely on the assumption
that messages broadcast are most of the time received by all destination processes in the same order (realistic
assumption in LANs, as already mentioned). So, when a process broadcasts a message, it initiates a commitment
protocol. If the message is received ordered by all destination processes, then the outcome is positive: all destina-
tion processes commit and deliver the message. Otherwise, the message is rejected and the sender must try again
(thus potentially leading to a livelock).

9.5.15 Quick-A

[Berman and Bharali 1993] present a series of four algorithms, three of which belong to another class (see Quick-
S; §9.4.12). Their algorithm for asynchronous systems is quitedifferent from their algorithms for synchronous
systems (§9.4.12). Processes maintain a round number, and messages broadcast are timestamped with this round
number. The processes then execute a sequence of randomizedbinary consensus, to decide on the round in which
messages are to be delivered.

9.6 Hybrid Algorithms

We give here algorithms that do not fit into one of our five classes of total order broadcast algorithms. These
algorithms usually combine two different ordering mechanisms.
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9.6.1 Newtop (asymmetric)

[Ezhilchelvan et al. 1995] propose two algorithms: a symmetric one and an asymmetric one. The symmetric
algorithm is described earlier (§9.4.3).

The asymmetric algorithm uses a sequencer process, and allows a process to be member of multiple groups
(each group has an independent sequencer). For ordering, the algorithm uses Lamport’s logical clocks in addition
to the sequencer. Hence the asymmetric algorithm is a hybridbetween a communication history algorithm (due
to the use of Lamport’s clocks) and a fixed sequencer algorithm. The asymmetric algorithm, like the symmetric
one, preserves causal order delivery. However, note that a processp, which is member of more than one group,
cannot broadcast a messagem to a group immediately after broadcasting some messagem′ to a different group.
Processp can only do so once it has deliveredm. Hence, the asymmetric algorithm does not technically allow a
message to be broadcast to more than one group.

As mentioned earlier, Newtop supports the combination of groups even if one group uses the asymmetric al-
gorithms and the other group uses the symmetric one. Also, Newtop is based on a partitionable group membership
service.

9.6.2 Rodrigues et al.

[Rodrigues et al. 1996] present an algorithm optimized for large networks. The algorithm is hybrid: on a local
scale, a sequence number is attached to each message by a fixedsequencer, and on a global scale, the ordering
is of type communication history. More precisely, each sender p has an associated sequencer process that issues
a sequence number for each message ofp. The original message and its sequence number are sent to all, and
messages are finally are ordered using a standard communication history technique (see§9.4.1). The authors
also describe interesting heuristics to change the sequencer process. Reasons for such changes can be failures,
membership changes or changes in the traffic pattern.

9.6.3 Indulgent uniform total order

[Vicente and Rodrigues 2002] propose an optimistic algorithm for wide-area networks. The algorithm is based
on external optimism, as initially proposed by Kemme et al. [[1999] ; [2003] ]. This means that the algorithm
distinguishes between two delivery events following the broadcast of messagem: the optimistic delivery, denoted
Opt-deliver(m), and the traditional total order delivery denotedAdeliver(m). UponOpt-deliver(m)the delivery
order ofm is not yet decided. However, the application can start processingm. If later Adeliver(m)invalidates
the optimistic delivery order, then the application must rollback and undo the processing ofm. The optimism of
[Kemme et al. 2003] is related to the spontaneous total ordering in LANs.

The optimistic algorithm of [Vicente and Rodrigues 2002] extends the hybrid algorithm of [Rodrigues et al. 1996]
(§9.6.2). The delivery order is determined by sequence numbers attached to messages. A sequence number at-
tached to a messagem needs to be validated by a majority of processes before the total order ofm is decided.
Nevertheless, the algorithm optimistically deliversm according to its sequence number before the sequence num-
ber is actually validated.

9.6.4 Optimistic total order in WANs

Optimistic total order broadcast algorithms rely heavily on the assumption that messages are very often received
by all processes in some spontaneous total order. This assumption was motivated by observations made in local
networks, often over a single hub. This assumption is however questionable for wide-area networks, where the
spontaneous total order is significantly less likely to occur. [Sousa et al. 2002] propose a time-based solution to
address this problem and increase the probability of spontaneous total order in wide-area networks. The technique,
calleddelay compensation, consists in delaying received messages artificially, so that all destinations would pro-
cess them at roughly the same time. A delay in kept for each incoming communication channel, and the duration
of this delay is adapted dynamically.
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10 Other Work on Total Order and Related Issues

Apart from papers proposing total order broadcast algorithms, there is some work, somehow closely related to the
topic, that is worth mentioning. This is the purpose of this section.

Backoff protocol Chockler, Malkhi, and Reiter [2001] describe a replicationprotocol which emulatesstate
machine replication[Lamport 1978a, Schneider 1990]. The protocol is based on quorum systems and relies on
a mutual exclusion protocol. Basically, a client process wanting to perform some operationop on the replicated
servers proceeds as follows: the client first waits to enter the critical section, and then (1) accesses a quorum of
replicas to get an up-to-date stateσ of the replicated servers, (2) performs the operationop onσ which leads to a
new stateσ′, and (3) updates a quorum of replicas with the new stateσ′. The protocol is safe even if the mutual
exclusion protocol violates safety (more than one process in the critical section): safety of the mutual exclusion
protocol is only needed to ensure progress of the replication protocol.

Optimistic active replication [Felber and Schiper 2001] describe another replication protocol that is integrated
with a total order broadcast algorithm. The replication protocol is based on an optimistic fixed sequencer total
order broadcast algorithm, which is executed among the servers. The optimistic algorithm may lead some servers
to deliver messages out of order, in which case these servershave to rollback. Rollback is limited to servers: client
processes never have to rollback.

Probabilistic protocols Recently, [Felber and Pedone 2002] have proposed a total ordered broadcast algorithm
with probabilistic safety. This means that their algorithms enforce the properties of total order broadcast with a
known probability. Doing so gives room for extremely scalable solutions, but is only acceptable for applications
with very weak requirements. In particular, [Felber and Pedone 2002] propose a specification where agreement
is guaranteed with probabilityγa, total order with probabilityγo, and validity with probabilityγv. The authors
propose an algorithm based on gossiping and discuss sufficient conditions under which their algorithm can enforce
the above properties with probability one.

Hardware-Based Protocols Due to their specificity, we have deliberately omitted algorithms that make explicit
use of dedicated hardware. They however deserve to be cited here. Some protocols are based on a modification
of the network controllers (e.g., [Jalote 1998, Minet and Anceaume 1991a]). The idea is to slightly modify the
network so that it can be used as a virtual sequencer. In our classification system, these protocols can be classified
as fixed sequencer protocols. Some other protocols rely on the characteristics of specific networks such as a
specific topology [Ćordova and Lee 1996] or the ability to reserve buffers [Chen et al. 1996].

Performance of Total Order Broadcast Algorithms Compared to the host of publications describing al-
gorithms, relatively few papers are concerned with evaluating the performance of total order broadcast (e.g.,
[Cristian et al. 1994, Friedman and van Renesse 1997, Mayer 1992], described in Sect. 1). In recent work [Défago et al. 2003],
we present a comparative performance analysis based on the classification developed in this survey: algorithms
are taken from all five classes of ordering mechanisms, and both uniform and non-uniform algorithms are consid-
ered. [Urb́an et al. 2003] go beyond evaluating some algorithm or comparing different algorithms: they propose
benchmarks including well-defined performance metrics, workloads, andfaultloadsdescribing how failures and
related events occur.

Formal Methods Formal methods have been applied to the problem of total order broadcast, in order to verify
the properties of algorithms [Zhou and Hooman 1995, Toinardet al. 1999, Fekete et al. 2001]; and to the problem
of consensus, in order to construct a truly formal proof for an algorithm [Nestmann et al. 2003]. The proofs of
[Fekete et al. 2001] were subsequently checked by a theorem prover. [Liu et al. 2001] use the notion of meta-
properties to describe and analyze a protocol which switches between two total order broadcast algorithms.

Group communication controversy A few years ago, [Cheriton and Skeen 1993] began a polemic about group
communication systems that provide causally and totally ordered communication primitives. Their major argu-
ment against group communication systems was that systems based on transactions are more efficient, while
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providing a stronger consistency model. This was later answered by [Birman 1994] and [Shrivastava 1994].
Almost a decade later it appears that work on transaction systems and on group communication systems tend
to influence each other for a mutual benefit [Schiper and Raynal 1996, Agrawal et al. 1997, Pedone et al. 1998,
Kemme and Alonso 2000, Wiesmann et al. 2000, Kemme et al. 2003].

11 Conclusion

The vast literature on total order broadcast and the large number of algorithms published show the complexity
of the problem. However, this abundance of information is a problem by itself, because it makes it difficult to
understand the exact tradeoffs associated with each proposed solution.

The main contribution of this paper is the definition of a classification for total order broadcast algorithms,
which makes it easier to understand the relationship between them. This also provides a good basis for comparing
the algorithms and understanding some tradeoffs. Furthermore, the paper has presented a vast survey of most of
the existing algorithms and discussed their respective characteristics.

In spite of the number of total order broadcast algorithms published, most of them are merely improvements
or variants of each other (even if this is not immediately obvious for untrained eyes). Actually, there are only few
truly original algorithms, but a large collection of various optimizations. Nevertheless, it is important to stress
that clever optimizations of existing algorithms often have a very significant impact on performance. For instance,
[Friedman and van Renesse 1997] show that piggybacking messages, in spite of its simplicity, can significantly
improve the performance of algorithms.

Even though the specification of the total order broadcast problem dates back to some of the earliest publica-
tions about the subject, few papers actually specify the problem that they solve. In fact, too few algorithms are
properly specified, let alone proven correct. Gladly, this is changing and we hope that this paper will contribute
to more rigorous work in the future. Without pushing formalism to extremes, a clear specification and a sound
proof of correctness are as important as the algorithm itself. Indeed, they clearly define the limits within which
the algorithm can be used.
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[Pedone et al. 2002] PEDONE, F., SCHIPER, A., URBÁN , P.,AND CAVIN , D. 2002. Solving agreement problems
with weak ordering oracles. InProc. 4th European Dependable Computing Conference (EDCC-4). LNCS, vol.
2485. Springer-Verlag, Toulouse, France, 44–61.

[Peterson et al. 1989] PETERSON, L. L., BUCHHOLZ, N. C., AND SCHLICHTING, R. D. 1989. Preserving and
using context information in interprocess communication.ACM Trans. Comput. Syst. 7,3, 217–246.

[Poledna 1994] POLEDNA, S. 1994. Replica determinism in distributed real-time systems: A brief survey.Real-
Time Systems 6,3 (May), 289–316.

[Rabin 1983] RABIN , M. 1983. Randomized Byzantine generals. InProc. 24th Annual ACM Symp. on Founda-
tions of Computer Science (FOCS). Tucson, AZ, USA, 403–409.

[Rajagopalan and McKinley 1989] RAJAGOPALAN, B. AND MCK INLEY, P. 1989. A token-based protocol for
reliable, ordered multicast communication. InProc. 8th Symp. on Reliable Distributed Systems (SRDS). Seattle,
WA, USA, 84–93.

[Reiter 1994] REITER, M. K. 1994. Secure agreement protocols: Reliable and atomic group multicast in Ram-
part. InProc. 2nd ACM Conf. on Computer and Communications Security(CCS-2). 68–80.

[Reiter 1996] REITER, M. K. 1996. Distributing trust with the Rampart toolkit.Commun. ACM 39,4 (Apr.),
71–74.

[Rodrigues et al. 1996] RODRIGUES, L., FONSECA, H., AND VERÍSSIMO, P. 1996. Totally ordered multicast
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