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Abstract

Failure detection is a fundamental building block for ensuring fault tolerance indistributed systems. However,
providing accurate and flexible failure detection in off-the-shelf distributed systems is difficult. Practical solutions
to failure detection rely on some adaptive mechanism to cope with the unpredictability of networking conditions.
However, while they provide reasonably good accuracy, they also lackthe necessary flexibility to provide failure
detection as a system-wide service. In particular, traditional solutions takea “one size fits all” approach, which
prevents them from simultaneously supporting several distributed applications with very diverse QoS requirements.

In this paper, we present a novel approach to adaptive failure detection,calledϕ-failure detector, which ad-
dresses the flexibility issue mentioned above. We describe an implementation, and analyze its behavior over
intercontinental communication links during several weeks. Our experimental results show that our failure detec-
tor compares well with other known adaptive failure detection mechanisms, with the considerable advantage that
it provides virtually limitless flexibility.

Keywords: adaptive failure detection,ϕ-failure detectors, flexibility for application requirements, implementa-
tion issue, performance analysis and comparison

1 Introduction

A fundamental aspect of distributed systems is that they are subject to partial failures. This means that a portion
of the system might fail while the remainder remains operational. In this situation,it is highly desirable that the
system remains operational as a whole, in spite of the failure of some of its components.

Failure detectors. Nearly every distributed application, mechanism or protocol developed to tolerate the crash of
some of its components relies on the ability to detect failures. A failure detection mechanism can be used explicitly,
or implicitly by relying on the higher-level abstractions, such as a group membership service or other group
communication primitives (e.g., consensus, total order broadcast). This makes failure detection a fundamental
issue for ensuring fault-tolerance in distributed systems. This importance has led several authors to advocate
that failure detection should be implemented as a generic service (e.g., [10, 13, 18, 17]), similar to the naming,
authentication, or directory services. Unfortunately, this is still far from being a reality, and most distributed
applications instead rely on some naive and ad hoc failure detection mechanism.
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From a formal standpoint, the most notorious evidence of the central role of failure detection stems from the
impossibility of solving the consensus problem in asynchronous systems1 if even a single process might crash
[12]. This impossibility is a consequence of the fact that, in asynchronoussystems, a crashed process cannot be
distinguished from a very slow one, with absolute confidence. It was shown later that the consensus problem can
in fact be solved, if the system is augmented with an unreliable2 failure detector oracle [4]. Formally, even the
weakest failure detector needed to solve consensus, called♦W [3], cannot be implemented by relying purely on
message-passing, or else this would contradict the impossibility result mentioned above.

Adaptive failure detectors. Practical solutions can nevertheless be developed for systems in which message
delays follow some probability distribution (e.g., [5]). In particular, adaptive failure detection mechanisms [2, 5,
11] consider some system where the parameters of this distribution are unknown, and can change over time, but
eventually stabilize for periods that are “long enough” for the whole system to make some progress.3 The idea of
adaptive failure detection is that a monitored processp periodically sends a heartbeat message (“I’m alive!”). A
processq begins to suspectp if it fails to receive a heartbeat fromp after some timeout. Adaptive failure detection
protocols change the value of the timeout dynamically, according to the network conditions measured in the recent
past. Doing so, adaptive protocols are able to cope adequately with changing networking conditions, and hence
they are particularly appropriate for common networking environment, or theInternet. In particular, they are able
to maintain a good compromise between how fast they detect actual failures, and how well they avoid wrong
suspicions.

The main drawback of the adaptive failure detection protocols that we are aware of [2, 5, 11] is their inability
to address the QoS requirements of several distributed applicationssimultaneously; in other words, their lack
of flexibility [13]. Let us illustrate this with a simple example. Consider for instance a situation where two
applications are running simultaneously, and one is an interactive applicationwhile the other is a heavy-weight
database service. The former application must always be highly responsive; it needs fast yet possibly inaccurate
failure detection. Meanwhile, the latter application has a high reconfigurationoverhead, and needs highly accurate
failure detection, even though it might be slow. Addressing the requirementsof both applications is not possible
with the usual “one size fits all” approach adopted by the known adaptive protocols.

Adaptive ϕ-failure detector. We propose a novel approach to adaptive failure detectors, called theϕ-failure
detector, which addresses the problem of flexibility mentioned above.4 The basic idea is as follows. Other adap-
tive failure detectors provide information of a Shakespearean nature (i.e., suspector not suspect) and change the
threshold between these two possible values according to network conditions. In contrast, theϕ-failure detector
associates a valueϕp to some monitored processp. This value is expressed on a continuous scale that roughly
represents the current level of confidence that processp has crashed. The scale itself is adapted dynamically to
match the current network conditions and to ensure an adaptive behavior. Simultaneously running applications
receive exactly the same information, and can set a threshold forϕp according to their respective requirements; a
small threshold value yields fast and inaccurate failure detection, whereas a large value results in accurate yet slow
failure detection.

Contribution. In this paper, we propose a pragmatic implementation of theϕ-failure detector, and analyze its
behavior between Japan and Europe over the period of three weeks.

1An asynchronous distributed system in one in which there are bounds neither on communication delays nor on the speed of processes.
2An unreliable failure detector [4] is a failure detector that is allowed to make mistakes. For instance, it can suspect a process that has

not crashed.
3Exact assumptions can vary slightly between authors.
4We sketched the basic idea in an earlier paper [14] without actually implementing or evaluating the approach.
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Briefly speaking, the proposed implementation works as follows. The protocol samples the arrival time of
heartbeats and maintains a sliding window of the most recent samples. This window is used to estimate the arrival
time of the next heartbeat, similar to other adaptive failure detectors [2, 5]. In addition, the distribution of past
samples is used as an approximation for the probabilistic distribution of future heartbeat messages. With this
information, it is possible to compute the valueϕp with a scale that changes dynamically to match recent network
conditions.

We have evaluated our failure detection scheme under normal transcontinental conditions (between Japan and
Switzerland). Heartbeat messages were sent at a rate of one every 30s using the user datagram protocol (UDP),
and the experiment ran uninterruptedly for a period of three weeks, gathering a total of more than60, 000 samples.
Using these samples, we analyzed the behavior of our failure detector, and compared with traditional adaptive
failure detectors [2, 5]. By providing exactly the same input to every failure detector, we could ensure the fairness
of our comparisons. The results show that our failure detector implementationperforms well when compared with
traditional implementations, with the additional advantage that it provides virtuallylimitless flexibility by design.

The rest of the paper is organized as follows. Section 2 describes the system model and the basic assumptions.
Section 3 discusses important facts about failure detectors and existing implementations. Section 4 presents the
concept of theϕ-failure detector in details. Section 5 describes our implementation of theϕ-failure detector. In
Sect. 6, we present our experiment, analyze the behavior of our failuredetector under normal Internet conditions,
and compare it with other failure detectors. Finally, Section 7 concludes the paper.

2 System Model and Definitions

2.1 System Model

We represent a distributed system as a set of processes{p1, p2, . . . , pn} which communicate only by sending
and receiving messages. We assume that every pair of processes is connected by two unidirectional quasi-reliable
communication channels [1]. A quasi-reliable channel is defined as a communication channel which guarantees
(1) no message loss, (2) no message corruption, and (3) no creation ofspurious messages. We consider that
processes may only fail by crashing, and that crashed processes never recover. We assume the system to be
asynchronous in the sense that there exist bounds neither on communication delays nor on process speed.

2.2 Probabilistic Network Model

We assume that communication channels behave independently in regard to their respective timing behavior.
For each communication channel, we assume message delays to be determined by some random variable whose
characteristics are unknown, independent of other communication channels, and can change over time. We assume
bursty traffic, which means that two consecutive messages are very likelyto have similar probabilistic characteris-
tics. Periods during which all consecutive messages follow the same probabilistic behavior are consideredstable.
During stable periods, we assume that inter-arrival times of periodically sent messages follow a normal distribution
whose parameters (mean and variance) are not known a priori.

More intuitively, we can regard the system as moving form one stable periodto another with different char-
acteristics, and possibly with some unstable behavior during the transition. For instance, this can model the fact
that traffic in a corporate network is significantly different between working hours or during the night, when fewer
people are using it.
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Figure 1. Heartbeat messages

3 Failure Detectors

3.1 Unreliable Failure Detectors

Chandra and Toueg [4] define failure detectors as a distributed oracle with well-defined properties. A failure
detector is a distributed entity which consists of a set of failure detector modules, one attached to each process.
A failure detector moduleFDp , attached to a processp, maintains a set of suspected processes, thatp can query
at any time. Whenever some processq appears in the set maintained byFDp , we say thatp suspectsq (to have
crashed). The failure detector is however unreliable in the sense that its modules are allowed to make mistakes
(1) by erroneously suspecting some correct process (wrong suspicion), or (2) by failing to suspect a process that
has actually crashed. A module can also change its mind, for instance, by stopping to suspect at some timet′ some
process that it suspected from timet < t′.

Several classes of failure detectors are defined according to two properties which restrict the mistakes that the
failure detector can make. For instance, a failure detector of class♦P must meet the following properties of
completeness and accuracy.

(STRONG COMPLETENESS) Eventually every process that crashes is permanently suspected by every correct pro-
cess.

(EVENTUAL STRONG ACCURACY) There is a time after which correct processes are not suspected by any correct
process.

3.2 Heartbeat Strategy

Using heartbeat messages is quite a common approach to implement failure detectors, and works as follows.
Every failure detector module periodically sends a heartbeat message to theother modules, informing them that
the process is still alive (see Fig. 1). The period is determined by the heartbeat interval∆i. A processp suspects
a processq if FDp , the module attached to processp, fails to receive any message fromFDq for a period of time
determined by a timeout∆to .

There is the following tradeoff. If the timeout (∆to) is short, crashes are detected quickly, but the likeliness of
wrong suspicions is high. Conversely, if the timeout is long, the chance of wrong suspicions is low, but this comes
at the expense of the detection time. Beside, the fact that the timeout is fixed means that the failure detection
mechanism is unable to adapt to changing conditions. This is because a long timeout in some system setting can
turn out to be very short in a different environment. Beside, in practicalsystems, network conditions can greatly
vary over time. (e.g., depending on the load).
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3.3 Adaptive Failure Detectors

Adaptive failure detectors address the problem of adapting to changing network conditions, mentioned previ-
ously. There exist several proposals for adaptive failure detection [2, 5, 11, 16]. The proposed solutions are based
on a heartbeat strategy, although nothing seem to preclude the use of other strategies such as ping-style failure
detection. The principal difference with the heartbeat strategy mentioned above is that the timeout is modified
dynamically according to network conditions.

The protocol proposed by Fetzer et al. [11] has a simple adaptation mechanism. It adjusts the timeout by
using the maximum arrival interval of heartbeat messages. The protocolsupposes a partially synchronous system
model [9], wherein an unknown bound on message delays eventually exists. The authors show that their algorithm
belongs to the class♦P in this model.

Chen et al. [5] propose a different approach based on a probabilisticanalysis of network traffic. The protocol
uses arrival times sampled in the recent past to compute an estimation of the arrival time of the next heartbeat.
The timeout is set according to this estimation and a safety margin, and recomputed for each interval. The safety
margin is determined by QoS requirements (e.g. detection time) and network conditions (e.g. network load).

Bertier et al. [2] propose a different estimation function, which combines Chen’s estimation with another esti-
mation due to Jacobson [15] and developed in a different context. Bertier’s proposal provides a shorter detection
time, but generates more wrong suspicions than with Chen’s estimation. The resulting failure detector is proved
to belong to class♦P in a partially synchronous system model.

Sotoma et al. [16] propose an implementation of an adaptive failure detector with CORBA. Their algorithm
compute the timeout based on the average time for arrival intervals of heartbeat messages, and some ratio between
arrival intervals.

None of the adaptive failure detectors mentioned in this section address the problem of adapting to application
requirements. In fact, the failure detection protocol provides a “hardwired” degree of accuracy which must be
shared by all applications.

3.4 Tailored Failure Detectors

As far as we know, there exist only few failure detector implementations whichallow non-trivial tailoring on
the part of the applications, let alone the requirements of several applications running simultaneously.

Cosquer et al. [6] propose configurable failure “suspectors” whose parameters can be fine tuned by a distributed
application. The suspectors can be tuned directly, but they are used onlythrough a group membership service and
view synchronous communication. There is a wide range of parameters thatcan be set, but the proposed solution
remains unable to simultaneously support several applications with very different requirements.

The failure detector implementation proposed by Chen et al. [5] can also be tuned to application requirements.
However, the parameters must be dimensionedstatically, and can only match the requirements of asingleappli-
cation. It can be said that they provide a “hardwired” degree of accuracy which must be shared by all applications.

The two timeout approach [7, 8] can also be seen as a first step toward adapting to application requirements,
but the solution lacks generality. The two timeout approach was proposed and discussed in relation with group
membership and consensus. In short, it was proposed to implement failure detection based on two different
timeout values; an aggressive and a conservative one. The approach is well suited for building consensus-based
group communication systems. However, the protocol was not rendered adaptive to changing network conditions
(although this would be feasible) and, more importantly, still lacks the flexibility required by a generic service.
Indeed, this could support only two classes of applications.
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Table 1. The relation between ϕp and Pacc

ϕp 0 1 2 3 . . . ∞

Pacc 0 0.9 0.99 0.999 . . . 1
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Figure 2. Timeout based failure detector vs. ϕ-failure detector

4 Adaptive ϕ-Failure Detectors

As mentioned above, adaptation can occur in several different ways. To be truly generic, a failure detection
service must be equally adaptive to (1) changing network conditions, and(2) applications requirements. More
concretely, a failure detection service must be able to meet the requirements of a wide range of distributed applica-
tionsrunning simultaneously. Timeout-based failure detectors are intrinsically limited by the fact that one timeout
value is necessary for each set of requirements or, in the worst case,one timeout for each concurrent application.
In particular, this is also the case with adaptive failure detectors (see Sect.3.3). Thus, the latter can adapt to chang-
ing network conditions, but they are unable to realistically meet the differentrequirements of several concurrent
applications.

We have developed a novel approach to failure detection, called theϕ-failure detectors, which can address
both adapt to changing network conditions, and meet the requirements of multiple distributed applications. The
principle of theϕ-failure detector is as follows. Each failure detector module associates a value ϕp ∈ R

+ to
every known processp instead of managing a list of suspected processes. The valueϕp represents the degree of
confidence that processp has crashed. This value is expressed according to a normalized scale, whereϕp = 0
means that there is currently no reason to doubt thatp is operational, and conversely,ϕp = ∞ indicates an absolute
confidence thatp has crashed. Thus, failure detection modules maintain a list of pairs(p, ϕp) for every monitored
process, and which can be queried at any time by any application. More precisely,ϕp is defined along the following
scale. LetPacc denote the probability that the statement “processp has crashed” will not be contradicted in the
future (by the reception of a late heartbeat). Then,ϕp can be determined by Eq. (1), which leads to the scale
illustrated on Table 1.

ϕp = −log10(1 − Pacc) (1)

The failure detector must guarantee thatϕp increases monotonically, between two periods where it is reset to0.
The interactions between the applications and the failure detector are hencedifferent than in the traditional case.

Indeed, distributed applications use the valueϕp associated with a processp to decide on a course of action. For
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instance, applications can set some finite threshold forϕp and decide to suspectp if ϕp crosses that threshold.
Different applications can then set different thresholds for the same process. For instance, some applications
would set a low threshold to obtain prompt yet inaccurate failure detection (i.e., with many wrong suspicions),
while applications with stronger requirements would set a higher threshold and obtain more accurate suspicions.
Consequently, this approach can effectively adapt to application requirements because the threshold can be set on
an per-application basis (and also on a per-communication channel basis within each application). Beside, the
scale ensures that (1) the value set as a threshold retains some meaning for the application (it represents the degree
of confidence), and (2) the failure detection adapts to changing networkconditions even with a fixed threshold
(because the scale adapts).

5 Implementation Based on a Sliding Window

In this section, we describe our implementation of theϕ-failure detector, which uses a stochastic approach. In
short, the approach is simple; a sliding window is maintained and used to compute estimated arrival times, as well
as approximate the probabilistic distribution of future arrivals.

Computing ϕp based on a sliding window. For each monitored processp, the failure detector modules maintain
a bounded historyHp of arrival intervals of heartbeat messages sent byp. The historyHp, i.e., the sliding window,
is implemented as a simple circular array. LetA

p
k be the arrival time for thek-th heartbeat message from processp.

Then, the historyHp is a sequence{Ap
1
, A

p
2
, A

p
3
, . . . , A

p

|Hp|
}, whereA

p
1

is the arrival time of the most recent

heartbeat from processp, and|Hp| is the length of the sliding window for that process. We assume that arrivaltime
intervalsfollow a normal distribution. So, based on the historyHp, we compute the meanµp and the varianceσp,
and use these parameters to estimate the probabilistic distribution of arrival time.

In fact, computing the mean and variance require only little computation. To do this, we keep two additional
variables; the sum and the sum of squares. Whenever we receive a new sample, we subtractAp

|Hp|
} (or its square)

from the sums, add the new sample, and append it to the bounded historyHp. Consequently, the size of the
sliding window has no effect on the amount of computation needed to obtain theparameters of the distribution,
and computeϕp.

Interaction with applications. Theϕ-failure detector provides a simple interface for distributed applications;
the failure detector is queried through a function call which returns the time when it was called and the computed
value forϕp (see Fig. 2). When an application process queries its failure detector module on the current status
of some processp, the module computes the valueϕp at that time, based on the estimated distribution and the
time elapsed since the receipt of the last heartbeat (see Fig. 3). Then, thevalue computed forϕp is returned to the
application process. When polling is not acceptable, the application process sets can set a callback that is triggered
whenϕp grows beyond a given value.

Message losses.In our system model, we say that we assume no message loss. In fact, the occurrence of
message loss generates a wrong suspicion. This is consistent with the behavior of both Chen’s [5] and Bertier’s [2]
failure detectors. Implicitly, we assume that, taken over long periods, the probability of message loss remains low.
This assumption is confirmed by our experimental results between Japan andSwitzerland, where we measure an
average loss rate below0.4% (see details in Sect. 6). In fact, we observed that messages are rarely lost individually,
but rather that several consecutive messages are lost, probably as the result of some network partition. During our
experiments, a total of219 messages were lost, but only117 suspicions resulted from these losses.
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Figure 3. The mechanism for the ϕ-failure detector

6 Performance Analysis

In this section, we show experimental results about our implementation of theϕ-failure detector, as well as a
comparison with two other adaptive failure detector implementations, namely Chenet al. [5] and Bertier et al. [2].
Our experiments were done over transcontinental links, for a consecutive duration of three weeks.

6.1 Objective

From a practical point of view, two failure detector metrics [5] are especially relevant to evaluate the practical
performance of failure detectors; namely, themistake rate, and theaverage detection time. Roughly speaking, the
mistake ratemeasures how many wrong suspicions the failure detector generates, andtheaverage detection time
measures how fast it detects actual failures.

6.2 Scenarios and parameters

We ran our experiments between two machines, with one machine located at JAIST in Japan, and the other
located in Switzerland, at the Swiss Federal Institute of Technology in Lausanne (EPFL).5 For three weeks, the
machine at EPFL was sending heartbeat messages every 30 seconds to the machine at JAIST, using the user
datagram protocol (UDP). Upon reception of each heartbeat, the receiving host at JAIST wrote the arrival time of
the message into a log file. In total, the sending host at EPFL generated60, 489 heartbeat messages, out of which
the receiving host actually received60, 270. Consequently,219 heartbeat messages were lost, with an average
loss rate of about0.36%. As mentioned earlier, messages were usually lost in groups of consecutive messages.
We observed117 such groups, suggesting the occurrence of some network partition. Thelongest partition that
we could observe lasted for a little less than7 minutes, with13 messages being lost. Notice also that the CPU
load of both machines (EPFL and JAIST) was measured to be nearly constant during the whole experiment. All
measurements were based on exactly the same measured sequence of heartbeat arrival times.

5In fact, it seems that most of the network traffic was in fact routed through the United States.
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Table 2. ϕ-FD: wrong suspicions according to the threshold Φp.
Φp 0.5 1 5 9

Wrong suspicions 328 268 185 162

Mistake rate [%] 0.54 0.44 0.30 0.26

In the first part, we have measured the performance of theϕ-failure detector, changing two parameters. We
have first measured the effect of changing the threshold value forϕ on both the mistake rate and the detection
time. Then, we have observed the impact of the window size on the behavior of the failure detector.

In the second part, we have compared our failure detector with two different adaptive failure detectors [5, 2]. In
particular, we have measured the performance of all three failure detector implementations by injecting each time
the same three weeks sequence of measured heartbeat arrival times. Withthis approach, all three failure detectors
are compared under exactly the same conditions, while the experiment is based on real traffic.

6.3 Environments

The sending host (at EPFL) was running Red Hat Linux 7.2 (kernel 2.4.9). The machine had an Intel Pentium III
processor clocked at 766 MHz and was equipped with 128 MB of RAM.

The receiving host (at JAIST) was running Red Hat Linux 9.0 (kernel 2.4.20). The machine had an Intel
Pentium II processor at 450 MHz and was equipped with 512 MB of RAM.

Both machines were connected to their respective local network, which was a simple Ethernet 100 Base-TX
hub. All messages were transmitted using UDP/IP, hence the occurrence of message losses.

6.4 Tuning Parameters of theϕ-Failure Detector

From the standpoint of an application, we consider that it sets a thresholdΦp, and decides to suspect or not a
processp based on the valueϕp returned by the failure detector; i.e., suspectp if and only if ϕp > Φp. As far as
the application is concerned, the thresholdΦp plays the role of a timeout. A major difference is that thresholds
are set on a per-application basis, and, within each application, can also be set on a per-channel basis. Also, the
threshold need not remain constant over time.

We have studied the impact ofΦp on our implementation of theϕ-failure detector. In addition, we have also
measured the impact of the size of the sliding window.

Influence of the ThresholdΦp. Figure 4 shows how the thresholdΦp impacts the detection time6. In these
measurements, the window size is set to5, 000 samples. In fact, the figure shows the time elapsed between the
receipt of the last heartbeat and the beginning of the suspicion. It was not possible to measure the actual detection
time as it depends on the propagation time of the last heartbeat message, whichcould not be measured reliably in
the absence of synchronized clocks.

At the beginning of the experiment, the figure shows that the detection time jumps up. This is due to a message
loss and the fact that only few samples have been gathered, thus making thefailure detector more sensitive. After
a while, the failure detector stabilizes. During the rest of the experiment, we can see that the detection is less
sensitive to changes for small values ofΦp than it is for large values. However, Table 2 that this comes at the
expense of the accuracy, as a larger number of wrong suspicions aregenerated. In fact, the difference is even
bigger if we consider that the117 suspicions that are generated as the result of message losses, are independent of
the chosen threshold (at least in the cases studied here).

6The estimated arrival time implies the detection time with certain thresholdΦp in Fig. 4
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Table 3. ϕ-FD: wrong suspicions according to the window size.
Window size 1, 000 5, 000 10, 000

Wrong suspicions 3, 763 268 190

Mistake rate [%] 6.24 0.44 0.31

Table 4. ϕ-FD vs. Chen’s estimation.
ϕ-FD Chen’s estimation

Parameters Φp = 1.7 α = 0.005

Window size 5, 000 5, 000

Average detection time [s] 30.188 30.113

Wrong suspicions 230 230

Mistake rate [%] 0.38 0.38

Influence of the window size. Figure 5 shows the influence of the window size on the detection time. The
thresholdΦp is fixed and set to1 for all trials. The figure clearly shows that a failure detector with a short window
is more influenced by transient changes than one with a longer window. Thisis not surprising since, in the former
case, a new sample has more relative weight than in the latter case. An indirect consequence of this is that a failure
detector with a large window size generates significantly less wrong suspicions than one with a shorter window
(see Table 3). In particular, a failure detector with a window size of1, 000 samples generates nearly20 times more
wrong suspicions that one with a window size of10, 000 samples.

6.5 Comparison with Other Adaptive Failure Detectors

In this section, we compare successively ourϕ-failure detector against Chen’s estimation [5] and Bertier’s
dynamic estimation [2], respectively. The main reason why we do not compare all three together is that the chosen
settings might handicap one implementation over the others. In contrast, we compare the failure detectors pairwise,
and try to have them share as many characteristics as possible.

6.5.1 ϕ-FD vs. Chen’s estimation

We compare theϕ-failure detector with Chen’s estimation [5], based on the detection time. We setthe window of
both failure detectors to the same size, that is,5, 000 samples. Then, we tuned the thresholdΦp of theϕ-failure
detector so that both failure detectors generate exactly the same number of wrong suspicions. The parameters are
summarized in Table 4.

Figure 6 show that Chen’s estimation has a slightly better detection time over the whole experiment. The
difference is however almost negligible. Another interesting observation isthat both failure detectors behave
identically in the face of message losses; that is, message losses result in wrong suspicions.

The safety marginα of Chen’s estimation is computed statically according to various QoS requirements. This
makes it difficult to adjust in order to obtain better detection time and mistake rate. It is important to note that
Chen’s failure detector is tunable to meet application requirements. However, unlike theϕ-failure detector, Chen’s
failure detector can only be tuned to meet the requirements of a single application.

6.5.2 ϕ-FD vs. Bertier’s dynamic estimation

We compare theϕ-failure detector and Bertier’s dynamic estimation [2]. Unlike with Chen’s estimation, we were
unable to tune the failure detectors so that they have the same mistake rate. As inthe previous case, the window
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Figure 6. Detection time: ϕ-FD vs. Chen’s estimation.

Table 5. ϕ-FD vs. dynamic estimation.
ϕ-FD Dynamic estimation

Parameters Φp = 9.9 γ = 0.1, β = 1, φ = 2

Initialization n/a delay = 0.007

Window size 5, 000 5, 000

Average detection time [s] 30.354 32.576

Wrong suspicions 158 119

Mistake rate [%] 0.26 0.19

size was set to5, 000 samples for both failure detectors. The parameters are summarized in Table 5. In particular,
the threshold valueΦp = 9.9 of theϕ-failure detector was chosen to match as closely as possible the mistake rate
of the other failure detector.

In our experiments, theϕ-failure detector had always a better detection time than the dynamic estimation, but it
also had a higher mistake rate. Figure 7 illustrates the detection time of both failuredetectors, and Table 5 shows
their respective mistake rate. Again, both failure detectors generate wrong suspicions as the result of message
losses.

7 Conclusion

We have presented the concept of theϕ-failure detectors and described its implementation. We have analyzed
the behavior of this failure detector over transcontinental Internet communication during a period of three weeks.
Finally, we have compared the behavior of our failure detector with two important adaptive failure detectors;
Chen’s estimation [5] and Bertier’s dynamic estimation [2].
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Figure 7. Detection time: ϕ-FD vs. dynamic estimation.

By design,ϕ-failure detectors can adapt equally well to changing network conditions,and the requirements of
any number of concurrently running applications. As far as we know, thisis currently the only failure detector
that addresses this problem, and provides the flexibility required for implementing a truly generic failure detection
service. In particular, the two other failure detectors studied in this paper completely fail to address that problem.

In addition to interesting observations about transcontinental network communication, our experimental results
show that our failure detector behave reasonably well if parameters arewell-tuned. In particular, we see that the
impact of the window size is significant. Our comparisons with other failure detectors show that the performance
of theϕ-failure detector are in the same order as that of Chen’s and Bertier’s estimations, while providing nearly
limitless flexibility. Nevertheless, we believe that there is still room for improvement; Chen’s estimation yields a
slightly better detection time for the same mistake rate, and Bertier’s dynamic estimationhas a slower detection
time but a lower mistake rate. The performance of the three failure detectors remain comparable, and hence we
conclude that all three approaches are equally realistic with respect to their quality of service.

As we have observed, message losses account for a very significantnumber of wrong suspicions. In particular,
with a well-tuned failure detector,7 nearly all wrong suspicions come as the result of message losses and temporary
network partitions. This means that (1) there is not much point in fine-tuning the failure detectors beyond a
certain point, and (2) the failure detectors cannot meet the requirements ofapplications with need for very high-
accuracy. The only way to address this problem is to somehow reduce the effect that message losses have on
wrong suspicions. We believe that it is an important issue because it limits the flexibility of the failure detector.
We are currently working on a way to make ourϕ-failure detectors more “loss-resistant.”

7Note that this observation is true for all three failure detector implementationsstudied in this paper, since they are based on similar
assumptions.
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