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Abstract

Failure detection is a fundamental building block for ensuring fault toleranatistributed systems. However,
providing accurate and flexible failure detection in off-the-shelf distribuyestesns is difficult. Practical solutions
to failure detection rely on some adaptive mechanism to cope with the unpistiigtaf networking conditions.
However, while they provide reasonably good accuracy, they alsalechecessary flexibility to provide failure
detection as a system-wide service. In particular, traditional solutions adkme size fits all” approach, which
prevents them from simultaneously supporting several distributed applisatiith very diverse QoS requirements.

In this paper, we present a novel approach to adaptive failure deteatied p-failure detector, which ad-
dresses the flexibility issue mentioned above. We describe an implemengatibanalyze its behavior over
intercontinental communication links during several weeks. Our exgatimhresults show that our failure detec-
tor compares well with other known adaptive failure detection mechanisithsthe considerable advantage that
it provides virtually limitless flexibility.

Keywords: adaptive failure detection,-failure detectors, flexibility for application requirements, implementa-
tion issue, performance analysis and comparison

1 Introduction

A fundamental aspect of distributed systems is that they are subject td faltiges. This means that a portion
of the system might fail while the remainder remains operational. In this situdtisrhighly desirable that the
system remains operational as a whole, in spite of the failure of some of itsoc@mis.

Failure detectors. Nearly every distributed application, mechanism or protocol developetktate the crash of
some of its components relies on the ability to detect failures. A failure detectiomemism can be used explicitly,
or implicitly by relying on the higher-level abstractions, such as a group meshipeservice or other group
communication primitives (e.g., consensus, total order broadcast). Thissnfigkure detection a fundamental
issue for ensuring fault-tolerance in distributed systems. This importarcéetisseveral authors to advocate
that failure detection should be implemented as a generic service (e.g.3[108,117]), similar to the naming,
authentication, or directory services. Unfortunately, this is still far fraeng a reality, and most distributed
applications instead rely on some naive and ad hoc failure detection mauhanis



From a formal standpoint, the most notorious evidence of the central iéddéloe detection stems from the
impossibility of solving the consensus problem in asynchronous systémeen a single process might crash
[12]. This impossibility is a consequence of the fact that, in asynchrosystems, a crashed process cannot be
distinguished from a very slow one, with absolute confidence. It wasrslhater that the consensus problem can
in fact be solved, if the system is augmented with an unreRafalidure detector oracle [4]. Formally, even the
weakest failure detector needed to solve consensus, ¢aledi3], cannot be implemented by relying purely on
message-passing, or else this would contradict the impossibility result mahtboee.

Adaptive failure detectors. Practical solutions can nevertheless be developed for systems in whislgees
delays follow some probability distribution (e.qg., [5]). In particular, adapfailure detection mechanisms [2, 5,
11] consider some system where the parameters of this distribution arevamkand can change over time, but
eventually stabilize for periods that are “long enough” for the whole systemake some progredsThe idea of
adaptive failure detection is that a monitored progepgriodically sends a heartbeat message (“I'm alive!”). A
process; begins to suspegtif it fails to receive a heartbeat fromafter some timeout. Adaptive failure detection
protocols change the value of the timeout dynamically, according to the retanditions measured in the recent
past. Doing so, adaptive protocols are able to cope adequately withisharejworking conditions, and hence
they are particularly appropriate for common networking environment, dnteenet. In particular, they are able
to maintain a good compromise between how fast they detect actual failmeé$iosv well they avoid wrong
suspicions.

The main drawback of the adaptive failure detection protocols that wenane @f [2, 5, 11] is their inability
to address the QoS requirements of several distributed applicationdtaneouslyin other words, their lack
of flexibility [13]. Let us illustrate this with a simple example. Consider for inséaacsituation where two
applications are running simultaneously, and one is an interactive applieetitethe other is a heavy-weight
database service. The former application must always be highly regppisieeds fast yet possibly inaccurate
failure detection. Meanwhile, the latter application has a high reconfigurasienmead, and needs highly accurate
failure detection, even though it might be slow. Addressing the requireroébtsth applications is not possible
with the usual “one size fits all” approach adopted by the known adapiteqols.

Adaptive ¢-failure detector. We propose a novel approach to adaptive failure detectors, called-thidure
detector, which addresses the problem of flexibility mentioned abdiee basic idea is as follows. Other adap-
tive failure detectors provide information of a Shakespearean natures(ispecor not suspedtand change the
threshold between these two possible values according to network cosdilionontrast, the-failure detector
associates a valug, to some monitored procegs This value is expressed on a continuous scale that roughly
represents the current level of confidence that propdsss crashed. The scale itself is adapted dynamically to
match the current network conditions and to ensure an adaptive beh&umultaneously running applications
receive exactly the same information, and can set a threshold,faccording to their respective requirements; a
small threshold value yields fast and inaccurate failure detection, whatagsge value results in accurate yet slow
failure detection.

Contribution. In this paper, we propose a pragmatic implementation of:tfailure detector, and analyze its
behavior between Japan and Europe over the period of three weeks.

1An asynchronous distributed system in one in which there are boundsmneitttommunication delays nor on the speed of processes.

2An unreliable failure detector [4] is a failure detector that is allowed to makeakes. For instance, it can suspect a process that has
not crashed.

3Exact assumptions can vary slightly between authors.

“We sketched the basic idea in an earlier paper [14] without actually implérgesr evaluating the approach.



Briefly speaking, the proposed implementation works as follows. The posamnples the arrival time of
heartbeats and maintains a sliding window of the most recent samples. Th@wsdsed to estimate the arrival
time of the next heartbeat, similar to other adaptive failure detectors [2n5ddition, the distribution of past
samples is used as an approximation for the probabilistic distribution of futagheat messages. With this
information, it is possible to compute the valpgwith a scale that changes dynamically to match recent network
conditions.

We have evaluated our failure detection scheme under normal transcaatioenditions (between Japan and
Switzerland). Heartbeat messages were sent at a rate of one evensiB@ the user datagram protocol (UDP),
and the experiment ran uninterruptedly for a period of three weeksrijadta total of more tha60, 000 samples.
Using these samples, we analyzed the behavior of our failure detectbcoampared with traditional adaptive
failure detectors [2, 5]. By providing exactly the same input to every faitlgtector, we could ensure the fairness
of our comparisons. The results show that our failure detector implemengeitorms well when compared with
traditional implementations, with the additional advantage that it provides virtiralyess flexibility by design.

The rest of the paper is organized as follows. Section 2 describesdtagrsgnodel and the basic assumptions.
Section 3 discusses important facts about failure detectors and existingriergbgions. Section 4 presents the
concept of thep-failure detector in details. Section 5 describes our implementation afffadure detector. In
Sect. 6, we present our experiment, analyze the behavior of our fditeetor under normal Internet conditions,
and compare it with other failure detectors. Finally, Section 7 concludesatber.p

2 System Model and Definitions
2.1 System Model

We represent a distributed system as a set of procégses:, . . . , p,} Which communicate only by sending
and receiving messages. We assume that every pair of processeséstenl by two unidirectional quasi-reliable
communication channels [1]. A quasi-reliable channel is defined as a coication channel which guarantees
(1) no message loss, (2) no message corruption, and (3) no creatgpubus messages. We consider that
processes may only fail by crashing, and that crashed processsisreeover. We assume the system to be
asynchronous in the sense that there exist bounds neither on commumésdéigs nor on process speed.

2.2 Probabilistic Network Model

We assume that communication channels behave independently in regartf tegpective timing behavior.
For each communication channel, we assume message delays to be detegrsaoptlyandom variable whose
characteristics are unknown, independent of other communicationelsaand can change over time. We assume
bursty traffic, which means that two consecutive messages are verytlikedywe similar probabilistic characteris-
tics. Periods during which all consecutive messages follow the sameljilisti@abehavior are consideresable
During stable periods, we assume that inter-arrival times of periodicaltynsessages follow a normal distribution
whose parameters (mean and variance) are not known a priori.

More intuitively, we can regard the system as moving form one stable periadother with different char-
acteristics, and possibly with some unstable behavior during the transitiomngtance, this can model the fact
that traffic in a corporate network is significantly different between wgykours or during the night, when fewer
people are using it.
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Figure 1. Heartbeat messages

3 Failure Detectors
3.1 Unreliable Failure Detectors

Chandra and Toueg [4] define failure detectors as a distributed orétlevell-defined properties. A failure
detector is a distributed entity which consists of a set of failure detector nmduie attached to each process.
A failure detector modulé’D,, attached to a procegs maintains a set of suspected processes tleah query
at any time. Whenever some procesappears in the set maintained By, we say thap suspects; (to have
crashed). The failure detector is however unreliable in the sense thatdislesare allowed to make mistakes
(1) by erroneously suspecting some correct process (wrong suspior (2) by failing to suspect a process that
has actually crashed. A module can also change its mind, for instance plpyngf®o suspect at some tinffesome
process that it suspected from tirhe: ¢'.

Several classes of failure detectors are defined according to twertiespwhich restrict the mistakes that the
failure detector can make. For instance, a failure detector of ¢J@snust meet the following properties of
completeness and accuracy.

(STRONG COMPLETENES} Eventually every process that crashes is permanently suspectedryycevrect pro-
cess.

(EVENTUAL STRONG ACCURACY) There is a time after which correct processes are not suspectey bpmact
process.

3.2 Heartbeat Strategy

Using heartbeat messages is quite a common approach to implement failuterdetud works as follows.
Every failure detector module periodically sends a heartbeat messagediménenodules, informing them that
the process is still alive (see Fig. 1). The period is determined by the kaaittberval;. A processp suspects
a procesy if FD,, the module attached to procesdails to receive any message fraD, for a period of time
determined by a timeouk;,.

There is the following tradeoff. If the timeouf\¢,) is short, crashes are detected quickly, but the likeliness of
wrong suspicions is high. Conversely, if the timeout is long, the chanceafgsuspicions is low, but this comes
at the expense of the detection time. Beside, the fact that the timeout is fixet$ tived the failure detection
mechanism is unable to adapt to changing conditions. This is because a longttimeome system setting can
turn out to be very short in a different environment. Beside, in practigsiems, network conditions can greatly
vary over time. (e.g., depending on the load).



3.3 Adaptive Failure Detectors

Adaptive failure detectors address the problem of adapting to changtagrk conditions, mentioned previ-
ously. There exist several proposals for adaptive failure dete@ids [L1, 16]. The proposed solutions are based
on a heartbeat strategy, although nothing seem to preclude the use oétotitegies such as ping-style failure
detection. The principal difference with the heartbeat strategy mentidmmdk as that the timeout is modified
dynamically according to network conditions.

The protocol proposed by Fetzer et al. [11] has a simple adaptation nisghalt adjusts the timeout by
using the maximum arrival interval of heartbeat messages. The pra@gpbses a partially synchronous system
model [9], wherein an unknown bound on message delays eventually.ekige authors show that their algorithm
belongs to the clasP in this model.

Chen et al. [5] propose a different approach based on a probabdisiigsis of network traffic. The protocol
uses arrival times sampled in the recent past to compute an estimation ofitiaktane of the next heartbeat.
The timeout is set according to this estimation and a safety margin, and reconfimuéaich interval. The safety
margin is determined by QoS requirements (e.g. detection time) and netwoiki@os(e.g. network load).

Bertier et al. [2] propose a different estimation function, which combinfesn@ estimation with another esti-
mation due to Jacobson [15] and developed in a different context. Bepi@posal provides a shorter detection
time, but generates more wrong suspicions than with Chen’s estimation. Jiilgng failure detector is proved
to belong to clas$P in a partially synchronous system model.

Sotoma et al. [16] propose an implementation of an adaptive failure deteittoC®RBA. Their algorithm
compute the timeout based on the average time for arrival intervals of baantiessages, and some ratio between
arrival intervals.

None of the adaptive failure detectors mentioned in this section addresotilerp of adapting to application
requirements. In fact, the failure detection protocol provides a “haedividegree of accuracy which must be
shared by all applications.

3.4 Tailored Failure Detectors

As far as we know, there exist only few failure detector implementations wailotv non-trivial tailoring on
the part of the applications, let alone the requirements of several apptisationing simultaneously.

Cosquer et al. [6] propose configurable failure “suspectors” eipasameters can be fine tuned by a distributed
application. The suspectors can be tuned directly, but they are usethomhgh a group membership service and
view synchronous communication. There is a wide range of parametersathle set, but the proposed solution
remains unable to simultaneously support several applications with veeyatiffrequirements.

The failure detector implementation proposed by Chen et al. [5] can alsmée ta application requirements.
However, the parameters must be dimensiastatically, and can only match the requirements dcfiagle appli-
cation. It can be said that they provide a “hardwired” degree of acguwvhich must be shared by all applications.

The two timeout approach [7, 8] can also be seen as a first step towaptragto application requirements,
but the solution lacks generality. The two timeout approach was proposkdiscussed in relation with group
membership and consensus. In short, it was proposed to implement fagiigetion based on two different
timeout values; an aggressive and a conservative one. The appsoaell suited for building consensus-based
group communication systems. However, the protocol was not rendeagdive to changing network conditions
(although this would be feasible) and, more importantly, still lacks the flexibiliguired by a generic service.
Indeed, this could support only two classes of applications.



Table 1. The relation between ¢, and P,
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Figure 2. Timeout based failure detector vs.  (-failure detector

4  Adaptive p-Failure Detectors

As mentioned above, adaptation can occur in several different wayse Truly generic, a failure detection
service must be equally adaptive to (1) changing network conditions(Zrapplications requirements. More
concretely, a failure detection service must be able to meet the requirerhamigde range of distributed applica-
tionsrunning simultaneouslylTimeout-based failure detectors are intrinsically limited by the fact that onetiimeo
value is necessary for each set of requirements or, in the worstaresémeout for each concurrent application.
In particular, this is also the case with adaptive failure detectors (see3S2)ctThus, the latter can adapt to chang-
ing network conditions, but they are unable to realistically meet the diffeegpiirements of several concurrent
applications.

We have developed a novel approach to failure detection, calleg-fadure detectors, which can address
both adapt to changing network conditions, and meet the requirements oflendisributed applications. The
principle of thep-failure detector is as follows. Each failure detector module associatebi@wa € R to
every known process instead of managing a list of suspected processes. The ygltepresents the degree of
confidence that procegshas crashed. This value is expressed according to a normalized shatepy = 0
means that there is currently no reason to doubttigbperational, and conversely, = oo indicates an absolute
confidence thap has crashed. Thus, failure detection modules maintain a list of @aigs,) for every monitored
process, and which can be queried at any time by any application. Megisely,p, is defined along the following
scale. LetP,.. denote the probability that the statement “progesss crashed” will not be contradicted in the
future (by the reception of a late heartbeat). Thep.can be determined by Eq. (1), which leads to the scale
illustrated on Table 1.

Pp = _logl(](l - Pacc) (1)

The failure detector must guarantee tipgtincreases monotonically, between two periods where it is reset to
The interactions between the applications and the failure detector aredifesnt than in the traditional case.
Indeed, distributed applications use the vapjeassociated with a procepdo decide on a course of action. For



instance, applications can set some finite thresholdofoand decide to suspeptif ¢, crosses that threshold.
Different applications can then set different thresholds for the sameeps. For instance, some applications
would set a low threshold to obtain prompt yet inaccurate failure detectionwith many wrong suspicions),
while applications with stronger requirements would set a higher threshdldl@ain more accurate suspicions.
Consequently, this approach can effectively adapt to application ezgeirts because the threshold can be set on
an per-application basis (and also on a per-communication channel b#sis @ach application). Beside, the
scale ensures that (1) the value set as a threshold retains some meathiegafaplication (it represents the degree
of confidence), and (2) the failure detection adapts to changing neteorttitions even with a fixed threshold
(because the scale adapts).

5 Implementation Based on a Sliding Window

In this section, we describe our implementation of gh&ailure detector, which uses a stochastic approach. In
short, the approach is simple; a sliding window is maintained and used to consfiniated arrival times, as well
as approximate the probabilistic distribution of future arrivals.

Computing ¢, based on a sliding window. For each monitored procegsthe failure detector modules maintain
a bounded historyd,, of arrival intervals of heartbeat messages sent.byhe historyH,, i.e., the sliding window,
is implemented as a simple circular array. 4tbe the arrival time for thé-th heartbeat message from procgss
Then, the historyH, is a sequencg A7, A7, A5, ..., A, }, where A7 is the arrival time of the most recent

heartbeat from procegs and|H,,| is the length of the sliding window for that process. We assume that atirival
intervalsfollow a normal distribution. So, based on the histéfy, we compute the mean, and the variance,,,
and use these parameters to estimate the probabilistic distribution of arrival time.

In fact, computing the mean and variance require only little computation. To doathikeep two additional
variables; the sum and the sum of squares. Whenever we receivesangle, we subtraeifHM} (or its square)
from the sums, add the new sample, and append it to the bounded hiftoronsequently, the size of the
sliding window has no effect on the amount of computation needed to obtapatheneters of the distribution,

and computep,,.

Interaction with applications. The p-failure detector provides a simple interface for distributed applications;
the failure detector is queried through a function call which returns the tinegthwas called and the computed
value foryp, (see Fig. 2). When an application process queries its failure detectorienmalthe current status

of some procesp, the module computes the valyg at that time, based on the estimated distribution and the
time elapsed since the receipt of the last heartbeat (see Fig. 3). Then|ukeomputed fop, is returned to the
application process. When polling is not acceptable, the application greetsscan set a callback that is triggered
wheng),, grows beyond a given value.

Message losses.In our system model, we say that we assume no message loss. In factctheence of
message loss generates a wrong suspicion. This is consistent with t@behboth Chen’s [5] and Bertier’s [2]
failure detectors. Implicitly, we assume that, taken over long periods, tibabpilily of message loss remains low.
This assumption is confirmed by our experimental results between Jap&@wétzdrland, where we measure an
average loss rate belaw1% (see details in Sect. 6). In fact, we observed that messages are ratéhgloidually,
but rather that several consecutive messages are lost, probabdyrastlt of some network partition. During our
experiments, a total &f19 messages were lost, but only7 suspicions resulted from these losses.
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6 Performance Analysis

In this section, we show experimental results about our implementation of-thiture detector, as well as a
comparison with two other adaptive failure detector implementations, namelyaTlaérf5] and Bertier et al. [2].
Our experiments were done over transcontinental links, for a congedlutiation of three weeks.

6.1 Objective

From a practical point of view, two failure detector metrics [5] are esfigaiglevant to evaluate the practical
performance of failure detectors; namely, thistake rateand theaverage detection timé&oughly speaking, the
mistake rateaneasures how many wrong suspicions the failure detector generatdheanverage detection time
measures how fast it detects actual failures.

6.2 Scenarios and parameters

We ran our experiments between two machines, with one machine locatedSat iAJapan, and the other
located in Switzerland, at the Swiss Federal Institute of Technology inarmes(EPFLY. For three weeks, the
machine at EPFL was sending heartbeat messages every 30 seconelsmtactiine at JAIST, using the user
datagram protocol (UDP). Upon reception of each heartbeat, theiregbost at JAIST wrote the arrival time of
the message into a log file. In total, the sending host at EPFL genéatégh heartbeat messages, out of which
the receiving host actually receivéd, 270. Consequently219 heartbeat messages were lost, with an average
loss rate of about.36%. As mentioned earlier, messages were usually lost in groups of coneemassages.
We observed 17 such groups, suggesting the occurrence of some network partitionloiigest partition that
we could observe lasted for a little less thaminutes, with13 messages being lost. Notice also that the CPU
load of both machines (EPFL and JAIST) was measured to be nearly sbdating the whole experiment. All
measurements were based on exactly the same measured sequendbedbhaaival times.

®In fact, it seems that most of the network traffic was in fact routed tiitahe United States.



Table 2. p-FD: wrong suspicions according to the threshold D).
o, 0.5 1 ) 9

Wrong suspicions| 328 | 268 | 185 | 162
Mistake rate [%] || 0.54 | 0.44 | 0.30 | 0.26

In the first part, we have measured the performance ofstf@lure detector, changing two parameters. We
have first measured the effect of changing the threshold valug far both the mistake rate and the detection
time. Then, we have observed the impact of the window size on the behatar failure detector.

In the second part, we have compared our failure detector with two diffadaptive failure detectors [5, 2]. In
particular, we have measured the performance of all three failure deteqtiementations by injecting each time
the same three weeks sequence of measured heartbeat arrival timethis\afiproach, all three failure detectors
are compared under exactly the same conditions, while the experiment dsdraseal traffic.

6.3 Environments

The sending host (at EPFL) was running Red Hat Linux 7.2 (kernéR.Fhe machine had an Intel Pentium Il
processor clocked at 766 MHz and was equipped with 128 MB of RAM.

The receiving host (at JAIST) was running Red Hat Linux 9.0 (ke®%.20). The machine had an Intel
Pentium Il processor at 450 MHz and was equipped with 512 MB of RAM.

Both machines were connected to their respective local network, whishavgample Ethernet 100 Base-TX
hub. All messages were transmitted using UDP/IP, hence the occurfemessage losses.

6.4 Tuning Parameters of thep-Failure Detector

From the standpoint of an application, we consider that it sets a threshplhd decides to suspect or not a
procesg based on the valug, returned by the failure detector; i.e., suspedtand only if ¢, > ®,. As far as
the application is concerned, the threshélgplays the role of a timeout. A major difference is that thresholds
are set on a per-application basis, and, within each application, caneatsst bn a per-channel basis. Also, the
threshold need not remain constant over time.

We have studied the impact @, on our implementation of the-failure detector. In addition, we have also
measured the impact of the size of the sliding window.

Influence of the Threshold®,. Figure 4 shows how the thresholg, impacts the detection tirfie In these
measurements, the window size is seb1000 samples. In fact, the figure shows the time elapsed between the
receipt of the last heartbeat and the beginning of the suspicion. Itetgmasible to measure the actual detection
time as it depends on the propagation time of the last heartbeat messagecahichot be measured reliably in
the absence of synchronized clocks.

At the beginning of the experiment, the figure shows that the detection time jumdis is due to a message
loss and the fact that only few samples have been gathered, thus makfaguresdetector more sensitive. After
a while, the failure detector stabilizes. During the rest of the experimentaweee that the detection is less
sensitive to changes for small values®f than it is for large values. However, Table 2 that this comes at the
expense of the accuracy, as a larger number of wrong suspiciomgeaeeated. In fact, the difference is even
bigger if we consider that thel 7 suspicions that are generated as the result of message losses, peadwte of
the chosen threshold (at least in the cases studied here).

®The estimated arrival time implies the detection time with certain threshpld Fig. 4
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Table 3. p-FD: wrong suspicions according to the window size.
Window size 1,000 | 5,000 | 10,000
Wrong suspicions| 3,763 | 268 190
Mistake rate [%] || 6.24 | 0.44 0.31

Table 4. p-FD vs. Chen's estimation.

p-FD Chen’s estimation
Parameters o, =17 a = 0.005
Window size 5,000 5,000
Average detection time [5] 30.188 30.113
Wrong suspicions 230 230
Mistake rate [%)] 0.38 0.38

Influence of the window size. Figure 5 shows the influence of the window size on the detection time. The
threshold®,, is fixed and set ta for all trials. The figure clearly shows that a failure detector with a shortlow

is more influenced by transient changes than one with a longer windowisTiag surprising since, in the former
case, a new sample has more relative weight than in the latter case. Antisdineequence of this is that a failure
detector with a large window size generates significantly less wrong suspittian one with a shorter window
(see Table 3). In particular, a failure detector with a window size 600 samples generates nea2lytimes more
wrong suspicions that one with a window sizel6f 000 samples.

6.5 Comparison with Other Adaptive Failure Detectors

In this section, we compare successively qufailure detector against Chen’s estimation [5] and Bertier’s
dynamic estimation [2], respectively. The main reason why we do not canagfidhree together is that the chosen
settings might handicap one implementation over the others. In contrast, wamoting failure detectors pairwise,
and try to have them share as many characteristics as possible.

6.5.1 -FD vs. Chen’s estimation

We compare the>-failure detector with Chen’s estimation [5], based on the detection time. Weeseindow of
both failure detectors to the same size, thabi®00 samples. Then, we tuned the thresh®ldof the p-failure
detector so that both failure detectors generate exactly the same numbengfsuspicions. The parameters are
summarized in Table 4.

Figure 6 show that Chen’s estimation has a slightly better detection time over thle @periment. The
difference is however almost negligible. Another interesting observatitinatsboth failure detectors behave
identically in the face of message losses; that is, message losses resgihgnsauspicions.

The safety margimx of Chen’s estimation is computed statically according to various QoS requitenigris
makes it difficult to adjust in order to obtain better detection time and mistake taeiniportant to note that
Chen’s failure detector is tunable to meet application requirements. Hawelike thep-failure detector, Chen’s
failure detector can only be tuned to meet the requirements of a single applicatio

6.5.2 -FD vs. Bertier's dynamic estimation

We compare the-failure detector and Bertier's dynamic estimation [2]. Unlike with Chen’s edtimawe were
unable to tune the failure detectors so that they have the same mistake ratehdpiavious case, the window

11
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Figure 6. Detection time: -FD vs. Chen'’s estimation.

Table 5. (-FD vs. dynamic estimation.

©-FD Dynamic estimation
Parameters ®,=99|v=01,8=1,¢=2
Initialization n/a delay = 0.007
Window size 5,000 5,000
Average detection time [s] 30.354 32.576
Wrong suspicions 158 119
Mistake rate [%0] 0.26 0.19

size was set t6, 000 samples for both failure detectors. The parameters are summarized in Tébjesbticular,
the threshold valueé, = 9.9 of the p-failure detector was chosen to match as closely as possible the mistake rate
of the other failure detector.

In our experiments, the-failure detector had always a better detection time than the dynamic estimatidn, bu
also had a higher mistake rate. Figure 7 illustrates the detection time of both fiéteeors, and Table 5 shows
their respective mistake rate. Again, both failure detectors generategy\grmpicions as the result of message
losses.

7 Conclusion
We have presented the concept of ¢héailure detectors and described its implementation. We have analyzed
the behavior of this failure detector over transcontinental Internet conaation during a period of three weeks.

Finally, we have compared the behavior of our failure detector with two impoetdaptive failure detectors;
Chen’s estimation [5] and Bertier's dynamic estimation [2].
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Figure 7. Detection time:  -FD vs. dynamic estimation.

By design,p-failure detectors can adapt equally well to changing network conditarsthe requirements of
any number of concurrently running applications. As far as we know,shisirrently the only failure detector
that addresses this problem, and provides the flexibility required for impkamgemtruly generic failure detection
service. In particular, the two other failure detectors studied in this papepletely fail to address that problem.

In addition to interesting observations about transcontinental network caioation, our experimental results
show that our failure detector behave reasonably well if parametersadirtuned. In particular, we see that the
impact of the window size is significant. Our comparisons with other failurecttgeshow that the performance
of the p-failure detector are in the same order as that of Chen’s and Bertiérisa¢i®ns, while providing nearly
limitless flexibility. Nevertheless, we believe that there is still room for improvenm@nen’s estimation yields a
slightly better detection time for the same mistake rate, and Bertier's dynamic estirhasianslower detection
time but a lower mistake rate. The performance of the three failure deteetoesr comparable, and hence we
conclude that all three approaches are equally realistic with respecirtquiadity of service.

As we have observed, message losses account for a very significaber of wrong suspicions. In particular,
with a well-tuned failure detectdmearly all wrong suspicions come as the result of message losses andagmpo
network partitions. This means that (1) there is not much point in fine-tuniedaiture detectors beyond a
certain point, and (2) the failure detectors cannot meet the requiremeapplatations with need for very high-
accuracy. The only way to address this problem is to somehow reducdfébethat message losses have on
wrong suspicions. We believe that it is an important issue because it limits itglitg of the failure detector.
We are currently working on a way to make aeHfailure detectors more “loss-resistant.”

"Note that this observation is true for all three failure detector implementasioiéed in this paper, since they are based on similar
assumptions.
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