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Abstract

Total order broadcast and multicast (also called atomic broadcagiraicamulticast) is an important prob-
lem in distributed systems, especially with respect to fault-tolerance. hh @ primitive ensures that messages
sent to a set of processes are delivered by all these processesamtbaotal order.

The problem has inspired an abundant literature, with a plethora of gedpaigorithms. This paper pro-
poses a classification of total order broadcast and multicast algoritases! fton their ordering mechanisms, and
addresses a number of other important issues. The paper subaytssixty algorithms, thus providing by far
the most extensive study of the problem so far. The paper discugseitrams for both the synchronous and the
asynchronous system models, and studies the respective propediestavior of the different algorithms.
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1 Introduction

Distributed systems and applications are notoriouslydtiffito build. This is mostly due to the unavoidable
concurrency in such systems, combined with the difficultypadviding a global control. This difficulty is
greatly reduced by relying on group communication prineivthat provide higher guarantees than standard
point-to-point communication. One such primitive is cdlketal order broadcadt? Informally, the primitive
ensures that messages sent to a set of processes are deliyeadl these processes in the same order. To-
tal order broadcast is an important primitive that plays, ifsstance, a central role when implementing the
state machine approach (also called active replicatioamjhort 1978a, Schneider 1990, Poledna 1994]). It
has also other applications, such as clock synchronizffodrigues et al. 1993], computer supported cooper-
ative writing, distributed shared memory, or distributedking [Lamport 1978b]. More recently, it was also
shown that an adequate use of total order broadcast carficaguly improve the performance of replicated
databases [Agrawal et al. 1997, Pedone et al. 1998, Kemnhe2&X3].

Literature on total order broadcast There exists a considerable amount of literature on totimoroadcast,
and many algorithms, following various approaches, hawnl@oposed to solve that problem. It is however
difficult to compare them as they often differ with respectheir actual properties, assumptions, objectives, or
other important aspects. It is hence difficult to know whiolution is best suited to a given application context.
When confronted to new requirements, the absence of a roathridge problem of total order broadcast has
often led engineers and researchers to either develop rwithins rather than adapt existing solutions (thus
reinventing the wheel), or use a solution poorly suited ahplication needs. An important step to improve the
present situation is to provide a classification of exisatgprithms.

1Total order broadcast is also known as atomic broadcast. ®athinologies are currently in use. There is a slight correy with
respect to using one over the other. We opt for the former,ishéital order broadcast,” because the latter is somewhsieading. Indeed,
atomicity suggests a property related to agreement ratheitdita order (defined in Sect. 3), and the ambiguity has ajréaén a source of
misunderstandings. In contrast, “total order broadcashusiguously refers to the property of total order.

2Total ordermulticastis sometimes used instead of total orbesadcast The distinction between the two primitives is explaine@tan
the paper. When the distinction is not important, we use thm tetal ordebroadcastin the paper.



Related work Previous attempts have been made at classifying and camgptoial order broadcast algo-
rithms [Anceaume 1993b, Anceaume and Minet 1992, Cristiah €994, Friedman and van Renesse 1997, Mayer 1992].
However, none is based on a comprehensive survey of exejagithms, and hence they all lack generality.

The most complete comparison so far is due to [Anceaume andtMB92] (an extended version was later
published in French by [Anceaume 1993b]) who take an inteigsapproach based on theopertiesof the
algorithms. The paper raises some fundamental questicos which our work draws some of its inspiration.
It is however a little outdated now. Besides, the authory stiidy seven different algorithms, which are not
truly representative: for instance, none is based on a caoriwation history approach (one of the five classes of
algorithms; details in Sect. 7.4).

[Cristian et al. 1994] take a different approach focusingtenimplementation of those algorithms rather than
their properties. They study four different algorithmsgdammpare them using discrete event simulation. They
find interesting results regarding the respective perfocaaf different implementation strategies. Nevertheless
they fail to discuss the respective properties of the diffieralgorithms. Besides, as they compare only four
algorithms, this work is less general than Anceaume’s.

[Friedman and van Renesse 1997] study the impact that ppokéssages has on the performance of algo-
rithms. To this purpose, they study six algorithms, inahgrhose studied by [Cristian et al. 1994]. They measure
the actual performance of those algorithms and confirm tlsemations made by [Cristian et al. 1994]. They
show that packing several protocol messages into a singksiqai message indeed provides an effective way to
improve the performance of algorithms. The comparison lalsks generality, but this is quite understandable as
this is not the main concern of that paper.

[Mayer 1992] defines a framework in which total order broatiedgorithms can be compared from a perfor-
mance point of view. The definition of such a framework is apanant step towards an extensive and meaningful
comparison of algorithms. However, the paper does not garsas to actually compare the numerous existing
algorithms.

Contributions  In this paper, we propose a classification of total order dcaat algorithms based on the mech-
anism used to order messages. The reason for this choicatiththordering mechanism is the characteristic
with the strongest influence on the communication pattetheflgorithm: two algorithms of the same class are
hence likely to exhibit similar behaviors. We define five sksof ordering mechanismsommunication history
privilege-basedmoving sequencefixed sequenceanddestinations agreement

In this paper, we also provide a vast survey of about sixtyiplied total order broadcast algorithms. Wherever
possible, we mention the properties and the assumptiorsobf &gorithm. This is however not always possible
because the information available in the papers is oftersufficient to accurately characterize the behavior of
the algorithm (e.g., in the face of a failure).

Structure The paper is logically organized into three main parts: gjgations, mechanisms, and survey. More
precisely, the rest of the paper is structured as follows.

The first part of the paper is about definitions, specificatiand properties. Section 2 introduces impor-
tant concepts, terminology, and notations. Section 3 ptesbe most common specification of the total order
broadcast problem (also known as atomic broadcast). Baséliospecification, Sections 4-6 discuss several
important properties (and other issues) and their impacdherspecification of the problem. More specifically,
Section 4 discusses possible additional properties ofisthgas (e.g., uniformity, ordering), Section 5 is conceatne
with the characteristics of destination groups (e.g., Isinmgrsus multiple groups), and Section 6 illustrates the
impact of the system model on the specification when conigigi@artitionable systems and Byzantine failures.

The second part describes mechanisms. In Section 7, we dedif@lowing five classes of total order broad-
cast algorithms, according to the way messages are ordemgdmunication historyprivilege-basegd moving
sequencerfixed sequenceanddestinations agreemenSection 8 discusses the issue of fault-tolerance from a
general perspective.

In the third part, we review existing algorithms. More sfieaily, Section 9 gives a broad survey of total
order broadcast algorithms found in the literature. Thertlgms are grouped along their respective classes, and
we discuss the principal characteristics of each algorithm

In Section 10, we talk about various other issues that aevaat to total order broadcast, and Section 11
concludes the paper.



M set of all valid messages.
I set of all processes in the system.
sender(m) sender of message.
Dest(m)  set of destination processes for message
Isender set of all sending processes in the system.
gest set of all destination processes in the system.

Table 1: Notation.

2 Basic Terminology and Notation

2.1 Notation

Table 1 summarizes some of the notation used throughoutaberpM is the set containing all possible valid
messageslI denotes the set of all processes in the system, which carblieadly large. Given some arbitrary
messagen, sender(m) designates the processlinfrom whichm originates, andest(m) denotes the set of all
destination processes for.

In addition,IT,., 4., is the set of all processes Ihthat can potentially send some message.

sender def U sender(m) Q)
meM

Likewise,I1 4. is the set of all potential destinations.

Hdest déf U Dest(m) (2)
meM
2.2 Basic System Models
A distributed system consists of a set of proced$es {p1, ..., p,} that interact by exchanging uniquely identi-

fied messages through communication channels. There eyistrdity of models that restrict the behavior of the
system. The most important characteristics to considetasynchrony and failure modes.

2.2.1 Synchrony

The synchrony of a model is related to the timing assumptibasare made on the behavior of processes and
communication channels. More specifically, one usuallysasrs two major parameters. The first parameter is
the process speed intervalhich is given by the difference in the speed of the slowestthe fastest processes
in the system. The second parameter isatiamunication delgywhich is given by the time elapsed between the
emission and the reception of messages. The synchrony sf/gttem is defined by considering various bounds
on these two parameters. For each parameter, one usuadiigeonthe following levels of synchrony:

1. There is a known upper bound which always holds.

2. There is an unknown upper bound which always holds.

3. There is a known upper bound which eventually holds fareve
4. There is an unknown upper bound which eventually holds/r?
5. There is no bound on the value of the parameter.

A system wherein both parameters are assumed to satisfg (Hlled asynchronous systemAt the other
extreme, a system in which process speed and communicatiaysdare unbounded, i.e., (5), is calledaayn-
chronous systenmBetween those two extremes lie the definition of variousiglr synchronous system models
[Dolev et al. 1987, Dwork et al. 1988].

SThere exist many other possible assumptions, sucflaste is a known upper bound that holds infinitely often faiquts of a known
duration.



2.2.2 Process Failures

The failure modes of a system specify the kinds of failures #re expected to occur, as well as the conditions
under which these failures may or may not occur. A commongdiset of process failure classes is as follows:

e Crash failures.When a process crashes, it ceases functioning forever. Td¢assrthat it stops performing
any activity including sending, transmitting, or receiyiany message.

e Omission failuresWhen a process fails by omission, it omits performing sommastsuch as sending or
receiving a message.

e Timing failures. A timing failure occurs when a process violates one of thekyony assumptions. This
type of failure is irrelevant in asynchronous systems.

e Byzantine failures.Byzantine failures are the most general type of failures. ya@htine component is
allowed any arbitrary behavior. For instance, a faulty pgsomay change the content of messages, duplicate
messages, send unsolicited messages, or even malicipusiyireak down the whole system.

In practice, one often considers a particular case of Byzarfhilures, callecauthenticatedByzantine
failures. Authenticated Byzantine failures allow Byzastiprocesses to behave arbitrarily. However, it
is assumed that processes have access to some authemtioatthanism (e.g., digital signatures), thus
making it possible to detect the forgery of valid message8yyantine processes. When mentioning
Byzantine failures in the sequel (mostly in Sect. 9), we ioifhy refer to authenticatedByzantine failures.

A correctprocess is defined as a process that never expresses anyadltiidehaviors mentioned above.

Note 1 ((On the peculiarities of timing failures)) A system is characterized by its failure modes and the “arhoun
of synchrony” it exhibits. While the failure modes are nolijmarthogonal to the synchrony of the system, this is

not the case with timing failures which are directly related¢he synchrony of the system. Indeed, timing failures
are characterized by a violation of the synchrony of theesyst

2.2.3 Communication

There exist several definitions of communication chanretsprding to the guarantees they provide. We are
concerned with the types of communication channels meadidrelow. Unless stated otherwise, it is assumed in
this paper that communication channels neither duplicassages nor generate spurious ones.

Reliable channels Reliable channels guarantee that if a correct propesnds a message to a correct pro-
cessgq, theng will eventually receivem.* It is often assumed that reliable communication is providgdhe
network protocol stack (e.g., TCP/IP).

Lossy channels Lossy channels are channels subject to the loss of messag@e common reasons for losing
messages are: network collisions, noisy channels, owgtbauffers, disconnected lines, corrupt routing tables,
or intermittent connections. Although message lossesftaa taken care of by mechanisms implemented in the
network stack (between physical and transport layersiatdns may arise wherein the guarantees offered by the
network are inadequate or insufficient. One can distingbéttveen two types of lossy channels.

In the simplest case, communication channels have an uppediz on the number of message loss. Coping
with such loses is easy, as it is sufficient to send a megsagetimes in order to ensure that at least one copy is
received. The model is poorly suited to represent systeméiich message losses are not independent.

In contrast, fair-lossy channels allow for an unbounded lpemof message losses. In short, fair lossy commu-
nication channels are defined as follows [Basu et al. 1996 dhannels do not produce spurious messages, do
not replicate messages, and do not transform the contergsgages. In addition, a fair lossy channel guarantees
that if an infinite number of messages are sent, an infiniteetudf those messages is received.

“[Aguilera et al. 1997] call such channeisasi-reliableto contrast them to reliable channels as defined by [Basu £986]. The latter
definition assumes that is eventually delivered to a correct procesaven ifp is faulty, which is not very realistic.



2.3 Oracles

Depending on the synchrony of the system, some distributedlgms cannot be solved. Yet, these problems
become solvable if the system is extended with an oraclehdrt,san oracle is a distributed component that pro-
cesses can query, and which gives some information thatgbetam can use to guide its choices. In distributed
algorithms, at least three different types of oracles aeglugphysical) clocks, failure detectors, and coin ffips.
Since the information provided by these oracles is sufftdi@solve problems that are otherwise unsolvable, such
oracles augment the power of the system model.

2.3.1 Physical Clocks

A clock oracle gives information about physical time. Eachgess has access to its local physical clock and
clocks are assumed to give a value that increases monottgnica

The values returned by clocks can also be constrained byeflusgtssumptions, such as being synchronized.
Two clocks ares-synchronized if, at any time, the difference between tHaegsmreturned by the two clocks is
never greater than Two clocks are perfectly synchronizedecif= 0. Conversely, clocks are not synchronized if
there is no bound oa

Depending on the assumptions, the information issued bgitiois can or cannot be related to real-time. Syn-
chronized clocks are not necessarily synchronized withtne&. However, if all local clocks are synchronized
with real-time, then they are of course synchronized witthezther.

Note that, with the advent of GPS-based systems, assunuooiscthat are perfectly synchronized with real-
time is not unrealistic, even in wide-area systems. Indpéissimo et al. 1997] achieve clock synchronization
with an accuracy of a few microseconds. In contrast, theracyuwisually obtained with software-based clock
synchronization mechanisms is several orders of magnitvaer.

2.3.2 Failure Detectors

A failure detector is an oracle which provides informatidioat the current status of processes, for instance,
whether a given process has crashed or not.

The notion of failure detectors has been formalized by [@namand Toueg 1996]. Briefly, a failure detector
is modeled as a set of distributed modules, one mo#llleattached to each process Any proces®; can query
its failure detector modulé€'D; about the status of other processes.

Failure detectors are consideredreliable in the sense that they provide information that may not géva
correspond to the real state of the system. For instancéueefdetector modulé’D; may provide the erroneous
information that some procegs has crashed whereas, in realjty,is correct and running. ConverselD; may
provide the information that a procesgsis correct, whilep,, has actually crashed.

To reflect the unreliability of the information provided ksilfire detectors, we say that a procgssuspects
some procesp; wheneverFD;, the failure detector module attachedpto returns the (unreliable) information
thatp; has crashed. In other words, a suspicion is a belief (ezghélieves thap; has crashed”) as opposed to a
known fact (e.g., p; has crashed ang knows that”).

There exist several classes of failure detectors, depgrairhow unreliable the information provided by the
failure detector can be. This is defined by two propertiempletenesandaccuracy which constrain the possible
mistakes. These properties are better explained by an daaifipe class of failure detectofsS is defined by the
following properties [Chandra and Toueg 1996]:

(STRONG COMPLETENESY Eventually every faulty process is permanently suspeayeall correct processes.

(EVENTUAL WEAK ACCURACY) There is a time after which some correct process is neverestesd by any
correct process.

There exist other classes of failure detectors, but a camglescription of all failure detectors that are pre-
sented by [Chandra and Toueg 1996] is well beyond the scottesgbaper.

5Suggested by Bernadette Charron-Bost.



2.3.3 Random Oracle

Another approach to extend the power of a system model dsrisisntroducing the ability to generate random
values. For instance, processes could have access to aenbdtlgenerates a random bit when queried (i.e., a
Bernoulli random variable).

This is used by a class of algorithms called randomized &lgos. Those algorithms can solve problems such
as consensus in a probabilistic manner. The probabilitysieh algorithms terminate before some tihgmes to
one as goes to infinity (e.g., [Ben-Or 1983, Chor and Dwork 1989]pt&lthat solving a problem deterministi-
cally and solving it with probability 1 are not the same.

2.4 Agreement Problems

Agreement problems constitute a fundamental class of enabin distributed systems. There exist many different
agreement problems that share a common pattern: procemgesdchreach some common decision, the nature
of which depends on the problem. In this paper, we mostly idenghe following four important agreement
problems:reliable broadcastByzantine agreementonsensysandtotal order broadcast

2.4.1 Reliable Broadcast

As the name indicates, reliable broadcast is defined as adcasaprimitive. In short, reliable broadcast of mes-
sagem guarantees that is delivered by all correct processes if the procesaler(m) is correct. Ifsender(m)
is not correct, them» must be delivered either by all correct processes or by nbtiem.

2.4.2 Byzantine Agreement

The problem of Byzantine agreement is also commonly knovinex®Byzantine generals problem” [Lamport et al. 1982].
In this problem, every process has ampriori knowledge that a particular processs supposed to broadcast a
single message:. Informally, the problem requires that all correct proessdeliver the same message, which
must bem if the sendes is correct.
As the name indicates, Byzantine agreement has mostly ltedied in relation with Byzantine failures. A
variant of Byzantine agreement, calledminating reliable broadcass sometimes studied in a context limited to
crash failures.

2.4.3 Consensus

Informally, the problem of consensus is defined as follbwSvery procesg; begins by proposing a valus.
Then, all non-faulty processes must eventually decide erséitme value, which must be one of the proposed
values.

2.4.4 Total Order Broadcast

The problem of total order broadcast, also known as atondadirast, is an agreement problem. In short, it is
defined as a reliable broadcast problem which must also erisat all delivered messages are delivered by all
processes in the same order. The exact specification of thddepn is given in Section 3.

2.4.5 Important Theoretical Results

There are at least four fundamental theoretical resultstieadirectly relevant to the problem of total order broad-
cast and consensus. First, total order broadcast and cussare equivalent problems, i.e., if there exists an
algorithm that solves one problem, then it can be transfdrtoesolve the other problef.[Dolev et al. 1987]
show that total order broadcast can be transformed intoecmus, and [Chandra and Toueg 1996] show that
consensus can be transformed into total order broadcasbn8ethere is no deterministic solution to the prob-
lem of consensus in asynchronous systems if just a singleepsocan crash [Fischer et al. 1985]. Nevertheless,

5Note that there exist other specifications of the consensiidgm in the literature. However, a more detailed discussithis issue is
irrelevant here.
"The equivalence also holds in asynchronous systems wittrampfailures, see [Chandra and Toueg 1996].



consensus can be solved in asynchronous systems extenttethivire detectors [Chandra and Toueg 1996],
with partial synchrony [Dolev et al. 1987, Dwork et al. 1988} using randomization (see Sect. 2.3.3). Finally,
[Chandra et al. 1996] have shown that the weakest failurecti@tto solve consensus in an asynchronous system
is of class)S.8

2.5 A Note on Asynchronous Total Order Broadcast Algorithms

In many papers about total order broadcast, the authons ¢lait their algorithm solves the problem in asyn-
chronous systems with process failures. This claim is ofsmincorrect (see previous section), or incomplete at
best.

From a formal point-of-view, most practical systems arenalyonous because it is not possible to assume
that there is an upper bound on communication delays. le gjithis, why do many practitioners still claim
that their algorithm can solve agreement problems in restlesys? This is because many papers do not for-
mally address the liveness issue of the algorithm, or regaad sufficient to consider some informal level of
synchrony, captured by the assumption that “most messagdkealy to reach their destination within a known
delayd” [Cristian et al. 1997, Cristian and Fetzer 1999]. This mad&nown as the timed asynchronous model
[Cristian and Fetzer 1999] and is related to a synchronoudeinwith timing failures. Indeed, assuming that
messages will meet a deadlifiet ¢ with a given probabilityP [T" + 4] is equivalent to assuming that messages
will miss the deadlind” + § (i.e., a timing failure) with a known probability — P [T" + §]. This does not put a
bound on the occurrence of timing failures, but puts a priigéib restriction on the occurrence of such failures.
However, formally this is not enough to establish corressne

2.6 Process Controlled Crash

Process controlled crash is the ability given to processddltother processes or to commit suicide. In other
words, this is the ability to artificially force the crash opeocess. Allowing process controlled crash in a system
model augments its power. Indeed, this makes it possiblatstorm severe failures (e.g., omission, Byzantine)
into less severe failures (e.g., crash), and to emulate lamo& perfect” failure detector. However, this power
does not come without a price.

Automatic transformation of failures [Neiger and Toueg 1990] present a technique that uses [T@oes
trolled crash to transform severe failures (e.g., omisdyzantine) into less severe ones (i.e., crash failures). |
short, the technique is based on the idea that processesheivbehavior monitored. Then, whenever a process
begins to behave incorrectly (e.g., omission, Byzantiiné killed.

However, this technique cannot be used in systems with lolsagpnels, or subject to partitions. Indeed, in
such contexts, processes might be killing each other uatifrsingle one is left alive in the system.

Emulation of an almost perfect failure detector A perfect failure detectorR) satisfies both strong complete-
ness and strong accuracy (no process is suspected befraishies [Chandra and Toueg 1996]). In practical sys-
tems, perfect failure detectors are extremely difficulimpiement because of the difficulty to distinguish crashed
processes from very slow ones. [Fetzer 2003] proposes aqmidb emulate a perfect failure detector in a timed
asynchronous model with process controlled crash. Hiopobtuses watchdog (hardware or software) and en-
sures that no process is suspected before it crashes. Pomerolled crash makes it also possible to emulate an
almostperfect failure detector that satisfies a weaker accuramyspty:

(QUASI-STRONG ACCURACY) No correct process is ever suspected by any correct process

The idea of the emulation is simple. L&t be a failure detector that satisfies strong completenessiaynd
form of accuracy: whenevet suspects a procepsthenp is killed (forced to crash). As a result, false suspicions
are correctech posteriorj and the above “quasi-strong accuracy” property is satisfeeprimary partition group
membership service with process controlled crash (see &&typically emulates such a failure detector, which
is used by several total order broadcast algorithm (see Sect

8The weakest failure detector to solve consensus is usteillyts be()V, which differs from(S by satisfying a weak completeness
property instead of Strong Completeness. However, [Chaamtialoueg 1996] prove the equivalencedd and OW.
9The actual technique is more complicated than that, but thesghe basic idea.



Cost of a Free Lunch Process controlled crash is often used in practice in theegoof total order broadcast
algorithms. However, the mechanisms has a price.

To understand this, it is first necessary to distinguish betwtwo types of crash failures: genuine and pro-
voked failures.Genuine failuresare failures that naturally occur in the system, without emgrvention from a
process. Converselgrovoked failuresare caused by some process, e.g., they are the result osprooetrolled
crash.

A fault-tolerant algorithm can only tolerate the crash ofoaibded number of process€sin a system with
process controlled crash, this limit includes not only geadailures, but also provoked failures. This means that
each provoked failure actualjecreaseshe number of genuine failures that can be tolerated. Inratloeds, it
reduces the actual fault-tolerance of the system.

3 Specification (Total Order Broadcast)

In this section, we give the formal specification of the tataler broadcast problem. Although there exist many
variants of Total Order Broadcast depending on factors agthe system model, this section describes the prob-
lem in its simplest form, i.e., crash failures and closedesys Then, in Sections 4 through 6, we consider several
issues that have an influence on the algorithms, such as Byedailures, uniformity, or network partitions.
Formally, total order broadcast is defined in terms of twanftives, which are calledO-broadcastn) and
TO-delive{m), wherem € M is some message. When a procgsxecutesTO-broadcastmn) (respectively
TO-delivef{m)), we may say thap TO-broadcasts: (respectively TO-delivers:). We assume that every mes-
sagem can be uniquely identified, and carries the identity of itsde, denoted byender(m). In addition, we
assume that, for any given messageand any runTO-broadcastn) is executed at most once. In this context, to-
tal order broadcast is defined by the following propertiesdillacos and Toueg 1994, Chandra and Toueg 1996]:

(VALIDITY ) If a correct process TO-broadcasts a messagthen it eventually TO-delivers:.

(UNIFORM AGREEMENT) If a process TO-delivers a message then all correct processes eventually TO-
deliverm.

(UNIFORM INTEGRITY) For any messager, every process TO-delivers at most once, and only ifx was
previously TO-broadcast byender(m).

(UNIFORM TOTAL ORDER) If processe® andg both TO-deliver messages andm/, thenp TO-deliversm
beforem’ if and only if ¢ TO-deliversm beforem’.

Validity and Uniform Agreement are liveness properties.ugdy speaking this means that, at any point in
time, no matter what has happened up to that point, it igstikible for the property to eventually hold [Charron-Betsil. 2000].
Uniform Integrity and Uniform Total Order are safety projges. This means that, if at some point in time the
property does not hold, no matter what happens later, theeptypcannot eventually hold. Note that [Charron-Bost e2@00]
have shown that, in the context of failures, some (non-umijgroperties that are commonly believed to be safety
properties are actually liveness properties. They havpgzed refinements of the concept of safety and liveness
that avoid the counterintuitive classification.

Note 2 The above definition is the most common definition of tota¢éiobdoadcast. However, in spite of its
popularity, the definition is known to be prone to an impotti#aw called contamination. This issue is discussed
in Sect. 4.2, where we give a better formulation for the ofteperty.

4 Properties of Algorithms
4.1 Uniformity

In the above definition of total order broadcast, the pragerf agreement and total order aneiform This
means that these properties do not only apply to correctegsss, but also to faulty ones. For instance, with
Uniform Total Order, a process is not allowed to deliver argssage out of order, even if it is faulty. Conversely,

10The recovery of processes and the dynamic join of new prosessaliscussed in Section 8.2.
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Figure 1: Violation of Uniform Agreement (example)

(non-uniform) Total Order applies only to correct process@d hence does not put any restriction on the behavior
of faulty processes.

Uniform properties are required by some classes of apmitssuch as atomic commitment. However, since
enforcing uniformity in an algorithm often has a considéggterformance cost, it is also important to consider
weaker problems specified using non-uniform propertieq-Naform properties may lead to inconsistencies at
the application level. However, this is not always a prohlearticularly if the application knows how to correct
such inconsistencies. Non-uniform Agreement and TotakOade specified as follows:

(AGREEMENT) Ifacorrect process TO-delivers a messagethen all correct processes eventually TO-deliver

(ToTAaL ORDER) If two correct processep andq both TO-deliver messages andm/’, thenp TO-deliversm
beforem’ if and only if ¢ TO-deliversm beforem’.

The combinations of uniform and non-uniform propertiesriefour different specifications to the problem of
fault-tolerant total order broadcast. Those definitionsstitute a hierarchy of problems, as discussed extensively
by [Wilhelm and Schiper 1995].

Figure 1 illustrates a violation of the Uniform Agreemenoperty with a simple example. In this example,
the sequencer; sends a message using total order broadcast. It first assigns a sequence @i, then
sendsm to all processes, and finally delivers. Process; crashes shortly afterwards, and no other process
receivesn (this is possible, see Sect. 2.2.3). As a result no corrextgss (e.gp2) will ever be able to deliver
m. Uniform Agreement is violated, but not (non-uniform) Agmeent: nacorrect process ever delivers (p; is
not correct).

Note 3 [Guerraoui 1995] shows that any algorithm that solves Carsses withOP (respectivelyS, ¢S), also
solves uniform consensus wittP (respectivelyS, 0S).

It is easy to show that this result also holds for total ordevdalcast. Assume that there exists an algorithm
that solves non-uniform total order broadcast (non-umfoAgreement, non-uniform Total Order) wighP, S
or {S, but does not solves uniform total order broadcast. Usirgtthnsformation of total order broadcast to
consensus (see Sect. 2.4.5) this algorithm could be usddaman algorithm that solves non-uniform consensus
but not consensus. A contradiction.

Note however that the result does not hold for total ordedldieast algorithms that rely on a perfect or almost
perfect failure detector (see Sect. 2.6).

4.2 Contamination

The problem of contamination comes from the observatiot) then with the strongest specification (i.e., with
Uniform Agreement and Uniform Total Order), total order &oast does not prevent a faulty procgssom
reaching an inconsistent state (i.e., before it crasheh)s i§ a serious problem becausean “legally” TO-
broadcast a message based on this inconsistent statepaodntaminateorrect processes [Gopal and Toueg 1991,
Anceaume and Minet 1992, Anceaume 1993b, Hadzilacos aneyThRo4].

4.2.1 lllustration

Figure 2 illustrates an example [Charron-Bost et al. 199 zilacos and Toueg 1994] where an incorrect pro-
cess contaminates the correct processes. Prpgeadalivers messages; andmg, but notms. So, its state is
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Figure 2: Contamination of correct processgs, f>) by a messagen{,) based on an inconsistent stajg (
deliveredms but notms).

inconsistent when it multicasts, to the other processes before crashing. The correct pesgsandp, deliver
my, thus getting contaminated by the inconsistent statg;oflt is important to stress again that the situation
depicted in Figure 2 satisfies even the strongest speaificati

4.2.2 Specification

It is possible to extend or reformulate the specificationodéltorder broadcast in such a way that it disallows
contamination. This can be achieved in two ways. The firsibaps to forbid faulty processes from sending
messages if their state is inconsistent. This is howevdicdlif to formalize as a property. Hence the second
solution is usually preferred, which consists in prevegniny process from delivering a message that may lead to
an inconsistent state.

Aguilera, Delporte-Gallet et al. [2000] propose a reforatiain of Uniform Total Order which, unlike the
traditional definition, is not prone to contamination asded not allow gaps in the delivery sequence:

(GAP-FREEUNIFORM TOTAL ORDER) If some process delivers messagé after messager, then a process
deliversm/’ only after it has deliveredh.

As an alternative, an older formulation uses the historyadivdry and requires that, for any two given pro-
cesses, the history of one is a prefix of the history of therotfdis is expressed by the following property
[Anceaume and Minet 1992, Cristian et al. 1994, Keidar ankpd2000]:

(PREFIX ORDER) For any two processesandg, eitherhist(p) is a prefix ofhist(q) or hist(q) is a prefix of
hist(p), wherehist(p) andhist(q) are the sequences of messages delivereddndq, respectively.

Note 4 The specification of total order broadcast using Prefix Orutefact precludes the dynamic join of pro-
cesses (e.g., with a group membership). This can be cirauedebut the resulting property is much more
complicated. For this reason, the simpler alternative megd by Aguilera, Delporte-Gallet et al. [2000] is
preferred.

4.2.3 Algorithms

Among the numerous algorithms studied in the paper, a lagjerity of them ignore the problem of contamina-
tion in their specification. In spite of this, most of them @Evoontamination. The algorithms either (1) prevent
all processes from reaching an inconsistent state, or €ept processes with an inconsistent state from sending
messages to other processes.

4.3 Other Ordering Properties

The Total Order property (see Sect. 3, p.10) restricts therasf message delivery based solely on the destina-
tions, that is, the property is independent of the sendergases. The definition can be further restricted by two
properties related to the senders, namEeliFO Order andCausal Order
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4.3.1 FIFO Order

Total Order alone does not guarantee that messages arerddlin the order in which they are sent (i.e., in
first-inffirst-out order). Yet, this property is sometimesjuired by applications in addition to Total Order. The
property is called FIFO Order:

(FIFO ORDER) If a correct process TO-broadcasts a messadpefore it TO-broadcasts a messagé then no
correct process delivers’ unless it has previously delivereqdl.

4.3.2 Causal Order

The notion of causality in the context of distributed syssehas been first formalized by [Lamport 1978b].
It is based on the relation “precedés{denoted by—) defined in his seminal paper and extended later in
[Lamport 1986b]. The relation “precedes” is defined as fefio

Definition 1 Lete; ande; be two events in a distributed system. The transitive @fatj — e; holds if any
one of the following three conditions is satisfied:

1. e; ande; are two events on the same process, ancbmes before;;
2. e; is the sending of a messageby one process ang; is the receipt ofn by another process; or,

3. There exists a third eveaf such thate; — e, ande, — e; (transitivity).

This relation defines an irreflexive partial ordering on teeaf events. The causality of messages can be
defined by the “precede” relationship between their resgesending events. More precisely, a messagis
said to precede a messagé (denotedn < m’) if the sending event of. precedes the sending eventof.

The property of causal order for broadcast messages is deffollows [Hadzilacos and Toueg 1994]:

(CausAL ORDER) If the broadcast of a message causally precedes the broadcast of a messagehen no
correct process delivers’ unless it has previously delivered.

Hadzilacos and Toueg [Hadzilacos and Toueg 1994] also phatehe property of Causal Order is equivalent
to combining the property of FIFO Order with the followingoperty of Local Order.

(LocAL ORDER) If a process broadcasts a messagand a process delivers before broadcasting’, then no
correct process delivera’ unless it has previously delivereql.

Note 5 (State-machine approach)Causal total order broadcast is for instance required by #tate machine
approach [Lamport 1978a, Schneider 1990]. However, wektliirat some application may require causality,
some others not.

4.3.3 Source ordering

Some papers (e.g., [Garcia-Molina and Spauster 1991, 9&]JLthake a distinction between single source and
multiple source ordering. These papers define single sardering algorithms as algorithms that ensure total
order only if asingleprocess broadcasts messages. This is a special case of Fl&drast, easily solved using
sequence numbers. Source ordering is not particularlyastiag in itself, and hence we do not discuss the issue
further in this paper.

11 amport initially called the relation “happened before” fhport 1978b], but he renamed it “precedes” in later work [Larf6B6b,
Lamport 19864a].
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5 Properties of Destination Groups

So far, we have presented the problem of total order brogdehsrein messages are sent to all processes in the
system:

Ym € M (Dest(m) = II) 3)

A multicastprimitive is more general in the sense that it can send messegany chosen subset of the
processes in the system:

Im € M (sender(m) ¢ Dest(m)) A Im;, m; € M (Dest(m;) # Dest(m;)) 4)

Although in wide use, the distinction between broadcastraniticast is not precise enough. This leads us
to discuss a more relevant distinction, namely betweeredlagrsus open groups, and between single versus
multiple groups.

5.1 Closed versus Open Groups

In the literature, many algorithms are designed with thdlicitassumption that messages are seithin a group

of processes. This originally comes from the fact that eadyk on this topic was done in the context of parallel
machines [Lamport 1978a] or highly available storage systfCristian et al. 1995]. However, a large part of
distributed applications are now developed by considaringe open interaction models, such as the client-server
model, N-tier architectures, or publish/subscribe. For this reasois necessary for a process to be able to
multicast messages to a group it does not belong to. Constigjuge consider it an important characteristic of
algorithms to be easily adaptable to open interaction nsodel

5.1.1 Closed Group Algorithms

In closed groups algorithms, the sending process is alwag®bthe destination processes:
Ym € M (sender(m) € Dest(m)) (5)

So, these algorithms do not allow external processes (psesethat are not member of the group) to multicast
messages to the destination group.

5.1.2 Open Group Algorithms

Conversely, open group algorithms allow any arbitrary pescin the system to multicast messages to a group,
whether or not the sender process belongs to the destirgroomp:

dm € M (sender(m) & Dest(m)) (6)

Open group algorithms are more general than closed groopitlgns: the former can be used with closed groups
while the opposite is not true.

5.2 Single versus Multiple Groups

Most algorithms present in the literature assume that adlsages are multicast to one single group of destination
processes. Nevertheless, a few algorithms are designegbpmit multiple groups. In this context, we consider
three situationssingle group multiple disjoint groupsmultiple overlapping groupsie also discuss how useless
trivial solutions can be ruled out with the notionmfnimality. Since the ability to multicast messages to multiple
destination sets is critical for certain classes of appbca, we regard this ability as an important characteristi
of an algorithm.
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5.2.1 Single group ordering

With single group ordering, all messages are multicast &simgle group of destination processes. As mentioned
above, this is the model considered by a vast majority of ldp@rsthms that are studied in this paper. Single group
ordering can be defined by the following propetty:

Vmgi,mj € M (Dest(m;) = Dest(m;)) @)

5.2.2 Multiple groups ordering (disjoint)

In some applications, the restriction to one single destinagroup is not acceptable. For this reason, algorithms
have been proposed that support multicasting messagesltiplengroups. The simplest case occurs when the
multiple groups arélisjoint groups, which can be expressed as follows:

Vm;, m; € M (Dest(m;) # Dest(m;) = Dest(m;) N Dest(m;) = 0) (8)

In fact, adapting algorithms designed for one single graupark in a system with multiple disjoint groups
is almost trivial.

5.2.3 Multiple groups ordering (overlapping)

In case of multiple groups ordering, it can happen that gsaayerlap. This can be expressed by the following
predicate:
Im;,m; € M (Dest(m;) # Dest(m;) A Dest(m;) N Dest(m;) # 0) 9

The real difficulty of designing total order multicast alijoms for multiple groups arises when the groups can
overlap. This is easily understood when one considers thiglgm of ensuring total order at the intersection of
groups. In this context, [Hadzilacos and Toueg 1994] givedldifferent properties for total order in the presence
of multiple groups:Local Total Order Pairwise Total OrdeyandGlobal Total Order*®

(LocaL ToTAL ORDER) If correct processes and g both TO-deliver messages andm’ and Dest(m) =
Dest(m’), thenp TO-deliversm beforem’ if and only if ¢ TO-deliversm beforem’'.

Local Total Order is the weakest of the three properties.eduires that total order be enforced only for
messages that are multicast within the same group.

Note also that multiple unrelated groups can be considesatisfoint groups even if they overlap. Indeed,
destination processes belonging to the intersection ofgmeops can be seen as having two distinct identities;
one for each group. It follows that an algorithm for distinutiltiple groups can be trivially adapted to support
overlapping groups with Local Total Order.

As pointed out by [Hadzilacos and Toueg 1994], the total onaglticast primitive of the first version of Isis
[Birman and Joseph 1987] guaranteed Local Total Oltler.

(PairwISE TOTAL ORDER) If two correct processes andg both TO-deliver messages andm/, thenp TO-
deliversm beforem’ if and only if ¢ TO-deliversm beforem’.

Pairwise Total Order is strictly stronger than Local Totat€. Most notably, it requires that total order be
enforced for all messages delivered at the intersectiowo@btroups.

As far as we know, there is no straightforward algorithm tm$form a total order multicast algorithm that
enforces Local Total Order into one that also guaranteesvRai Total Order (except for trivial solutions; see
Sect. 5.2.4). [Hadzilacos and Toueg 1994] observe thainftance, Pairwise Total Order is the order property
guaranteed by the algorithm of [Garcia-Molina and Spauki80, Garcia-Molina and Spauster 1991].

12This definition and the following ones are static. They dota&e into account the fact that processes can join groupseamd groups.
Nevertheless, we prefer these simple static definitionlserdhan more complex ones that would take dynamic destinatiupg into account.

13The ordering properties cited here are subject to containimasee Section 4.2. Contamination can be avoided by foringlahese
properties similarly to the Gap-free Uniform Total Order pecty.

14t should be noted that, if the transformation is trivial franaonceptual point-of-view, the implementation was ceryartbtally different
matter, especially in the mid-80’s.

15



Pairwise Total Order alone may lead to unexpected situsitidren there are three or more overlapping desti-
nation groups. For instance, [Fekete 1993] illustrateptbblem with the following scenario. Consider three pro-
cesse;, p;, pr, and three messages; , mq, ms that are respectively sent to three different overlappiryigs
G1 = {pi,p;}» G2 = {pj,px}, andGs = {py,p;}. Pairwise Total Order allows the following histories on

piapjvpk:
pi : --- TO-delive(mgs) — - - — TO-delivefm;) - - -

p; : -+~ TO-delive(m;) — --- — TO-delivefms) - - -
pr : - - - TO-delive{msy) — --- — TO-delivefms) - - -

This situation is prevented by the specification of GlobabT@rder [Hadzilacos and Toueg 1994], which is
defined as follows:

(GLoBAL ToTAL ORDER) The relation< is acyclic, where< is defined as followsm < m’ if and only if any
correct process delivers andm/’, in that order.

Note 6 [Fekete 1993] gives another specification for total orderlticast which also prevents the scenario
mentioned above. The specification, called AMC, is expdeasean 1/O automaton [Lynch and Tuttle 1989,
Lynch 1996] and uses the notion of pseudo-time to imposeder on the delivery of messages.

5.2.4 Minimality and trivial solutions

Any algorithm that solves the problem of total order broatid@a single group can easily be adapted to solve the
problem for multiple groups with the following approach:

1. form a super-group with the union of all destination grgjup
2. whenever a messageis multicast to a group, multicast it to the super-group, and
3. processes not ilest(m) discardm.

The problem of such a solution is its lack of scalability. éed, in very large distributed systems, even if destina-
tion groups are individually small, their union is likely tover a very large number of processes.

To avoid this sort of solution, [Guerraoui and Schiper 20@tjuire the implementation of total order multicast
for multiple groups to satisfy the following minimality pperty:

(STRONG MINIMALITY ) The execution of the algorithm implementing total orderltinast for a message:
involves onlysender(m), and the processes Mest(m).

This property is often too strong: it disallows a lot of irgsting algorithms that use a small number of external
processes for message ordering (e.g., algorithms whigemimate messages along some propagation tree). A
weaker property would allow an algorithm to involve a smell af external processes.

5.2.5 Transformation algorithm

[Delporte-Gallet and Fauconnier 2000] propose a genegarithm that transforms a total order broadcast algo-
rithm for a single closed group into one for multiple grouphe algorithm splits destination groups into smaller
entities and supports multiple groups with Strong Minirtyali

6 Other Specifications for Total Order Broadcast

The specification in Section 3 is the standard specificatiootal order broadcast instaticsystem, that is, a sys-
tem in which all processes are created at system initisddizabroadcast. In this section, we briefly discuss other
specifications of total order broadcast, hamely the casgmdrmic groups, partitionable systems and Byzantine
failures.
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6.1 Dynamic Groups and Partitionable Systems

A dynamicgroup is a group of processes with a membership that can elduring the computation: processes
can be added to a group and removed from the group (e.g., daiéur@s). This requires to adapt the specification
of total order broadcast.

In the case of a dynamic group, the successive memberships gfoup are called theewsof the group [Chock-
ler, Keidar, and Vitenberg [2001] ]. Views are defined by ¢ineup membershiproblem, which has two variants:
(1) theprimary partition membership problem, and (2) tipartitionable membership problem. In the primary
partition group membership, one of the partitions is re@gphas primary, and processes are allowed to deliver
messages only if they belong to the primary partition. Intcst, the partitionable group membership allows all
processes to deliver messages, regardless of the pattiigrbelong to.

With dynamic groups, the basic communication abstracgaalledview synchronywhich can be seen as the
counterpart of reliable broadcast in static systems. Bleliaroadcast is defined by the Validity, Agreement and
Integrity properties of Sect. 3. Roughly speaking, View @wony adopts a similar definition while relaxing the
Agreement propert}?

Total order broadcast in a system with dynamic groups caéhee specified as view synchrony plus an
additional order property. Chockler, Keidar, and Vitergp2001] define three order properties in a partitionable
system: Strong Total Order (messages are delivered in the sader by all processes that deliver them), Weak
Total Order (the order requirement is restricted withine@w)i, and Reliable Total Order (extends the Strong Total
Order property to require processes to deliver a prefix ofranson sequence of messages within each view).
In other words, Strong Total Order corresponds somehoweddJthiform Total Order property of Sect. 3, and
Reliable Total Order somehow to the Prefix Ordering propeft$ect. 4.2. Other properties, such as Validity,
are also defined differently in partitionable systems. Thiexplained is considerably more detail by Chockler,
Keidar, and Vitenberg [2001] and [Fekete et al. 2001].

6.2 Byzantine Failures

Tolerating Byzantine failures has several important icgtions on the specification of the problem, in particular
on uniformity and contamination.

Uniformity  Algorithms tolerant to Byzantine failures can guaranteaenof the uniform properties given in
Sect. 3. This is understandable as no behavior can be edforcByzantine processes. In other words, nothing
can prevent a Byzantine process from (1) delivering a message than once (violates Integrity), (2) delivering
a message that is not delivered by other processes (vidlareement), or (3) delivering two messages in the
wrong order (violates Total Order).

[Reiter 1994] proposes a more useful definition of unifoynidr Byzantine systems. He distinguishes be-
tween crash and Byzantine failures. He says that a procésmestif it behaves according to its specification,
andcorrupt otherwise (i.e., Byzantine), where honest processes earfal by crashing. In this context, uniform
properties are those which are enforced by all honest psesesegardless whether they are correct or not. This
definition is more sensible that the stricter definition oftS8, as nothing is required from corrupt processes.

Contamination Contamination is impossible to avoid in the context of adbit failures, because a faulty pro-
cess may be inconsistent even if it delivers all messagesatty. It may then contaminate the other processes by
broadcasting a bogus message that seems correct to evenpothess [Hadzilacos and Toueg 1994].

7 Mechanisms for Message Ordering

In this section, we propose a classification of total ordeatcast algorithms in the absence of failures. The first
guestion that we ask iSwho builds the order?”More specifically, we are interested in the entity which gates
the information necessary for defining the order of mess@ggs timestamp or sequence number).

We identify three different roles that a participating pres can take with respect to the algorithm: sender,
destination, or sequencer.gendemprocess is a procegs from which a message originates (ig,,€ sender)-

15piscussing this primitive in detail is beyond the scope o thirvey (see paper by Chockler, Keidar, and Vitenberg [R@6rdetails).
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Figure 3: Classes of total order broadcast algorithms.

A destinationprocess is a procesgg to which a message is destined (igy, € I4.5). Finally, asequencer
process is not necessarily a sender or a destination, botrgteow involved in the ordering of messages. A
given process may simultaneously take several roles @gderand sequenceand destination). However, we
represent these roles separately as they are conceptifdheat.

According to the three different roles mentioned above, efiné three basic classes for total order broadcast
algorithms, depending whether the order is respectivelly ijpa sequencer, the sender, or destination processes.
Among algorithms of the same class, significant differemeesain. To account for this problem, we introduce
a further division, leading to five subclasses in total. Ehelasses are named as follows (see Fig.fXed
sequencermoving sequenceprivilege-basedcommunication historyanddestinations agreementPrivilege-
based and moving sequencer algorithms are commonly rdferi@s token-based algorithms.

The terminology defined in this paper is partly borrowed frotimer authors. For instance, “communication
history” and “fixed sequencer” was proposed by [Cristian ktighra 1995]. The term “privilege-based” was
suggested by Malkhi. Finally, [Le Lann and Bres 1991] grolgmathms into three classes based on where the
order is built. Unfortunately, their definition of classespecific to a client-server architecture.

In the remainder of this section, we present each of the fassels, and illustrate each class with a simple
algorithm. The algorithms are merely presented for the @eepof illustrating the corresponding category, and
should not be regarded as full-fledged working exampleshodigh inspired from existing algorithms, they are
largely simplified. Besides, none of these algorithms ané-falerant.

Note 7 (Atomic blocks) The algorithms are written in pseudocode, with the asswmgtiat blocks associated
with a when-clause are executed atomically. This assumgiimplifies the algorithms with respect to concur-
rency.

7.1 Fixed Sequencer

In a fixed sequencer algorithm, one process is elected agthescer and is responsible for ordering messages.
The sequencer is unique, and the responsibility is not niyrtransfered to another processes (at least in the
absence of failure).

The approach is illustrated in Fig. 4 and Fig. 5. One specificgss takes the role of a sequencer and builds
the total order. To broadcast a messagea sender sends to the sequencer. Upon receiving the sequencer
assigns it a sequence number and relaywith its sequence number to the destinations. The latter dedver
messages according to the sequence numbers. This algaidiemot tolerate the failure of the sequencer.

In fact, three variants of fixed sequencer algorithms exidte call these three variants “UB” (unicast-
broadcast), “BB” (broadcast-broadcast), and “UUB” (usieanicast-broadcast), taking inspiration from [Kaashaed Tanenbau

In the first variant, called “UB” (see Fig. 6(a)), the protbconsists of a unicast to the sequencer, followed by
a broadcast from the sequencer. This variant generateséssages, and it is the simplest of the three approaches.
It is, for instance, adopted by [Navaratnam et al. 1988],@rdesponds to the algorithm in Fig. 5.
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Ser;d;rs Destir;a{ions
Figure 4: Fixed sequencer algorithms.

Sender:

procedure TO-broadcastm) { To TO-broadcast message. }
send {n) to sequencer

Sequencer:
Initialization:
seqnum = 1
whenreceive(m)
sn(m) := seqgnum
send(m, sn(m)) to all
seqnum = seqnum + 1

Destinations (code of proceps):
Initialization:
nextdeliver,, := 1
pendingy, =0
whenreceive(m, segnum)
pendingy, = pendingy, U {(m, segnum)}
while 3(m’, seqnum’) € pending,, : seqnum’ = nextdeliver,, do
deliver n')
nextdeliver,, := nextdelivery, + 1

Figure 5: Simple fixed sequencer algorithm.

Sequencer Sequencer
(m,seq(m)) " sedtm)
Sender Sender
(a) variant UB (b) variant BB (c) variant UUB

Figure 6: Common variants of fixed sequencer algorithms.

In the second variant, called “BB” (Fig. 6(b)), the protocohsists of a broadcast to all destinations plus the

sequencer, followed by a second broadcast from the sequéliie generates more messages than the previous
approach, except in broadcast networks. However, it camcesthe load on the sequencer, and makes it easier to
tolerate the crash of the sequencer. Isis (sequencer) fBiehal. 1991] is an example of the second variant.

The third variant, called “UUB” (Fig. 6(c)), is less commdman the others. In short, the protocol consists

of the following steps. The sender requests a sequence murobe the sequencer (unicast). The sequencer
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replies with a sequence number (unicast). Then, the semdaddasts the sequenced message to the destination
processes®

7.2 Moving Sequencer

Moving sequencer algorithms are based on the same priresplixed sequencer algorithms, but allow the role
of sequencer to be transferred between several processesndtivation is to distribute the load among them.
This is illustrated in Figure 7 where the sequencer is ch@seang several processes. The code executed by
each process is however more complex than with a fixed sequembich explains the popularity of the latter
approach. Notice that, with moving sequencer algorithims,rbles of sequencer and destination processes are
normally combined.

The algorithm of Figure 8 shows the principle of moving sewge algorithms. To broadcast a messagea
sender sends: to the sequencers. Sequencers circulate a token messagarties a sequence number and a list
of all messages for which a sequence number has been atttifig., all sequenced messages). Upon reception
of the token, a sequencer assigns a sequence number teealbeget unsequenced messages. It sends the newly
sequenced messages to the destinations, updates thedokgrgsses it to the next sequencer.

Note 8 Similar to fixed sequencer algorithms, it is possible to tgva moving sequencer algorithm according to
one of three variants. However, the difference betweendhants is not as clearcut as it is for a fixed sequencer.
It turns out that among the moving sequencer algorithmseyiad, all of them follow the equivalent of the variant
BB of fixed sequencer. Hence we do not discuss this issue rémgrfu

Note 9 As mentioned, the main motivation for using a moving semraado distribute the load among several
processes, thus avoiding the bottleneck caused by a singdess. This is illustrated by several studies (e.g.,
[Cristian et al. 1994, Urlan et al. 2000]). One could then wonder when a fixed sequerigeritom should be
preferred to a moving sequencer algorithm. There are, in, fatleast three possible reasons. First, fixed se-
guencer algorithms are considerably simpler, leaving lessn for implementation errors. Second, the latency of
fixed sequencer algorithms is often better, as shown by4bldg al. 2000]. Third, it is often the case that some
of the machines are more reliable, more trusted, better eoted, or simply faster than others. When this is the
case, it makes sense to use one of them as a fixed sequenddi@ées9.1.2).

7.3 Privilege-Based

Privilege-based algorithms rely on the idea that sendemsbcaadcast messages only when they are granted
the privilege to do so. Figure 9 illustrates this class obdthms. The order is defined by the senders when
they broadcast their messages. The privilege to broadaadtdrder) messages is granted to only one process
at a time, but this privilege circulates from process to pescamong the senders. In other words, due to the
arbitration between senders, building the total order ireguo solve the problem of FIFO broadcast (easily
solved with sequence numbers at the sender), and to enstigafsing the privilege to the next sender does not
violate this order.

The algorithm of Figure 10 illustrates the principle of jiliege-based algorithms. Senders circulate a token
message that carries a sequence number for the next mesdagadcast. When a process wants to broadcast a
messagen, it must first wait until it receives the token message. Thieassigns a sequence number to each of
its messages and sends them to all destinations. FollolWwiagthe sender updates the token and sends it to the
next sender. Destination processes deliver messageg@asgiag sequence numbers.

Note 10 In privilege-based algorithms, senders usually need tawkaach other in order to circulate the privilege.
This constraint makes privilege-based algorithms poodiges! to open groups, in which there is no fixed and
previously known set of senders.

Note 11 In synchronous systems, privilege-based algorithms ased@n the idea that each sender process is
allowed to send messages only during some predetermineclits. These time slots are attributed to each pro-
cess in such a way that no two processes can send messagesaitrtd time. By ensuring that the communication
medium is accessed in mutual exclusion, the total orders#yeguaranteed. The technique is also knowtime
division multiple acces€TDMA).

16The protocol to tolerate failures is complex.
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Senders NACD S Destinations

Figure 7: Moving sequencer algorithms.

Sender:
procedure TO-broadcastm) { To TO-broadcast a message }
send ¢n) to all sequencers

Sequencers (code of procesy

Initialization:
receiveds; := ()
if S; = S1 then
token.seqnum =1
token.sequenced := ()
sendtoken to s

whenreceivem
receiveds, := receiveds, U {m}
whenreceivetoken from s;_1

for eachm” in receiveds, \ token.sequenced do
send(m’, token.seqnum) to destinations
token.seqnum := token.seqnum + 1
token.sequenced := token.sequenced U {m'}
sendtoken 10 5,11 (mod n)

Destinations (code of procegs):
Initialization:
nextdeliver,, := 1
pendingy, =0
whenreceive(m, segnum)
pendingy, = pendingp, U {(m, segnum)}
while 3(m’, segnum’) € pending,, S.t. segqnum’ = nextdeliver,, do
deliver (n')
nextdelivery, := nextdeliver,, + 1

Figure 8: Simple moving sequencer algorithm.

Note 12 It is tempting to consider that privilege-based and moviaguencer algorithms are equivalent, since
both rely on a token passing mechanism. However, they diffene significant aspect: the total order is built by
senders in privilege-based algorithms, whereas it is yilsequencers in moving sequencer algorithms. This has
at least two major consequences. First, moving sequengeritims are easily adapted to open groups. Second,
in privilege-based algorithms the passing of token is neagsto ensure the liveness of the algorithm whereas,
with moving sequencer algorithms, it is mostly used for owimg performance, e.g., by doing load balancing.

Note 13 With privilege-based algorithms, it is difficult to ensuadrfiess. Indeed, if a process has a very large
number of messages to broadcast, it could keep the token fmbétrary long time, thus prevented other processes
from broadcasting their own messages. To overcome thidemgtalgorithms often enforce an upper limit on the
number of messages and/or the time that some process cathieetefien. Once the limit is passed, the process is
compelled to release the token, regardless of the numbees$ages that remain to be broadcast.
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Senders Destinations

Figure 9: privilege-based algorithms.

Senders (code of proces3:
Initialization:
tosends, :== ()

if Si = S1 then
token.seqnum =1
sendtoken to s1
procedure TO-broadcastm) { To TO-broadcast a message }
tosend,, := tosends, U {m}
whenreceivetoken
for eachm' in tosend,, do
send(m’, token.seqnum) to destinations
token.seqnum := token.seqnum + 1
tosends, = 1]
sendtoken 10 5,11 (mod n)

Destinations (code of procegs):
Initialization:
nextdeliver,, 1= 1
pendingy, := 0
when receive(m, seqgnum)
pendingy, := pendingy, U {(m, segnum)}
while 3(m’, seqgnum’) € pending,, S.t. seqnum’ = nextdeliver,, do
deliver (')
nextdelivery, := nextdeliver,, 4+ 1

Figure 10: Simple privilege-based algorithm.

7.4 Communication History

Similarly to privilege-based algorithms, the delivery erds determined by the senders in communication history
algorithms. However, in contrast to privilege-based &thars, processes can broadcast messages at any time,
and total order is ensured by delaying the delivery of messaghe messages usually carry a (physical or logical)
timestamp. The destinations observe the messages gehkydtee other processes and their timestamps, i.e., the
history of communication in the system, to learn when delgea message will no longer violate the total order.

There are two fundamentally different variants of commatian history algorithms. In the first variant, called
causal history communication history algorithms use a partial order @efiby the causal history of messages
and transform this partial order into a total order. Conentrmessages are ordered according to some prede-
termined function. In the second variant, knowndaserministic mergeprocesses send messages timestamped
independently (thus not reflecting causal order) and dglitekes place according to a deterministic policy of
merging the streams of messages coming from each processipleexample policy consists in delivering the
next message fromy, then the next one from, etc., iterating over all processes in a round robin fashion

Figure 11 illustrates a typical communication history aitlon of the first variant. The algorithm, inspired
by [Lamport 1978b], works as follows. The algorithm useddagiclocks [Lamport 1978b] to “timestamp” each
messagen with the logical time of th&O-broadcastm) event, denotetk(m). Messages are then delivered in the
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Senders and destinations (code of progesssumes FIFO channels):

Initialization:
received, := () { Messages received by process
delivered, := () { Messages delivered by proces$
LCyps...pn):={0,...,0} { LC,]q]: logical clock of procesg, as seen by procegs}
procedure TO-multicastm) { To TO-multicast a message }

LGCy[p] = LCy[p] + 1

ts(m) := LCyp[p]

send FIFQ(m, ts(m)) to all

whenreceive(m, ts(m))

LC,[p] := max(ts(m), LCy[p]) + 1

LCy[sender(m)] := ts(m)

received, := recetved, U {m}

deliverable := ()

for eachmessagen’ in received, \ delivered, do
if ts(m’) < mingenr LC,[q] then

deliverable := deliverable U {m’}
deliver all messages ideliverable, in increasing order ofts(m), sender(m))
delivered, := delivered, U deliverable

Figure 11: Simple communication history algorithm.

order of their timestamps. However, we can have two messagasdm’ with the same timestamp. To arbitrate
between these messages, the algorithm uses the lexicozpbpitder on the identifiers of sending processes. In
Figure 11, we refer to this order as the(m), sender(m)) order, whereender(m) is the identifier of the sender
process.

Note 14 The algorithm of Figure 11 is not live. Indeed, consider ansg® where a single procegsbroadcasts

a single message:, and no other process ever broadcasts any message. Acgdddihe algorithm in Figure 11,

a process; can deliverm only after it has received, from every process, a messagevas broadcasafterthe
reception ofm. This is of course impossible if at least one of the processeer broadcasts any message. To
overcome this problem, communication history algorithmogppsed in the literature usually send empty messages
when no application messages are broadcast.

Note 15 In synchronous systems, communication history algoritietgon synchronized clocks, and use physical
timestamps instead of logical ones. The nature of suchragsteakes it unnecessary to send empty messages in
order to ensure liveness. Indeed, this can be seen as an éxaftpe use of time to communicate [Lamport 1984].

7.5 Destinations Agreement

In destinations agreement algorithms, as the name indicéie delivery order results from an agreement between
destination processes (see Figure 12). We distinguisle tifferent variants of agreement: (1) agreement on a
message sequence number, (2) agreement on a message 3pgagreément on the acceptance of a proposed
message order.

Figure 13 illustrates an algorithm of the first variant: faick message, the destination processes reach an
agreement on a unique (yet not consecutive) sequence nufiteealgorithm is adapted from Skeen’s algorithm
(§9.5.1), albeit it operates in a decentralized manner. Brigfle algorithm works as follows. To broadcast a
messagen, a sender sends to all destinations. Upon receiving, a destination assigns it a local timestamp
and sends this timestamp to all destinations. Once a déstinarocess has received a local timestamprfor
from all destinations, a unique global timestasy(m) is assigned ton, calculated as the maximum of all
local timestamps. Messages are delivered in the order ofgldal timestamp, that is, a messagecan only be
delivered once it has been assigned its global timestartyp) and no other undelivered messagecan possibly
receive a timestamg(m’) smaller or equal ten(m). As with the communication history algorithm (Figure 11),
the identifier of the message sender is used to break tieebptmessages with the same global timestamp.
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Senders Destinations

Figure 12: Destinations agreement algorithms.

Sender:
procedure TO-broadcastm) { To TO-broadcast a message }
send {n) to destinations

Destinations (code of proceps):

Initialization:

stamped,, := ()

recetvedy, := ()

LCy, =0 { LC,,: logical clock of procesp; }
whenreceivem

tsi(m) := LCy,

recetvedy, := recetved,, U {(m, ts;(m))}

send(m, ts;(m)) to destinations
LC,, :=LCy, + 1
whenreceived(m, ts;(m)) from p;
LCy, = max(ts;, LCp, + 1)
if received(m, ts(m)) from all destinationshen
sn(m) := max tsi(m)

stamped,, := stamped,, U {(m, sn(m))}

received,, := receivedy, \ {m}

deliverable := ()

for each (m/, sn(m’)) € stamped,, s.t.Ym" € receivedy, : sn(m') < ts;(m') do
deliverable := deliverable U {(m/, sn(m'))}

deliver all messages ideliverable in increasing order ofsn(m), sender(m))

stamped,, := stamped,, \ deliverable

Figure 13: Simple destinations agreement algorithm.

The most representative algorithm of the second variargrefeament is the algorithm proposed by [Chandra and Toue@] 19¢
(§9.5.4). The algorithm transforms total order broadcast mmsequence of consensus problems. Each consensus
allows the processes to agree on a set of messages, i.eensassumbek allows the processes to agree on a
setMsg". Fork < k’, the messages if/s¢"* are delivered before the messagesMng’“/. The messages in a
setMsg" are delivered according to some predetermined order {e e order of their identifiers).

With the third variant of agreement, a tentative messageedglorder is first proposed (usually by one of the
destinations). Then, the destination processes must aijihee to accept or to reject the proposal. In other words,
this variant of destinations agreement relies on an atoomengitment protocol.

Note 16 The line is thin between the second and the third variant eéement. For instance, Chandra and
Toueg’s total order broadcast algorithm relies on consensis described above. However, when combined with
the rotating coordinator consensus algorithm usih§, the resulting algorithm can be seen as an algorithm of the
third form. Indeed, the coordinator proposes a tentativeenr(given as a set of message plus message identifiers)
that it tries to validate. Thus it is important to note thatatweemingly identical algorithms may use different
forms of agreement, simply because they are describedfeteadif levels of abstraction.
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7.6 Time-free versus time-based ordering

We introduce a further distinction between algorithmshogonal to the above classification. The distinction is
between algorithms that use the physical time for messatgriag, and algorithms that do not use the physical
time. For instance, in Sect. 7.4 (see Fig. 11) we have predensimple communication-history algorithm based
on logical time. It is indeed possible to design a similar algorithmt thees thephysicaltime instead (and
synchronized clocks).

In short, we distinguish algorithms witime-based orderinghat rely on physical time, and algorithms with
time-free orderinghat do not use the physical time.

8 Mechanisms for Fault-Tolerance

The total order broadcast algorithms described in Sectime hot tolerant to failures: if a single process crashes,
the properties specified in Section 3 are not satisfied. Tabk-folerant, total order algorithms rely on various
techniques. In this section we present the most importatitesfe techniques. Note that it is somehow difficult
to discuss these techniques without getting into specifiiémentation details. Nevertheless, we try to keep the
discussion as general as possible.

8.1 Failure detection

A recurrent pattern in all distributed algorithms is for agess to wait for a message from some other proegss
If ¢ has crashed, procegss blocked. Failure detection is one basic mechanism togmtervfrom being blocked.

Unreliable failure detection has been formalized by [Charahd Toueg 1996] in terms of two properties:
accuracyandcompletenesgsee Sect. 2.3.2). Completeness is related to the blockotggm mentioned above.
The role of accuracy is more difficult to summarize. Rouglplgaking, accuracy prevents algorithms from running
forever, without solving the problem (livelock).

Unreliable failure detectors might be too weak for somel totder broadcast algorithms, which requiedi-
ablefailure detection information, provided byperfectfailure detector, known aB (see Sect. 2.6).

8.2 Group Membership Service

The low-level failure detection mechanism is not the onlyywa address the blocking problem mentioned in
the previous section. Blocking can also be prevented bynglgn a higher level mechanism, namelgm@aup
membership service

A group membership service is a distributed service thadponsible for managing the membership of groups
of processes (see Sect. 6.1 and paper by Chockler, Keidhkitanberg [2001] ). The successive memberships
of a group are called thaewsof the group. Whenever the membership changes, the seryiog hanges to all
group members, by providing them with the new view.

A group membership service usually provides strong corapkss: if a procegs member of some group
crashes, the membership services provides to the survwmamgbers a new view from whichis excluded. In
the primary-partition model (see Sect. 6.1), the accur&ézilnre notifications is ensured by forcing the crash of
processes that have been incorrectly suspected and eddhade the membership, a mechanism caliedcess-
controlled crash(see Sect. 2.6). Moreover in the primary-partition moded,droup membership service provides
consistent notifications to the group members: the suceess@ws of a group are naotified in tlmme ordeto
all its members.

To summarize, while failure detectors provide unrelialvid Bnconsistent failure notifications, a group mem-
bership service provides consistent failure notificatiok®reover, total order algorithms that rely on a group
membership service for fault tolerance, exploit anothepprty that is usually provided together with the mem-
bership service, nameljiew synchronysee Sect. 6.1). Roughly speaking, view synchrony enshatdetween
two successive views and’, processes in the two views deliver the same set of messa@esup mem-
bership service and view synchrony have been used for ingiéng complex group communication systems
(e.g., Isis [Birman and van Renesse 1993], Totem [Moser. &08I6], Transis [[Dolev and Malkhi 1994];[1996] ;
[Amir et al. 1992]], Phoenix [Malloth et al. 1995, Malloth 28]).
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8.3 Resilient communication patterns

As shown in the previous sections, an algorithm can rely ailaré detection mechanism or on a group member-
ship service to avoid the blocking problem. To be faulttate,, another solution is to avoid any potential blocking
pattern.

Consider for example a procegsvaiting for n — f messages, whene is the number of processes in the
system, angf the maximum number of processes that may crash. If all coprecesses send a message,to
than the above pattern is non-blocking (and does not requoirdailure detector mechanism or group membership
service). We call this patternrasilientpattern.

Note that, to be fault-tolerant, a total order broadcastritiyn can use more than one of the mechanisms
mentioned here, e.qg., failure detection and resilienepast

8.4 Message stability

Avoiding blocking is not the only problem that fault-toletaotal order broadcasts algorithms have to address.
Figure 1 (page 11) illustrates a violation of the Uniform Agment property. The problem here is not related to
blocking.

The mechanism that solves the problem is cafifezssage stabilityA messagen is said to bek-stableif
m has been received by processes. In a system in which at m@ggtrocesses may craslfi+1-stability is the
important property to detect: if some messages f+1-stable, themn is received by at least one correct process.
With such a guarantee an algorithm can easily ensuresithateventually received by all correct processgsl-
stability is often simply calledtability. The detection of stability is generally based on some asledgment
scheme or token passing.

8.5 Consensus

The mechanisms described so far are low-level mechanismghah fault-tolerant total broadcast algorithms
may rely.

Another option for a fault-tolerant total order broadcdgbathm is to rely on higher level mechanisms that
solve all the problems related to fault tolerance (i.e.,gheblems mentioned above). The consensus problem
(see Sect. 2.4.3) is such a mechanism. Some algorithms wdaleorder broadcast by a transformation into a
consensus problems. This way, fault tolerance, includailyre detection and message stability detection, is
completely hidden within the consensus abstraction.

8.6 Mechanisms for lossy channels

Apart from the mechanisms used to tolerate process crasieseed to say a few words about mechanisms to
tolerate channel failures. First, it should be mentionexd Heveral total order broadcast algorithms assume an
underlying layer that takes care of lossy channels: thegmitims assume reliable channels, i.e., message loss
is not discussed. Some other algorithms are build directlyop of lossy channels, and so address message loss
explicitly.

To address message loss, the standard solution is to relyositéve or a negative acknowledgment mecha-
nism. With positive acknowledgment, the reception of mgesas acknowledged; with negative acknowledgment,
the detection of a missing message is signaled. The two seheam be combined.

Token-based algorithms (i.e., moving sequencer or pgeHeased algorithms) rely on the token passing to
detect message losses: the token can be used to convey detgovents, or to detect missing messages. So
token-based algorithms use the token for ordering purgngelso for implementing reliable channels.

9 Survey of Existing Algorithms

This section provides an extensive survey of total ordeadicast algorithms. We present about sixty algorithms
published in scientific journals or conference proceedmgs the past three decades. We have done every pos-
sible efforts to be exhaustive, and we are quite confidentttiimpaper dresses a good picture of the field at the
time of writing. However, because of the continuous flow gigra on the subject, we might have overlooked one
algorithm or two.
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spec.

inf.
NS
n/a
+a
-a
GM
FD

Cons.

RCP

ByzA.

yes
somewhat

no.

special

informal.

not specified

not applicable

positive acknowledgment
negative acknowledgment
group membership

failure detector/detectian
consensus

resilient communication patterns
Byzantine agreement

explained in the text.

explained in the text.
explained in the text.
means also “not discussed.”

Table 2: Abbreviations used in Tables 3-5.

In Tables 3-5, we present a synthetic overview of all surdelgorithms, where we summarize the important
characteristics of each algorithm. The tables presentfactyal information about the algorithms, as it appears
in the relevant papers. In particular, the tables do notgreiaformation that is the result of extrapolation, or non-
obvious deduction. The exception is when we had to inteipfetmation to overcome differences in terminology.
Also, properties that are discussed in the original papermgt proved correct, are reported as “informal” in the
tables. For the sake of conciseness, several symbols angvailons have been used throughout the tables; they
are explained in Table 2. For each algorithm, Tables 3-%jigeecthe following information:

e General informationi.e., the ordering mechanism (see Sect. 7), and whethendélcbanism is time-based

or not (Sect. 7.6).

e TheGeneral informatiorrows are followed by rows describing the assumptions treatgorithm is based
on, i.e., what igrovidedto it:

— The System modelows specify the synchrony assumptions, the assumptiomte mbhout process
failures and communication channels. The mavtitionableshows if the algorithm works in a system
with dynamic groups and partitionable membership sems(giee Sect. 6.1). In particular, algorithms
in which only processes in a primary partition can work arecamsidered partitionable.

— The rows calledCondition for livenessliscuss the assumptions necessary to ensure the livenbss of

algorithm:

1. The rowlive...X means that the liveness of the algorithm requires the Is®mdé the building
block X (on which the algorithm relies). For exampligge... consensusieans that the algorithm
is live if the consensus building block on which the algaritkelies is itself live.

2. The rowother adds the following informationNS = not specifiedneans that liveness is not
discussed in the papenfa = not applicablemeans that no additional assumption is needed to
ensure liveness (this applies mostly to algorithms thatrassa synchronous model); = some-
whatandspec. = speciatefers to a discussion of liveness below in the papsrpverymeans
that the algorithm is blocking, i.e., liveness requiresrémovery of crashed processes? refers
to the failure detector needed to ensure liveness.

— The next group of rows indicate thmuilding block(s)used by the algorithm. The building blocks
considered areview synchronySect. 8.2), which encompassegraup membershipervice;reliable
broadcast(Sect. 2.4.1)rausal broadcas(Sect. 4.3.2)consensugSect. 2.4.3); opbther. Othercan
be either TDMA =time division multiple accegdNote 11, Sect. 7.3), ByzA. Byzantine agreement
(Sect. 2.4.2), or spec. special which means that the explanation is in the text below.

e After discussing what is providetio” the algorithms, we discuss what is providdaly” the algorithms.
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— The first rows give thé’roperties ensurethy the algorithms. As discussed in Section 3, total order
broadcast is specified by the following properties: Vajidiniform Agreement, Uniform Integrity,
Uniform Total Order. Validity and Uniform Integrity do nopgear in the table. The reason is that
these properties are rarely discussed in the papers (authoally assume they are trivially ensured).
We first discuss Agreement and Uniform Agreement, then Totaler and Uniform Total Order.
Finally, we mention whether the algorithm additionally eres FIFO order or causal order. In all
these entries, one would might expect eithgesor ano. Unfortunately many papers do not provide
proofs (often only informal arguments), which means thaséhproperties can be questioned. In this
casejnf. = informal appears in the table. If an algorithm does not discuss theepties of total order
broadcast at all, the corresponding entry mentiSs= not specified If the non-uniform property
is only discussed informally, then the corresponding efarithe uniform property is left empty (in
an informal discussion, the distinction between the unif@nd the non-uniform property usually
does not appear)()/x (=yes/nQ appears in some entries for the uniform property, meartiag t
these algorithms provide several levels of Quality of SEr\iQoS), which include a uniform and a
non-uniform version of the algorithm, where the non-unifoversion is more efficient. Moreover,
for being able to compare non-partitionable algorithmswpirtitionable algorithms, we consider the
properties enforced by the former when executed in a notitipaable system model.

For the rowsFIFO order andcausal ordey () = yesappears only if this characteristic is explicit in
the paper. Otherwise the entry is simply left blank. Fin&flan algorithm is not fault-tolerant, then
the distinction between the uniform and the non-unifornperties does not make sense. In this case
the entry mentions/a = not applicable

— The rows calleddestination groupgell whether the algorithm supports the total order broatich
a message to multiple groups (ronultiple), and whether the algorithms suppogengroups (see
Sect. 5). The entry is left blank if the issue is not discussqdicitly in the paper.

e The last group of rows, calleBault-tolerant mechanismsliscusses the mechanisms used to provide fault
tolerance. The rowprocessmentions the mechanisms used to tolerate process cragleeSdst. 8). Note
that some of these fault-tolerant mechanisms also appelwitang blocks However, not all building
blocks have been reported as fault-tolerant mechanisms (eliable broadcast, causal broadcést).

The rowcomm.mentions the mechanisms used to address message loss¢af Mesalgorithms assume
underlying reliable channels, in which case the entry no@sth/a = not applicable The acronyms-a
and-a indicate a positive, respectively negative, acknowledgmeechanism. The other entries &ieod
(flooding),special(explanation in the text below), and GMgroup membershign the context of unreliable
channels, the GM mechanism is used in the case were somespgoeaits for a message from some
other procesg: if no message is received (e.g., due to loss), theequests the exclusion gffrom the
membership.

In Sections 9.1 through 9.6, we give a brief description atheadividual algorithm, and complement the
information provided in the tables. Unlike the tables, tbetwal descriptions also present information that we
have deduced from the relevant papers. In some cases, theflaechnical details about the algorithms (in
particular in case of failures) leads usertrapolatetheir behavior. In this case, we avoid being too assertive
(e.g., using conditional) and kindly recommend the readdake this speculative information with appropriate
circumspection.

We think that it is useful to stress again the respectivesrofehe tables and the accompanying text in Sec-
tions 9.1 to 9.6. The tables providectualinformation about each algorithm, as it was published inrédevant
papers. In contrast, the text provides complementary fimédion, including information that we haextrapo-
lated In particular, the text explains the originality of eacga@ithm, and complements items that are left vague
in the tables (i.e., those points are vague in the paper)atticplar, for some of the algorithms, the properties
reported in the tables are weaker than those the algorithghtrensure. In such a case, the text below mentions
(and discusses) the stronger property that might hold. \8istion this point as misunderstanding the respective
roles of text and tables might give the wrong impression tiésettand tables are in contradiction.

1"The decision of what is a fault-tolerance mechanism and wehabt is somehow arbitrary. We have decided to keep the number of
mechanisms mentioned in Section 8 low, i.e., to mention only gmi&chanisms.
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9.1 Fixed Sequencer Algorithms

Regardless of the variant they adopt (see Sect. 7.1), aliesegr algorithms assume an asynchronous system
model and use time-free ordering. They tolerate crashré&sluexcept for Rampart which additionally tolerates
Byzantine failures. Also, they all rely on process-conéwicrash to cope with failures; either explicitly (e.g.nTa
dem), or through a group membership and exclusion (e.g,,Rempart).

9.1.1 Amoeba

The Amoeba [Kaashoek and Tanenbaum 1996] group communicastem supports algorithms of the first two
variants of fixed sequencer algorithms. The first one coardpto the variant UB (unicast-broadcast) illustrated
in Figure 6(a) (Sect. 7.1). The second variant correspan@8t(broadcast-broadcast), see Figure 6(b). The two
variants share the same properties.

Amoeba assumes lossy channels and implements messagsmassion as part of the total order broadcast
algorithm. Amoeba uses a combination of positive and negatknowledgments. The actual protocol is quite
complex because it is combined with flow control, and alsesttdo minimize the communication cost. Amoeba
tolerates failures using a group membership service. Stepgrocesses are excluded from the group as the
result of the unilateral decision of a single process.

The properties of the Amoeba algorithms are only discusgedmally in the paper. However, since messages
are delivered before they are stable, the algorithm can satigfy the non-uniform properties of Agreement and
Total Order.

9.1.2 MTP

MTP [Armstrong et al. 1992] is an algorithm primarily desaghfor video streaming and other similar multimedia
applications. The algorithm assumes that the system ismifatrm with respect to the probability of process fail-
ures. In particular, it assumes that a process, called tls¢emprocess, never fails. The master is then designated
as the sequencer, and the protocols follows variant UUBc@stiunicast-broadcast, see Fig. 6(c); p.19). When
a proces® has a message to broadcasty requests a sequence numbers#dofrom the sequencer. Once it has
obtained the sequence number, it sendgether with the sequence number, to all destinationslandchister.
At the same time, destination processes learn about thesstprevious messages and deliver those that have
been accepted by the master.

The protocol tolerates crash failures of destination pgses and senders, since all parts involving decisions are
executed by the master. The failure of the master is brieflgudised at the end of the paper. The authors suggest
that the master could be rendered more resilient by intiodguedundancy and using replication techniques.

9.1.3 Tandem

The Tandem global update protocol [Carr 1985] is a fixed secgrealgorithm of variant UUB (see Fig. 6(c)).
The algorithm allows at most one application message to @edoast at a time, and thus does not need sequence
numbers. Later, [Cristian et al. 1994] describe a variantd§Bandem that allows concurrent broadcasts (and
thus needs sequence numbers).

9.1.4 Garcia-Molina and Spauster

The algorithm proposed by [Garcia-Molina and Spauster lB3ased on a propagation graph (a forest) to sup-
port multiple overlapping groups. The propagation grapdoisstructed is such a way that each group is assigned
a starting node. Senders send their messages to the cardaspatarting nodes and messages travel along the
edges of the propagation graph. Ordering decisions aré/egsalong the path. When used in a single group set-
ting, the algorithm behaves like other fixed sequencer @ltgus (i.e., the propagation graph is a tree of depth 1).

The algorithm assumes an asynchronous model and requinebreyized clocks. However, synchronized
clocks are only needed to yield bounds on the behavior of th@ithm when crash failures occur. Neither the
ordering mechanism nor the fault tolerance mechanism cneed them.

In the event of failures, the algorithm behaves in an uncotiweal manner. Indeed, if a non-leaf process
crashes, then its descendants in the propagation graphtdeagive any message ungihas recovered. Hence,
the algorithm tolerates process crashes only if those pseseare guaranteed to eventually recover.
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9.15 lJia

[Jia 1995] proposed another algorithm based on propaggtiwhs, which creates simpler graphs than the algo-
rithm of Garcia-Molina and Spauster (sg1.4). Unfortunately, the algorithm originally propodad[Jia 1995]

is incorrect. [Chiu and Hsiao 1998] provide a correctionhe algorithm which works only in a more restricted
model (i.e., only closed groups). Also, [Shieh and Ho 1997vjgle a correction to the message complexity
calculated by [Jia 1995].

Jia’s algorithm relies on the notion of meta-groups, whigldéfined in the paper as “the set of processes
which have exactly the same group memberships” (i.e., thefggrocesses which belong to the exact same set
of destination groups). The meta-groups are organizedpirdpagation trees, according to the membership they
represent. The flow of messages is streamlined down the themsscreating the delivery order.

[Jia 1995] describes a form of group membership mechanisichw used to redefine the parts of the prop-
agation graph that must change when a process is deletedalsdisuggests that, unlike Garcia-Molina and
Spauster’s algorithm§0.1.4), the nodes in the tree consist of entire meta-groather than single processes.
Thus, messages would not be stopped unless all membersiiteamédiary meta-group fail. The issue is how-
ever only addressed informally.

9.1.6 Isis (sequencer)

[Birman et al. 1991] describe several broadcast primitivethe Isis system, including a total order broadcast
primitive called ABCAST. The ABCAST primitive is implemesd using a fixed sequencer algorithm (different
from the algorithm used in earlier versions of the systems;§8e5.1, p.40). The Isis (sequencer) algorithm is
a fixed sequencer algorithm of variant BB (see Fig. 6(b), p.Wich uses a causal broadcast primitive. The
algorithm assumes crash failures.

Being constructed over a causal broadcast primitive, istéABCAST algorithm preserves causal order. More-
over, although the algorithm does not support total ordenfoltiple overlapping groups, causal order is never-
theless preserved in this context. The total order broa@tgsrithm ensures only the non-uniform properties of
Agreement and Total Order.

For fault tolerance, the total order broadcast algorithtieseon a group membership service and on the
property of view synchrony (Sect. 8.2).

Finally, the authors also briefly mention that moving theral the sequencer in the absence of failures might
be a way to avoid a bottleneck. However, the idea is not deeeldurther.

9.1.7 Navaratnam et al.

[Navaratnam et al. 1988] propose a fixed sequencer protéeakiant UB (see Fig. 6(a)).

The fault tolerance of the algorithm relies on a group memsttiprservice and the ability to exclude wrongly
suspected processes. Similar to Amoej®al(.1), the decision to exclude a suspected process cakdreuailat-
erally by one single process.

The properties of this algorithm are discussed informalhg it is easy to see that it satisfies the non-uniform
properties of Agreement and Total Order. The authors als@ra®rief remark suggesting that the algorithm does
not guarantee uniform properties, but the wording is @létnbiguous and the information provided in the paper
is not sufficient to verify this interpretation.

9.1.8 Phoenix

Phoenix [Wilhelm and Schiper 1995] consists of three atbars which provide different levels of guarantees.
The first algorithm (weak order) only guarantees Total Omledt Agreement. The second algorithm (strong
order) guarantees both Uniform Total Order and Uniform &gnent. Then, the third algorithm (hybrid order)
combines both guarantees on a per message basis.

The three algorithms are based on a group membership sariceiew synchrony (see Sect. 6.1).

9.1.9 Rampart

Unlike other sequencer algorithms, which only assume cfaifiires, the algorithm of Rampart [Reiter 1994,
Reiter 1996] is designed to tolerate Byzantine failuresis Blets this algorithm somewhat apart from the other
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sequencer algorithms.

Rampart assumes an asynchronous system model with reéfilechannels, and a public key infrastructure
where every process initially knows the public key of evetiyen process. In addition, communication chan-
nels are assumed to be authenticated, so that the intefritgssages between two honest (i.e., non-Byzantine)
processes is always guaranteed.

Unlike most early work on Byzantine failures, Rampart tsdadnest and Byzantine processes separately. In
particular, the paper defines uniformity as a property tipglias to honest processes only (see explanations in
Sect. 6.2). With this definition, Rampart satisfies both bimf Agreement and Uniform Total Order.

The algorithm is based on a group membership service, whiphires that at least one third of all processes in
the current view reach an agreement on the exclusion of soncegs from the group. This condition is necessary
because Byzantine processes could otherwise purposéiydexcorrect processes from the group.

9.2 Moving Sequencer Algorithms

We describe here four moving sequencer algorithms, all aEhvhre time-free. To the best of our knowledge,
there is no time-based moving sequencer algorithm. It issdigtquestionable whether time-based ordering would
even make sense for algorithms of this class.

The four algorithms behave in a very similar fashion. Adgdinwheel §9.2.4), RMP §9.2.2), and DTP
(§9.2.3) are all three based on Chang and Maxemchuck’s &igo(i{9.2.1), which they all improve in a different
way. Pinwheel is optimized for a uniform message arrivatggat RMP provides various levels of guarantees,
and DTP provides a faster detection of message stabilitg. fotr algorithms also handle process failures very
similarly, using a reformation algorithm (s®.2.1).

The four algorithms tolerate message loss by relying on asaggsretransmission protocol that combines
positive and negative acknowledgments. More precisetytdken carries positive acknowledgments, but when
a process detects the miss of a message, it sends a negatiosvierigment to the token site. The negative ac-
knowledgment scheme is used for message retransmissieneagthe positive scheme is used to detect message
stability.

9.2.1 Chang and Maxemchuck

The algorithm proposed by [Chang and Maxemchuk 1984] iscbasehe existence of a logical ring along which
a token is passed. The process that holds the token, alsonkasthe token site, is responsible for sequencing
the messages that it receives. The passing of the tokentameolusly serves two different purposes: (1) the
transmission of the sequencer role, and (2) the detectioresbage stability. Point 2 requires that the logical ring
spans all destination processes. This requirement is lewmit necessary for ordering messages (point 1), and
hence the algorithm qualifies as a sequencer-based algaithording to our classification.

When a process failure is detected (perhaps wrongly) or whpenaess recovers, the algorithm goes through
a reformation phase. The reformation phase redefines tiealaing and elects a new initial token holder. The
reformation algorithm can be seen as an ad-hoc implementatia group membership service.

The properties of the total order broadcast algorithm aseudised only informally. Nevertheless, it seems
plausible that the algorithm ensures Uniform Total Ordet @niform Agreement.

9.2.2 RMP

RMP [Whetten et al. 1994] differs from the other three aldoris in that it is designed to operate with open
groups. Beside, the authors claim that “RMP provides migltipulticast groups, as opposed to a single broadcast
group.” However, according to their description, suppatmultiple multicast groups is merely a characteristic
associated with the group membership service. Itis hen®ds that “multiple groups” is used with the meaning
that total order is guaranteed for processes that are attiwséction of two groups (see discussion in Sect. 5.2).

Depending on the user’s choice, RMP satisfies AgreemenfokmiAgreement, or neither of these properties.
However, in order to ensure the strong guarantees, RMP nsgaifree that a majority of the processes remain
correct and always connected. Also, RMP does not preclieledhtamination of the group.
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9.2.3 DTP

Unlike the other three algorithms, DTP [Kim and Kim 1997] dowt rely on a logical ring for the passing of the
token. Instead, the algorithm follows a heuristic wheredigy token is always passed to the process seen as the
least active. Doing this ensures that messages are acldgedenore quickly when the activity (i.e., broadcasting
messages) is hot uniform among processes.

9.2.4 Pinwheel

The originality of Pinwheel [Cristian et al. 1997] is thatetloken circulates among the processes at a speed
proportional to the global activity of the sending procasée., broadcasting rate).

Pinwheel assumes that a majority of the processes remairectand connected at all time (majority group).
The algorithm is based on the timed asynchronous model a$tj@n and Fetzer 1999]. Although it relies on
physical clocks for timeouts, Pinwheel does not need toragghat these clocks are synchronized. Furthermore,
the algorithm is time-free since time is not used for ordgrimessages.

Pinwheel can ensure Uniform Total Order, given an adequgecst from its group membership (not detailed
in the paper). Beside, Pinwheel only satisfies (non-unijokgreement, but the authors argue that the algorithm
could easily be modified to satisfy Uniform Agreement [Gaistet al. 1997]. Doing this would only require that
destination processes wait until a message is known to béedtafore delivering it. The authors claim that the
algorithm preserves causal order, but this is valid onlyaurertain restrictions that make the problem trivial to
solvel®

9.3 Privilege-Based Algorithms

As for moving sequencer algorithms, most privilege-badgdrahms are based on a logical ring, and for most of
them rely on some kind of group membership or reconfigurgiimocol to handle process failures.

9.3.1 On-demand

The On-demand protocol [Cristian et al. 1997], unlike othr@rilege-based algorithms, does not rely on a logical
ring. Instead, processes with a message to broadcast miash ¢hee token by issuing a request to the current
token holder. As a consequence of this approach, the prhowaooore efficient if senders send long bursts of
messages and such bursts rarely overlap. Also, in contitisthve other algorithmsall processesnust be aware
of the identity of the token holder. So, the passing of thetois done using a broadcast.

The on-demand protocol relies on the same model as the Pahwtatocol §9.2.4). In other words, it assumes
a timed asynchronous system model, and physical clockéfeouts.

A similar algorithm, called Reqtoken, is also describedBrygdman and van Renesse 1997].

9.3.2 Train

The Train protocol [Cristian 1991] is inspired by the imadeadrain that transports messages and circulates

among processes. More concretely, a token (a.k.a., thg trenves along a logical ring and carries the messages.
When a process gets the token, it receives the new messagesd barthe token, acknowledges them, and appends

its own messages to the token. Then, it passes the token texh@rocess. The Train protocol, where messages

are carried by the token, comes in clear contrast with theratlyorithms of the same class, where messages are
broadcast directly to the destinations. The Train protégdience less attractive than the others in a broadcast
network.

9.3.3 Totem

The specificity of Totem [Amir et al. 1995] compared to othevifege-based algorithms is that it is designed for
partitionable systems. The ordering guarantee ensurddasdsTotal Order. Totem provides boghon-uniform)
agreement and total order (callagreed ordey anduniformagreement and total order (callsdfe ordej when
operated in a non-partitionable system. Causal order dsegisured.

18|n systems with a single closed group where processes areatialyed to communicate using total order broadcast, causir ds
satisfied trivially by simply enforcing FIFO order.
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The algorithm uses a membership protocol, which has thensdpility to detect processor failures, network
partitioning and loss of the token. When such failures arealetl, the membership protocol reconstructs a new
ring, generates a new token, and recovers messages thabthbeem received by some of the processors when
the failure occurred.

The authors observe that while moving sequencer algorifirmahich holding the token is not required to
broadcast a message) have good latency at low loads, latemegses at high load and in the presence of proces-
sor crashes. Moreover, according to [Agarwal et al. 199 ring and the token passing scheme make privilege-
based algorithm highly efficient in broadcast LANs, but Issged to interconnected LANs. To overcome this
problem, they extend Totem to an environment consisting ufiple interconnected LANs. The resulting algo-
rithm performs better in such an environment, but otherlis®e the same properties as the original single-ring
one.

9.34 TPM

TPM [Rajagopalan and McKinley 1989] is closely related taefo. The main difference is that TPM is not
partitionable (it only supports primary partition membdep3. Moreover, TPM only providesniformagreement
and total order. Finally, while TPM only supports a closedugr, the authors discuss some ideas on how to extend
the algorithm to support multiple closed groups.

[Rajagopalan and McKinley 1989] also propose a modificatibPM in which retransmission requests are
sent separately from the token, in order to improve the hehavnetworks with a high rate of message loss.

9.3.5 Gopal and Toueg

Gopal and Toueg’s [1989] algorithm is based on the roundrsymous model. The round synchronous model
is a computation model in which the execution of processsynshronized according to rounds. During each
round, every process performs the same actions: (1) sendgsageeto all processes, (2) receive a message from
all non-crashed processes, and then (3) perform some catigng.

The algorithm works as follows. For each round, one of thegssees is designated as trensmitter The
transmitter of some roundis the only process which is allowed to broadcast new appbicanessages in round
r. In that round the other processes broadcast acknowledgroeprevious messages. Messages are delivered
once they are acknowledged, three rounds after theirlibitteadcast.

9.3.6 RTCAST

RTCAST [Abdelzaher et al. 1996] was designed for applicetithat need real-time guarantees. The algorithm
assumes a synchronous system with synchronized clockseBti®ng guarantees allow for simplification in the
protocol. The paper also shows how the maximum token ratdiinoe can be used for admission control and
schedulability analysis of real-time messages (with tred tibpguarantee the delivery deadline of these messages).

9.3.7 MARS

MARS [Kopetz et al. 1990] is based on the principldiofe division multiple-acceg3DMA,; see Note 11, p.20).
TDMA consists in having predetermined periodic time slatsigned to each process. Processes are then allowed
to send or broadcast messages messages only during thetinogslots. The system assumes that processes
have synchronized clocks whereby they are able to accurdétérmine the beginning and the end of their own
time slot. In addition, communication is assumed to be Iddiand with bounded delays.

Based on the mutual exclusion provided by the TDMA model dreddommunication model, total order
broadcast is easily implemented. The ordering mechanisnbeseen as similar to Gopal and Toueg’s algorithm
(89.3.5), but in a time-based model and where communicaties tisie rather than messages [Lamport 1984].

[Kopetz et al. 1990] do not discuss the behavior of theirltotder broadcast algorithm in the presence of
failures. This makes it difficult to determine whether thgaaithm is uniform or not. We believe that it is
not uniform, simply because uniformity induces a cost infgrenance that the authors are unlikely to consider
affordable.
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9.4 Communication History Algorithms
9.4.1 Lamport

The principle of Lamport’s algorithm [Lamport 1978b], whiaises logical clocks, has been explained in Sec-
tion 7.4 (see Fig. 11). Actually, the paper describes a nhetxausion algorithm. However it is straightforward
to derive a total order broadcast algorithm from the mutualusion algorithm. Since the delivery order of a
messagen is determined by the timestamp of the broadcast event,dhe total order is an extension of causal
order. The algorithm is not tolerant to failures.

A similar algorithm is described by [Attiya and Welch 1994hen comparing consistency criteria.

9.4.2 Psync

The Psync algorithm [Peterson et al. 1989] is used in segevap communication systems: Consul [Mishra et al. 1993],
Coyote [Bhatti et al. 1998], and Cactus [Hiltunen et al. J998 Psync, processes dynamically build a causality
graph of messages they receive. Psync then delivers messeg@ding to a total order that is an extension of the
causal order.

Psync assumes an asynchronous system model with (permarasit failures and (transient) lossy commu-
nication. To tolerate process failures, the algorithm setmssume a perfect failure detector, although this is
not said explicitly in the paper. To implement reliable chels, the algorithm uses negative acknowledgments (to
request the retransmission of lost messages).

Psync is specified only informally. Nevertheless, we beligvat the protocol ensures Total Order in the
absence of failures. The behavior in the face of failuresnif®niunately not described with enough detail to
make a confident claim about it. Agreement is a little more glem In the absence of message loss, Psync
ensures Agreement. However, with certain combinationsrafgss crash and message loss, it is possible that
some correct processdscard messages that are otherwise delivered by others. Hence, message loss are
considered, Agreement can be violated. This problem isudised in details by the authors, who relate it to an
instance of the “last acknowledgment problem.”

[Malhis et al. 1996] provide an analysis of the performantsync in the presence of message loss. They
conclude that Psync performs well if broadcast are freqaaedtmessage loss rare, but performs poorly when
broadcast are infrequent and message loss common. Thetisaiotiive performance can be improved by sending
empty messages regularly, as is done by other communidaistory algorithms (see Note 14 in Sect. 7.4).

9.4.3 Newtop (symmetric)

[Ezhilchelvan et al. 1995] propose two algorithms: a symioaine and an asymmetric one. The symmetric
algorithm extends Lamport’s algorithr§9.4.1) in several ways: makes it fault-tolerant, allows acpss to be
member of multiple groups, and allows the broadcast of aages® multiple groups. As for Lamport’s algorithm,
Newtop preserves causal order.

Newtop is based on a partitionable group membership se(see Sect. 6.1, p.17). The Newtop platform
leaves it to applications to decide whether or not they shmaintain more than one subgroup in such a situation.
Newtop satisfies the property of Weak Total Order mentioneBeict. 6.1.

The asymmetric algorithm belongs to a different class, anldence discussed there ($€e6.1). The two
algorithms (symmetric and asymmetric) can easily be coetbio allow the use of the symmetric algorithm in
some groups, and the asymmetric algorithm in other groups.

9.4.4 Ng

[Ng 1991] presents an communication history algorithm the#ts a minimum-cost spanning tree to propagate
messages. The ordering of messages is based on Lampodis ckimilar to Lamport’s algorithm. However,
messages and acknowledgment are propagated, respegtikgred, using a minimum-cost spanning tree. The
use of a spanning tree improves the scalability of the algorand makes it adequate for wide-area networks.
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9.45 ToTo

The ToTo algorithm [Dolev et al. 1993] ensures Weak Totalédidee Section 6.1; called “agreed multicast” in
[Dolev et al. 1993]). Itis build on top of the Transis paditable group communication system [Dolev and Malkhi 1996].
ToTo extends the order of an underlying causal broadcastidig. It is based on dynamically building a causal-

ity graph of received messages. The Transis system offéts éaniform and a non-uniform variant of the
algorithm. A particularity of ToTo (non-uniform varianty that, to deliver a message, a process must have
received acknowledgments fot from as few as a majority of the processes in the current viestgad of all

view members).

9.4.6 Total

The Total algorithm [Moser et al. 1993] is built on top of aiable broadcast algorithm called Trans (Trans in
defined together with Total). However, Trans is not used akeklbox (which explains that we did not list
reliable broadcast as a building block in Table 4). Trans aseacknowledgment mechanism that defines a partial
order on messages. Total extends the partial order of Trdositotal order. Two variants are defined: the more
efficient one tolerateg < n/3 crashes and the other tolerajes: n/2 crashes.

The Total algorithm fulfills the Agreement property (in fabiniform Agreement) with high probability. Ac-
tually Total requires that the underlying Trans reliabledatcast protocol provides probabilistic guarantees about
not reordering messages. This has some similarities withotion ofweak ordering oracleésee Section 9.5.13).

[Moser and Melliar-Smith 1999] propose an extension of Mat#olerate Byzantine failures.

9.4.7 ATOP

ATOP [Chockler et al. 1998] is an algorithm following the eehinistic merge approach (Sect. 7.4). The focus of
the paper is adapting the algorithm to different and pogsibhbnging sending rates. A pseudo-random number
generator is used in computing the delivery order.

The paper is mostly concerned with ensuring an orderinggetgpThis property is Strong Total Order, defined
in the context of partitionable systems (Sect. 6.1). Therdlyn ensures FIFO order, and ensures causal order
only trivially (see Footnote 18, p.35).

9.4.8 COReL

The CORelL algorithm [Keidar and Dolev 2000] is built on topeopartitionable group membership service like
Transis. The underlying service should also offer Stron@gTOrder (Sect. 6.1) as well as causal order. COReL
gradually builds a global order (Reliable Total Order) hygimg messages according to three different color levels
(red, yellow, green). A message starts as red (no knowleldgetats position in the global order) then passes
to yellow (received and acknowledged when the process ismbmeof a majority component) and green (all
members of the majority component acknowledged the mesaadets position in the global order is known).
Green messages are delivered to the application. Messegest@nsmitted and promoted to green whenever
partitions merge. All acknowledgments sent by the algoritre piggybacked. COReL provides the following
liveness guarantee: if eventually there is a stable mgjodtnponent, all messages sent by the members of this
component are delivered.

COReL also supports process recovery if processes arepeglipith stable storage. This requires that pro-
cesses log each message that is sent (before sending thageleaad each message that is received (before
sending an acknowledgment).

[Fekete et al. 2001] formalize a variant of the COReL aldpnitand the guarantees offered by the underlying
group membership service, using I/0 automata.

9.4.9 Deterministic merge

In the deterministic merge algorithm [Aguilera and Strond@) each message received deterministically defines
the sender of the next message to be accepted. Senders pydieaplimestamp on their messages, and upon
receiving such a message, the destination process confpsteg the timestamp) the next sender from which it
will accept a message. The algorithm is most efficient if ktoare synchronized (but works even if clocks are
not synchronized) and each sender sends messages at sahratidenown a priori (the rate may be different for
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each sender). To make the algorithm live, senders need tbesepty messages if they have no message to send
(these messages divide the execution into indeperegeath3$. The algorithm, as described, is not fault-tolerant.

9.4.10 HAS

[Cristian et al. 1995] propose a collection of total ordepndutcast algorithms (called HAS) that assume a syn-
chronous system model withsynchronized clocks. The authors describe three algosthHAS-O, HAS-T,
and HAS#$—that are respectively tolerant to omission failures, tgrfimilures, and authenticated Byzantine fail-
ures. These algorithms are based on the principlafofmation diffusionwhich is itself based on the notion of
flooding or gossiping. In short, when a process wants to lmastch message, it timestamps it with the time of
emission!” according to its local clock, and sends it to all neighbors eWdver a process receivesfor the first
time, it relays it to its neighbors. Processes deliver ngsgaat timeT'+ A, according to their local clock (where
A is constant that depends on the topology of the network, timeber of failures tolerated, and the maximum
clock drift €).

The paper proves that the three HAS algorithms satisfy Agesd. The authors do not prove Total Order but,
by the properties of synchronized clocks and the timestatdp$orm Total Order is not too difficult to enforce.
However, if the synchronous assumptions do not hold, thergtgns could violate the safety of the protocol (i.e.,
Total Order) rather than just its liveness.

9.4.11 Redundant broadcast channels

[Cristian 1990] presents an adaption of the HASalgorithm (omission failures) to broadcast channels. The
system model assumes the availability fof- 1 independent broadcast channels (or networks) that comflect
processes together, thus creatjivg 1 independent communication paths between any two procéskesef is

the maximum number of failures). Compared to H&Sthe algorithm for redundant broadcast channels issues
significantly less messages.

9.4.12 Quick-S

[Berman and Bharali 1993] present several closely relaitad order broadcast algorithms in a variety of system
models. In synchronous systems (3 variants in the paperaltfwithms are similar to the HAS algorithms:
messages are timestamped (with physical or logical timgstadepending on the system model), and a message
timestamped witlT" can be delivered & + A for some value ofA. The difference is that they use a Byzantine
agreement algorithm with bounded termination time to semdsages. There are algorithms that work with
Byzantine failures and ones that work with crash failurelyothe latter ensure Uniform Prefix Order. For
Byzantine failures, the algorithm ensures only non-umif@roperties. This is because, unlike gpecification
of Rampart §9.1.9), thespecificatiorused by Quick does not distinguish between Byzantine psesesnd those
that only fail by crashing.

The paper also presents an algorithm for asynchronoussgstéowever, this algorithm belongs to the class
of destinations agreement algorithms and is discussed {RQrrick-A;§9.5.15).

9.4.13 ABP

The principle of ABP [Minet and Anceaume 1991b, Anceaume3a9% close to the principle of Lamport’s al-
gorithm (9.4.1): messages are delivered according to timestamgshatl to messages by their sender. Each
process manages a local sequence number variable, useteBiaimp messages. Let procgdwoadcast mes-
sagem. In the first phaseyn and its timestamp values,, are sent to all. Any processreceivingm replies

with some message:’ that it might have previously broadcast with the same tiamagtvalue {s,,,, = ts,,), if

any. Upon reception of all replies from correct processescgssp knows the setMsg(ts,,) of all messages
with the same timestamp value,,, and delivers these messages (in the order of the identifibesender of the
messages). Processlso broadcasts the sifsg(ts,, ), allowing the other processes to deliver the same sequence
of messages.
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9.4.14 Atom

In Atom [Bar-Joseph et al. 2002], streams of messages frbseatlers are merged in a round-robin fashion. To
make the algorithms live, senders need to send empty mesgadgey have no message to send. This approach
can be seen as a special casdeterministic mergésees9.4.9).

9.4.15 QoS preserving atomic broadcast

[Bar-Joseph et al. 2000] present another algorithm, bagettieo same ordering mechanism as Atdj.4.14).
As its name indicates, the QoS preserving algorithm previgport for quality of service (QoS), unlike Atom.
On the other hand, the QoS preserving algorithm does noagtess Agreement (i.e., uniform or not), and only
non-uniform Total Order.

9.5 Destinations Agreement Algorithms
9.5.1 Skeen

Skeen’s algorithm, described by [Birman and Joseph 1983%, wged in an early version of the Isis toolkit. The
algorithm corresponds roughly to the algorithm in Fig. 124). The main difference is that Skeen’s algorithm
computes the global timestamp in a centralized manner,e@isehe algorithm in Fig. 13 does it in a decentralized
way. Fault tolerance is achieved using a group membershifceewhich excludes suspected processes from the
group.

[Dasser 1992] propose a simple optimization of Skeen’sralyn called TOMP, where additional information
is appended to protocol messages in order to deliver apiplicmessages a little earlier.

9.5.2 Luan and Gligor

[Luan and Gligor 1990].

The algorithm is based on majority voting. The idea is théofeing. Upon execution oTO-broadcastm),
messagen is sent to all processes. Upon receptiomoby some procesg, m is put intog’s receiving buffer.
The message delivery order is then decided by a voting pshtadich can be initiated by any of the processes.
In case of concurrent initiation of the protocol, an arltila rule is used.

Voting is initiated by broadcasting an “invitation” messagConsider this message broadcast by progess
Processes reply by sending the content of their receivifigibto p. Procesgp waits for a majority of replies.
Based on the messages received, propalken constructs a sequence of message identifiers, andchstadhis
sequence. A process receiving the sequence sends an aellgavent tap. Oncep has received acknowledg-
ments from a majority of processes, the proposed sequenoaisitted

To summarize, the protocol tries to reach consensus amendettination processes on a sequence of mes-
sages. However, the authors did not identify consensus @gpmablem to solve, which makes the protocol more
complex. The consequence is also that the conditions unbdihviiveness is ensured are not discussed (and
difficult to infer).

9.5.3 Le Lann and Bres

[Le Lann and Bres 1991] wrote a position paper discussira twtler broadcast in a system with omission faults.
The paper sketches a total order broadcast algorithm basgdarums.

9.5.4 Chandra and Toueg

[Chandra and Toueg 1996] propose a transformation of atbrigdcast into a sequence of consensus problems,
where each consensus decides on a set of messages, easiigrireed into a sequence of messages. The trans-
formation uses reliable broadcast. The idea of the tram&ftion was described in Section 7.5, and is not repeated
here.

The algorithm assumes an asynchronous system model,leclieindcast, and a black box that solves con-
sensus. The algorithm is extremely elegant, in the sensaltldifficult issues related to fault tolerance are hidden
into the consensus black box.
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There has been several proposals to optimize this algoritRor example, [Mostefaoui and Raynal 2000]
propose an optimistic approach, where the consensustalguis split into two parts. The first phase is optimized,
but does not always succeed. If this happens, the full causesigorithm is executed.

9.5.5 Rodrigues and Raynal

[Rodrigues and Raynal 2000] present a total order broadégatithm in a model where processes have access to
stable storage and may recover after a crash. The algorithiery close to the Chandra-Toueg algoritty®.5.4):

it uses the same transformation of total order broadcasbsensus. The only difference is that, because of
the crash-recovery model, the algorithm relies on the erasbvery consensus algorithm of Aguilera, Chen, and

Toueg [2000]).

9.5.6 ATR

[Delporte-Gallet and Fauconnier 1999] describe the ATRidtlgm, which is based on an abstraction calBah-
chronized Phase system (SP®)e SPS abstraction is defined in an asynchronous systerSP&ndecomposes
the execution of an algorithm in rounds, almost like a syanbus round model. The ATR algorithm distinguishes
between even and odd rounds. In even rounds, processesrdengibsets of messages to each other. Upon recep-
tion of these messages, each process constructs a seqfiemessages. In the subsequent odd round, processes
try to validate the order and deliver messages.

9.5.7 SCALATOM

SCALATOM [Rodrigues et al. 1998] is based on Skeen'’s alhami{59.5.1) and supports the broadcast of mes-
sages to multiple groups. The algorithm satisfies the Sthdingmality property (Sect. 5.2.4). The global times-
tamp is computed using a variant of Chandra and Toueg'’s [L2@®sensus algorithn£9.5.4). SCALATOM
corrects an earlier algorithm called MTO [Guerraoui andigeh1997].

9.5.8 Fritzke et al.

[Fritzke et al. 2001] also propose an algorithm for the boaetl of messages to multiple groups. The algorithm
satisfies the Strong Minimality property (Sect. 5.2.4). §ldar a message broadcast to multiple groups. First,
the algorithm uses consensus to decide on the timestampwithin each destination group. The destination
groups then exchange information to compute the final tiamegt and a second consensus is executed in each
group to update the logical clock.

9.5.9 Optimistic atomic broadcast

Optimism is a technique known since several years in theegbiof concurrency control [Bernstein et al. 1987]
and file system replication [Guy et al. 1993]. However, it waly considered recently in the context of total order
broadcast [Pedone 2001].

The optimistic atomic broadcast of Pedone and Schiper [Redad Schiper 1998, Pedone and Schiper 2003]
is based on the experimental observation that messagedchisian a LAN are usually received in the same order
by every process. When this assumption is met, the algorigdivells messages extremely fast. However, if the
assumption does not hold, the algorithm is less efficient tither algorithms (but still delivers messages in total
order).

Unlike most optimistic algorithms, the optimistic atomimbdcast of [Pedone and Schiper 2003] is optimistic
internally. This means that the optimistic mechanism of the algorithmoit apparent to the application. In other
words, there is no weakening of the delivery properties.

9.5.10 Prefix agreement

[Anceaume 1997] defines a variant of consensus, caliefik agreemenivherein processes agree on a stream of
values rather than on a single value. Considering streatherrthan single values makes the prefix agreement
algorithm particularly well suited to solve total order bdzast. The total order broadcast algorithm uses prefix
agreement to repeatedly decide on the sequence of mesedgeddlivered next.
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9.5.11 Generic Broadcast

Generic broadcast [[Pedone and Schiper 1999]; [2002] ]tia tatal order broadcast per se. Instead, the algorithm
assumes aonflictrelation on the messages, and two messagesdm’ are delivered in the same order at each
destination process only if they conflict. Two messageandm’ that do not conflict are not ordered by the
algorithm. If all messages conflict, then generic broadgastides the same guarantee as total order broadcast. If
no messages conflict, then generic broadcast provides #ramaes of (uniform) reliable broadcast. The strong
point of this algorithm is that performance varies accagdio the required “amount of ordering”. the generic
broadcast algorithm uses a consensus algorithm only inafasmflicts.

9.5.12 Thrifty generic broadcast

Aguilera, Delporte-Gallet et al. [2000] propose also a gierimoadcast algorithm. When conflicting messages are
detected, [Pedone and Schiper 2002] solve generic bragmceesduction to consensus, while [Aguilera et al. 2000]
solve generic broadcast by reduction to total order brastdéaaddition, the algorithm ighrifty in the sense that,

if there is a time after which broadcast messages do not confiih each other, then eventually atomic broad-
cast is no longer used. The algorithm of [Pedone and Schij@2]2also satisfies this property with respect to
consensus, but the property was not identified in the paper.

9.5.13 Weak ordering oracles

[Pedone et al. 2002] defineveeak ordering oracleas an oracle that orders messages that are broadcast, but is
allowed to make mistakes (i.e., the messages broadcast endglivered out of order). This oracle models the
behavior observed in local-area networks, where broaduassages are often spontaneously delivered in total
order. The paper shows that total order broadcast can bedsabking a weak ordering oracle. If the optimistic
assumption is met, the proposed algorithm, which assyimesz, solves total order broadcast in two communi-
cation steps.

Interestingly, the algorithm has the same structure asiidamized consensus algorithm proposed by [Rabin 1983].
The authors mention also that the weak ordering oracle dmulgsed to design an total order broadcast algorithm
that has the same structure as the randomized consenstithafigaroposed by [Ben-Or 1983].

9.5.14 AMp/xAMp

The AMp [Verissimo et al. 1989] and xAMp [Rodrigues and Msimo 1992] algorithms rely on the assumption
that messages broadcast are most of the time received bgsihdtion processes in the same order (realistic
assumption in LANSs, as already mentioned). So, when a psdom@mdcasts a message, it initiates a commitment
protocol. If the message is received ordered by all destin@rocesses, then the outcome is positive: all destina-
tion processes commit and deliver the message. Othenis@¢ssage is rejected and the sender must try again
(thus potentially leading to a livelock).

9.5.15 Quick-A

[Berman and Bharali 1993] present a series of four algostithree of which belong to another class (see Quick-
S; §9.4.12). Their algorithm for asynchronous systems is diifferent from their algorithms for synchronous
systems §9.4.12). Processes maintain a round number, and messagekast are timestamped with this round
number. The processes then execute a sequence of randdiimaggdconsensus, to decide on the round in which
messages are to be delivered.

9.6 Hybrid Algorithms

We give here algorithms that do not fit into one of our five aasef total order broadcast algorithms. These
algorithms usually combine two different ordering meckanrs.
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9.6.1 Newtop (asymmetric)

[Ezhilchelvan et al. 1995] propose two algorithms: a synrioaine and an asymmetric one. The symmetric
algorithm is described earlie$4.4.3).

The asymmetric algorithm uses a sequencer process, amgalprocess to be member of multiple groups
(each group has an independent sequencer). For ordergnalgbrithm uses Lamport’s logical clocks in addition
to the sequencer. Hence the asymmetric algorithm is a hyjetideen a communication history algorithm (due
to the use of Lamport’s clocks) and a fixed sequencer algoritihe asymmetric algorithm, like the symmetric
one, preserves causal order delivery. However, note thed@psp, which is member of more than one group,
cannot broadcast a messagdo a group immediately after broadcasting some messéde a different group.
Proces® can only do so once it has delivered Hence, the asymmetric algorithm does not technicallyaafio
message to be broadcast to more than one group.

As mentioned earlier, Newtop supports the combination ofigs even if one group uses the asymmetric al-
gorithms and the other group uses the symmetric one. Alsetdbds based on a partitionable group membership
service.

9.6.2 Rodrigues et al.

[Rodrigues et al. 1996] present an algorithm optimized &wgé networks. The algorithm is hybrid: on a local
scale, a sequence number is attached to each message by sefixgxhcer, and on a global scale, the ordering
is of type communication history. More precisely, each sepchas an associated sequencer process that issues
a sequence number for each messagg. ofhe original message and its sequence number are sent tndll
messages are finally are ordered using a standard commianitéstory technique (se$9.4.1). The authors
also describe interesting heuristics to change the sequ@nacess. Reasons for such changes can be failures,
membership changes or changes in the traffic pattern.

9.6.3 Indulgent uniform total order

[Vicente and Rodrigues 2002] propose an optimistic algarifor wide-area networks. The algorithm is based
on external optimism, as initially proposed by Kemme et [@999] ; [2003] ]. This means that the algorithm
distinguishes between two delivery events following thestoicast of message: the optimistic delivery, denoted
Opt-deliver(m) and the traditional total order delivery denot&deliver(m) Upon Opt-deliver(m)the delivery
order ofm is not yet decided. However, the application can start gsiogm. If later Adeliver(m)invalidates
the optimistic delivery order, then the application musioack and undo the processingaf The optimism of
[Kemme et al. 2003] is related to the spontaneous total orglém LANS.

The optimistic algorithm of [Vicente and Rodrigues 2002mds the hybrid algorithm of [Rodrigues et al. 1996]
(§9.6.2). The delivery order is determined by sequence nusrditteiched to messages. A sequence number at-
tached to a message needs to be validated by a majority of processes before thedaler ofm is decided.
Nevertheless, the algorithm optimistically delivetsaccording to its sequence number before the sequence num-
ber is actually validated.

9.6.4 Optimistic total order in WANs

Optimistic total order broadcast algorithms rely heavilytbe assumption that messages are very often received
by all processes in some spontaneous total order. This ggisimvas motivated by observations made in local
networks, often over a single hub. This assumption is howguestionable for wide-area networks, where the
spontaneous total order is significantly less likely to ac¢8ousa et al. 2002] propose a time-based solution to
address this problem and increase the probability of spestias total order in wide-area networks. The technique,
calleddelay compensatigrronsists in delaying received messages artificially, abah destinations would pro-
cess them at roughly the same time. A delay in kept for eadmiity communication channel, and the duration
of this delay is adapted dynamically.
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10 Other Work on Total Order and Related Issues

Apart from papers proposing total order broadcast algmstithere is some work, somehow closely related to the
topic, that is worth mentioning. This is the purpose of tigst®on.

Backoff protocol Chockler, Malkhi, and Reiter [2001] describe a replicatmotocol which emulatestate
machine replicatiorfLamport 1978a, Schneider 1990]. The protocol is based @mum systems and relies on

a mutual exclusion protocol. Basically, a client processating to perform some operatiarp on the replicated
servers proceeds as follows: the client first waits to efterctitical section, and then (1) accesses a quorum of
replicas to get an up-to-date statef the replicated servers, (2) performs the operatipion ¢ which leads to a
new states’, and (3) updates a quorum of replicas with the new stat& he protocol is safe even if the mutual
exclusion protocol violates safety (more than one proaesise critical section): safety of the mutual exclusion
protocol is only needed to ensure progress of the replicgtiotocol.

Optimistic active replication [Felber and Schiper 2001] describe another replicatiotoprd that is integrated
with a total order broadcast algorithm. The replicationtpeol is based on an optimistic fixed sequencer total
order broadcast algorithm, which is executed among theeserirhe optimistic algorithm may lead some servers
to deliver messages out of order, in which case these sdraeesto rollback. Rollback is limited to servers: client
processes never have to rollback.

Probabilistic protocols Recently, [Felber and Pedone 2002] have proposed a totatestdbroadcast algorithm
with probabilistic safety. This means that their algorithemforce the properties of total order broadcast with a
known probability. Doing so gives room for extremely scédadolutions, but is only acceptable for applications
with very weak requirements. In particular, [Felber andd®ex2002] propose a specification where agreement
is guaranteed with probability,, total order with probabilityy,, and validity with probabilityy,. The authors
propose an algorithm based on gossiping and discuss saffa@aditions under which their algorithm can enforce
the above properties with probability one.

Hardware-Based Protocols Due to their specificity, we have deliberately omitted alons that make explicit
use of dedicated hardware. They however deserve to be ated Bome protocols are based on a modification
of the network controllers (e.g., [Jalote 1998, Minet and@aume 1991a]). The idea is to slightly modify the
network so that it can be used as a virtual sequencer. In assification system, these protocols can be classified
as fixed sequencer protocols. Some other protocols rely @rchhracteristics of specific networks such as a
specific topology [©rdova and Lee 1996] or the ability to reserve buffers [Cheal.e1996].

Performance of Total Order Broadcast Algorithms Compared to the host of publications describing al-
gorithms, relatively few papers are concerned with evalgathe performance of total order broadcast (e.g.,
[Cristian et al. 1994, Friedman and van Renesse 1997, M&g#] ldescribed in Sect. 1). In recent worlgfago et al. 2003],
we present a comparative performance analysis based otegfication developed in this survey: algorithms

are taken from all five classes of ordering mechanisms, atiduoform and non-uniform algorithms are consid-

ered. [Urkan et al. 2003] go beyond evaluating some algorithm or comgalifferent algorithms: they propose
benchmarks including well-defined performance metricgklivads, andaultloadsdescribing how failures and

related events occur.

Formal Methods Formal methods have been applied to the problem of totardndedcast, in order to verify
the properties of algorithms [Zhou and Hooman 1995, Toiredml. 1999, Fekete et al. 2001]; and to the problem
of consensus, in order to construct a truly formal proof foradgorithm [Nestmann et al. 2003]. The proofs of
[Fekete et al. 2001] were subsequently checked by a theorewerp [Liu et al. 2001] use the notion of meta-
properties to describe and analyze a protocol which swstbeéween two total order broadcast algorithms.

Group communication controversy A few years ago, [Cheriton and Skeen 1993] began a polemiat@ooup
communication systems that provide causally and totalled communication primitives. Their major argu-
ment against group communication systems was that systaseilton transactions are more efficient, while
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providing a stronger consistency model. This was later ansev by [Birman 1994] and [Shrivastava 1994].

Almost a decade later it appears that work on transactiotesyssand on group communication systems tend
to influence each other for a mutual benefit [Schiper and Ray@86, Agrawal et al. 1997, Pedone et al. 1998,
Kemme and Alonso 2000, Wiesmann et al. 2000, Kemme et al.]2003

11 Conclusion

The vast literature on total order broadcast and the largebeu of algorithms published show the complexity
of the problem. However, this abundance of information is@lem by itself, because it makes it difficult to
understand the exact tradeoffs associated with each pFdpmdution.

The main contribution of this paper is the definition of a slisation for total order broadcast algorithms,
which makes it easier to understand the relationship bettresam. This also provides a good basis for comparing
the algorithms and understanding some tradeoffs. Furthresnthe paper has presented a vast survey of most of
the existing algorithms and discussed their respectiveacheristics.

In spite of the number of total order broadcast algorithmisliphed, most of them are merely improvements
or variants of each other (even if this is not immediatelyiobs for untrained eyes). Actually, there are only few
truly original algorithms, but a large collection of vareoptimizations. Nevertheless, it is important to stress
that clever optimizations of existing algorithms often @awery significant impact on performance. For instance,
[Friedman and van Renesse 1997] show that piggybackingamessin spite of its simplicity, can significantly
improve the performance of algorithms.

Even though the specification of the total order broadcasilpm dates back to some of the earliest publica-
tions about the subject, few papers actually specify thélpro that they solve. In fact, too few algorithms are
properly specified, let alone proven correct. Gladly, thishanging and we hope that this paper will contribute
to more rigorous work in the future. Without pushing formsadito extremes, a clear specification and a sound
proof of correctness are as important as the algorithni.itdelleed, they clearly define the limits within which
the algorithm can be used.
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