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Abstract

Many people rightly consider that failure detection shdedprovided as a generic distributed system service to
be used to support fault-tolerance within many applicatjon spite of possibly very diverse requirements. Reality
is however different, as classical techniques are normailbble to cope with many distributed applications running
simultaneously. To overcome this problem, we advocatefardiit approach to failure detection, whereby the failure
detection service associates a real number to each proegsronitored, representing the level of confidence that
this process has crashed.

In this paper, we present an adaptive failure detectionrithgn based on the above principle. When compared
experimentally with other recent failure detector implemations, we find that our algorithm performs significantly
better with conservative failure detection (high accuratgw detection), and equally well with aggressive failure
detection (quick detection, low accuracy). This comes iditaah to a greater potential for flexibility offered by the
model.

. INTRODUCTION

Failure detection is a fundamental building block for eireyifault tolerance in distributed systems. It is hence
natural to consider that failure detection should be pregids a generic system service. This has been advocated
by many people [1]-[5] without meeting much success so fasgite of several important breakthroughs. One
of the major obstacles to building such a service is thatiegibns with completely different requirements must
be able to tune the service to meet their needs, even thowhniight run simultaneously. Moreover, many
distributed applications can greatly benefit from settinffedent levels of failure detection to trigger different
reactions (e.g., [6]—[8]). For instance, an applicatiom take precautionary measures when the confidence in a
suspicion reaches a given level, and then take more draditma once the confidence raises above a second (much
higher) level.

In distributed systems, failure detectors are traditignbhsed on a simple interaction model wherein processes
can only either trust or suspect the processes that they@mgaring. In contrast, we advocate an approach whereby
a generic failure detection service outputs a value on airuooiis normalized scale. Roughly speaking, this value
captures the degree of confidence that the correspondinggedtas crashed. It is then left to each application
process to set a suspicion threshold according to its owlitypad-service requirements. Beside, even within the
scope of a single distributed application, it is often dadie to trigger different reactions to increasing degrdes o
suspicions. The main advantage of our approach is that iis design allows it to scale well with respect to the
number of simultaneously running applications and/orgeigd actions within each application.

In earlier work [9], [10], we outlined a failure detectionhgne based on a similar approach, called the
p-failure detector. Experimental results in wide-area nek&o[10] have shown that current adaptive failure
detection (including our failure detectors) is poorly aabto very conservative failure detection. In particular,
our experiments showed that, when tuned well, nearly allngrsuspicions come as the result of message losses.
Unfortunately, current adaptive failure detectors eitlggrore the problem (e.g., [9], [11]) or are based on the
assumption that the loss of consecutive messages are elated [12]. In contrast, our experiments have shown



us that message losses are strongly correlated and tendttio iocbursts of various length, which is consistent
with observations made by Keidar et al. [13], as well as maggpfe in the networking research community.

In this paper, we present the conceptrefailure detector as a way to address the problems mentiabede.
Rather than a failure detector per se, the concept shouidirhe seen as a way to extend an existing failure detection
scheme in order to address the requirements of conservativee detection. The-failure detector outputs a value
which is calculated as a sum of contributions from expecteartheats. Actions triggered by high thresholds will
be less sensitive to long bursts of message losses and/potam network partitions. In this paper, we describe
the x-failure detector and prove some important propertiesefAfhis, we present an implementation based on
the p-failure detector mentioned above and evaluate its behawier a transcontinental network connection. Our
experiments show that thefailure detector can be tuned in the conservative rangedd avrong suspicions.

The remainder of the paper is structured as follows. Sectidedtribes the system and lists important definitions.
Section Il presents related work on the implementation ibfife detectors. In Section IV, we describe thdailure
detector and prove that it satisfies the property known asigtammmpleteness. Section V describes a possible
implementation of thes-failure detector. This implementation was used to condypeBments whose results are
summarized in Section VI. In Section VII, we briefly review théatmnship between our work and recent advances
on group membership services. Finally, Section VIl conctuthe paper.

Il. SYSTEM MODEL & DEFINITIONS
A. System Model

We consider a simple asynchronous model consisting of twegsse® and g. The processes are subject to
crash failures only and, crashes are permanent. The pracasseconnected by two unidirectional channels that
cannot create, duplicate, or garble messages. The chameefaimlossy which means that, if a process, say
sends an infinite number of messages to progeasd q is correct, thery eventually receives an infinite number
of messages from. In practice, a fair-lossy channel can be implemented byesbest-effort lossy communication
service, such as UDP.

In addition, processes have access to some local physoek giving them the ability to measure time. We
assume nothing regarding the synchronization of these&ksloc

In the remainder of the paper, we consider the situation evpencess; monitors processg.

Our system model is similar to that used by Chen et al. [12].

B. Unreliable Failure Detectors

Being able to detect the crash of other processes is a fundalrissue in distributed systems. In particular,
several distributed agreement problems (e.g., Consenanapt be solved deterministically in asynchronous system
if even a single process might crash [14]. The impossibiktypased on the fact that, in such a system, a crashed
process cannot be distinguished from a very slow one.

The impossibility result mentioned above no longer holdshié system is augmented with some unreliable
failure detector oracle [15]. An unreliable failure detecis one that can make mistakes, to a certain degree. As
an example, we present here the properties of a failure wetet class(S, which is one of the weakésfailure
detectors to solve Consensus:

Property 1 (Strong completenesshhere is a time after which every process that crashes is pemiy
suspected by all correct processes.

Property 2 (Eventual weak accuracyThere is a time after which some correct process is never siespéy
any correct process.

1To be exact, the weakest failure detector for solving Consens{i®\ig16]. However, any®W failure detector can be transformed into
a ¢S failure detector [15].



C. Quality of Service of Failure Detectors

Chen et al. [12] propose a set of metrics to evaluate the tyuafliservice (QoS) of failure detectors. Given our
assumption that there are two procesgeasnd ¢ where ¢ monitorsp, the metrics that we use in this paper are
defined below. Notice that the first definition relates to the detepess, whereas the other metrics relate to the
accuracy of the failure detector.

Definition 1 (Detection tim&p): The detection time is the time that elapses since the craghaoid until ¢
begins to suspegi permanently.

Definition 2 (Mistake recurrence tini€yz): The mistake recurrence time measures the time between two
consecutive wrong suspicion$y,,z is a random variable representing the time that elapses &onbeginning
of a wrong suspicion to the next onE{;, andT'L, also denote an upper bound and a lower bound on the mistake
recurrence time, respectively.

Definition 3 (Mistake duratiorf’;): The mistake duration measures the time that elapses frometiiaring of
a wrong suspicion until its end (i.e., until the mistake isreoted). This is represented by the random varidhle
of which we consider an upper and a lower bound, denote@pyand 7%, respectively.

Definition 4 (Good period duratioff;): This is a random variabl& representing the time thattrustsp and
p is up. It can be expressed &g = Tyr — T

Definition 5 (Average mistake ratey/): This measures the rate at which a failure detector generatesgw

suspicions. This can be expressedXyy = %

Ill. FAILURE DETECTORSIMPLEMENTATIONS

A. Traditional heartbeat implementations

Using heartbeat messages is a common approach to implemefatiure detectors. It works as follows:
processp—i.e., the monitored process—periodically sends a heartb@essage to procegs informing ¢ that
p is still alive. The period is called the heartbeat interfal Process; suspects procegsif it fails to receive any
message fronp for a period of time determined by a timeod,.

The heartbeat approach leads to the following tradeoff.dftitmeout (\;,) is short, crashes are detected quickly
but the likeliness of wrong suspicions is high. Conversilyhe timeout is long, wrong suspicions become less
frequent, but this comes at the expense of the detection time

B. Adaptive implementations

The goal of adaptive failure detectors is to adapt to changetgvork conditions. In general, adaptive failure
detectors are based on a heartbeat strategy (althoughngaotieiems to preclude ping-style failure detection).
The principal difference with the heartbeat strategy mewetibabove is that the timeout is modified dynamically
according to network conditions.

Chen et al. [12] propose an approach based on a probabiistitysis of network traffic. The protocol uses
arrival times sampled in the recent past to compute an etitimaf the arrival time of the next heartbeat. The
timeout is set according to this estimation and a safety maamnd recomputed for each interval. The safety margin
is determined by QoS requirements (e.g. detection time)netgork conditions (e.g. network load).

Bertier et al. [11] propose a different estimation functievhich combines Chen’s estimation with Jacobson’s
estimation of the round-trip time [17]. Bertier's estinmati provides a shorter detection time, but generates more
wrong suspicions than Chen’s estimation. The resultingufaildetector is proved to belong to clad® when
executed within a specific partially synchronous system mode

There exist also several other proposals for adaptive &adetectors, although with a more conceptual (e.g., [18])
or more specific (e.g., [4]) flavor.



C. The-failure detector

Briefly speaking, theo-failure detector [9] works as follows. The protocol samples arrival time of heartbeats
and maintains a sliding window of the most recent sampless Wimndow is used to estimate the arrival time of
the next heartbeat, similar to other adaptive failure deteq11], [12]. In addition, the distribution of past sampl
is used as an approximation for the probabilistic distituof future heartbeat messages. With this information,
it is possible to compute a value with a scale that changes dynamically to match recent n&twonditions.
Distributed applications use this value and set variousstiolds to trigger appropriate reactions.

D. Comparison

We analyzed the behavior of thefailure detector over transcontinental links [10], andngared its behavior
with that of other adaptive failure detectors [11], [12]. Tiesults showed that the performance of théailure
detector was comparable with that of traditional implerationhs. We however found that none of the failure
detectors considered could provide adequate support fareceative failure detection because of their vulnergbili
to message losses. In particular, neithanor Bertier’s failure detector consider message lossesomtrast, Chen's
takes account of message loses, but unfortunately religbeonnrealistic assumption that losses are uncorrelated.
Since, in practice, message losses tend tathengly correlated (i.e., losses tend to occur in bursts), thelurfai
detector remains vulnerable to message losses.

IV. k-FAILURE DETECTORS

In this section, we describe thefailure detector as a generic concept rather than a spegifitementation (a
possible implementation is described in Sect. V). The basa id that each missed heartbeat contributes to raise
the level of suspicion of the failure detector. First, we defimare precisely what the contribution of a heartbeat is.
Then, we explain how the valueoutput by the failure detector is determined. Finally, wevprthe completene$s
of the resulting failure detector.

A. Heartbeat Contributions (definition)

The x-failure detector requires the existence of a function ofetito represent the evolution of the confidence
that a given heartbeat will not be received in the futurdhezitbecause it was lost or because the sending process
has crashed. The function returns a value betweand 1, where the latter means total confidence and the former
means no confidence at all. Initially, the value is zero andaremso until some time when the heartbeat begins to
be expected. Then, the value increases and ultimately aqpeséo one. We consider this function as a black box
here. We propose a possible implementation in Section V.

More precisely, the contribution function is defined as fwlo

Definition 6 (Contribution function):The contribution function is a function of time which satisfiee properties
below.

c:R—[0;1]

« c IS monotonic.

e c(0)=0

. tl}eroo c(t)y=1

The function is used for each heartbeat to determine the tolaf the confidence with respect to that heartbeat.
Notice that the function can be based on parameters thagehdynamically, when new heartbeat are received.
We consider that there is a time, called the starting timérbewhich the heartbeat is not expected.

2\We do not prove the accuracy of the failure detector essentially for thEehassumed in the paper does not allow to ensure accuracy in
the formal sense (deterministically), although it does in a more pragmatidive., stochastically). Nevertheless, we evaluate QoS parameters
describing the accuracy of our failure detector experimentally in Sectle@.V.



Definition 7 (Starting time):Let H' denote thei-th heartbeat (with = 1,2,---). Its starting timeT?, has the
following property.

. (z'<j<:>T;'t <T3jt>
It follows that the contribution of some heartbeddt can be computed simply by (1).

c'(t) = c(t — T3) (1)

In practice, the nature of the contribution function is impat for aggressive failure detectors but not so much
for conservative ones. This is because the contributiontitmaefines the meaning of fractional part of the value
output byk.

In reality, one can think of various possible contributiaimdtions. In this paper (Sect. V), we propose an
implementation based on thefailure detector as described in a recent technical refd@} Alternatively, the
contribution of a heartbeat could be defined as a step functimrs matching single-heartbeat failure detectors
based on a convention&rust-or-suspect” scheme, such as Bertier’s failure detector [11].

B. Computing the: Function

The value output by the failure detector is given by a functibtime «(t¢), obtained by summing the contributions
of all expected heartbeats with a rank higher than the masnteheartbeat received so far. This is expressed by
the functionx(t) defined below.

Definition 8 ): Let k be the rank of the most recent heartbeat received so far.

k : R— R*
)= > c(t—Th) @
i=k+1

Notice that we also assume that, if procesis correct, therp sends infinitely many heartbeat messages.

C. Important Properties

All properties mentioned below are based on the assumpgtiain Wwhen procesg monitors procesg, ¢ suspects
p based on a positive constérhresholdk .

Lemma 1:Let p and ¢ be two processes, whetgis correct and monitorg. For any finite thresholdy, if p
crashes, then eventualk(t) > K and this is permanent.

Proof: If p crashes, there is a time after whigmever receives any heartbeat frgmLet H* be the most
recent heartbeat received from process

Let ¢(¢t) denote the contribution function after that time. Since naenbeartbeat messages are received, the
function does not change.

By its definition, the contribution function is monotonic anonverges to one. This means that there a time after
which the contribution is always greater than s%ayLet us call this timeTl. .

3The assumption thak™ that is constant is done in order to keep the proofs simple. This neecertbiebcase in practice.



Given a finite thresholds’, we prove the lemma by showing that there exists a timfer which x(T) > K.

Let us choosd as follows:T = T*F 1+ L 7. We can now start from(T') and develop.

W(T) = w(Ty 5 )
Eq. (2):
= (T —TEN) + -+ T — TEPIET ) o
Def. 6:
o(T1) + - +c(Ty)
2[KT+1)- 3
2[K]-5=[K] > K

VoIV IV

2
This proves the first part of the lemma. It is now easy to show #worsd part. Indeed, being the sum of
monotonically increasing functions,(t) is itself monotonically increasing. It follows that, for yatime ¢’ > T,
k(t) > k(T) > K. [
Theorem 1 (Strong completenesg).crashed process is eventually suspected by all correcepses.
Proof: This assumes that all processes monitor each otherp lbet some crashed process, anle some
correct process that monitogs By Lemma 1,q eventually suspects (i.e., x(t) > K). Since bothp and ¢ have
been chosen arbitrarily, this completes the proof. |

V. IMPLEMENTATION

This section describes a possible implementation ofxifiailure detector, based on a failure detection strategy
developed in earlier work. We have used this implementatiorun the experiments presented in Section VI.

A. Description

In this implementation, the contribution function of héwmaits is computed from the arrival intervals between
two consecutive heartbeats. Namely, we use the estimatamerfor thep-failure detector [10], and consider that
the arrival interval between two consecutive heartbeats iandom variable that we approximate with a normal
distribution. The failure detector module is divided intootwain tasks, namely, the sampling of heartbeat arrivals,
and the computation of the current value fdit). We now describe the two tasks of the failure detector.

Task 1: SamplingThe sampling task is executed whenever a new heartbeat isgdcand gathers information
about recent heartbeat arrivals. In particular, the tasktaias a sliding window of past arrivals with paramei&s
as the window size. Upon receiving a new heartbeat, the tgiksrthe process clock and stores the heartbeat rank
and arrival time into the sliding window (thus discarding thidest heartbeat if necessary).

The task keeps track of four values that are of particular mapee for the estimation of: the mearnu and the
variancecs? of inter-arrival times, as well as the raikand the arrival timed,, wherek is the highest rank among
all received heartbeats. For the first two values, this is dpnsimply keeping track of the sum and the sum of
squares of inter-arrival times.

Task 2: Computings: This task is invoked when some application process querigaiture detector. The
task reads the process clock and computes the value for tiwtido ~(¢). This is done by approximating the
contribution function of expected heartbeats and summauh ef them.

Given the values obtained by the first task (i.,0%, k, A;), the contribution function:(t) is approximated
from the cumulative normal distribution function.

1 ¢ _E=w? .
(t) = am;&e 27 dr if t>0
0 otherwise

(4)

It follows that, for some heartbedi?, wherei > k, the contribution is computed by the functi@f(t) shown
below. Also, in Eq. (4), the contribution of heartbddt starts one heartbeat interval before its estimated arrival



Hence, the starting tim@&?, of heartbeatf{® is given by the following equation.

Ty=Ap+(i—k—1u

é(t) = eft — Th) ©)

Computing the current value of the functieiit) is done by summing the contribution of all heartbests for
which the starting time is past (i.e., where- T%,).

VI. EXPERIMENTS

We have analyzed the behavior of our implementation of«Hailure detector over a transcontinental network
connection for a total duration of three weeks. We have setrabexperimental scenarios of which we present the
most relevant ones. We begin the section by describing quererental setup, then we describe our measurements,
present the experimental results, and finish the section avdiscussion.

The main goal of our experiments was to observe the abilithektfailure detector to tolerate message losses in
a tunable way. Besides, we wanted to compafailure detector with other adaptive failure detectors] abserve
the effect of certain parameters on a real-world envirortmen

A. Experimental Setup

Our experiments involved two computers, with one in Japahtha other in Switzerland, and connected through
a normal intercontinental Internet connection. One maehias sending heartbeats (thus acting like proggss
while the other one was recording the arrival times of eadrtheat (thus acting like procegs

The sending host was located in Switzerland, at the Swiss Feldstalte of Technology in Lausanne (EPFL).
The machine was equipped with a Pentium Il processor at 766 itz 128 MB of memory. The operating
system was Red Hat Linux 7.2 (with Linux kernel 2.4.9).

The receiving host was located in Japan, at the Japan Advanstittite of Science and Technology (JAIST). The
machine was equipped with a Pentium Il processor at 450 MHz5412dMB of memory. The running operating
system was Red Hat Linux 9.0 (with Linux kernel 2.4.20).

All messages were transmitted using the UDP/IP protocoéréstingly, using thé r acer out e command has
shown us that most of the traffic was actually routed throughUhited States, rather than directly between Asia
and Europe.

B. Experiments Overview

The experiment was done in two phases. First, we have recordadbbkat arrivals using the experimental
setup described above. Then, we have used simulation toyré@arecorded traces with different failure detector
implementations. As a result, the failure detectors arepaoad based oaxactlythe same scenarios, thus ensuring
the proper fairness of the comparisons.

Phase 1: Recording heartbeat arrival$tor the first phase, we have run a program on the EPFL machine
to generate heartbeat messages. Another program ran oIB& thachine to record the arrival time of each
heartbeat and log the information into a file. Neither maclialed during the experiment. The experiment lasted
for three weeks, during which heartbeat messages wereajedeat a constant rate of one every 30 seconds. A total
of 60,489 heartbeat messages were generated. Among those meszepesssages were lost; this corresponds
to a loss rate of aboul.36%. We observed that message losses tended to occur in bimstirgest of which
was 13 heartbeats long (i.e., it lasted for aboutminutes). We observed7 different bursts of consecutively
99 lost messages (see Fig.2). The mean arrival interval of reddneartbeats (filtering out lost messages) was
30.00467 seconds with a standard deviation of abadts ms, meaning that arrival times were quite stable (see
Fig. 1). As a final note, we have monitored the CPU load averagé@bamo machines during the whole period of
the experimentation. We observed that the load was nearlgtant throughout, and that the load was well below
the capacity of the machines.
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Phase 2: Simulating failure detector&ising the trace file obtained during the first phase of the expmaris,
we have run several simulations involving tkefailure detector with various parameters. To provide &neice
for comparison, we have also run simulations with the faildetector of Chen et al. [12]. In particular, we have
done simulations according to the three scenarios desciiiedow (the corresponding results are discussed in
Section VI-C).

Scenario 1 (Mistake rate)The first scenario measures the mistake fate obtained with thes-failure detector.
In particular, we observe the evolution of the mistake rabemvthe thresholds that triggers suspicions increases.
The scenario is important to determine how thdailure detector behaves with respect to conservativieirtai
detection. We do the same simulations with three differantlew sizes for the history, namely 000, 5,000, and
10,000 samples.

Scenario 2 (Estimated timeoutlhe second scenario measures the impact of the threghald the estimated
timeout (and thus, somewhat indirectly, the detection YirBémilar to the previous scenario, we do the simulations
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with several window size.

Scenario 3 (Comparison with Chen’s FDIn the third scenario, we compare thefailure detector with the
failure detector of Chen et al. [12]. The goal of the comparisomeant as a way to provide a reference.

For a fair comparison, we have tuned the parameters of betk-failure detector (threshold’) and Chen’s
failure detector (safety margin) so that they both have the same average mistake rate. Wedetammined that
mistake rate by choosing a thresholdf= 1 for the x-failure detector, and measuring the resulting mistake, rat
thus obtaining\,; = 0.73%. Note that we chose a small threshold to ensure a fair cosgraof the two failure
detectors. Indeeds is designed to tolerate message losses whereas Cheni fdétector is not.

In addition, both failure detectors were set to use the samdow size of1,000 samples for computing their
estimation. In order to compare the failure detectors inrthble state, all results obtained during the warmup
period—i.e., the period before the window is full—were siyngnored. With the above settings, we have most
notably measured the longest mistake durafith and the shortest mistake recurrence intefgl,.

C. Experimental results & discussions

This section presents the results obtained after runningxperiments described in Sect. VI-B. The first two
scenarios measure the behavior of thailure detector, whereas the last scenario comparasd Chen’s failure
detector [12].

1) Mistake rate)\,; (Scenario 1):We measure the mistake ratg; of the x-failure detector, when the threshald
varies. Figure 3 shows the mistake rate expressed as a nuimlemng suspicions on the left vertical axis, and as the
equivalent relative value in percent on the right. The figur@aghthree curves obtained by using different window
size (i.e.,1,000, 5,000, and 10,000 samples). The horizontal dashed line is used as a referemteepresents
the mistake rate equivalent to generating one wrong suspiser day. However, the mistake rate obtained when
considering only the wrong suspicions that are due to meskesges, too high, could not be represented on the
figure.

Figure 3 illustrates the fact that, as the threshold inceaf®ver wrong suspicions are generated, until no
suspicions are made during the three weeks period of theriegr.
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In particular, when the threshold was set to abéut= 2, the mistake rate was determined by the message
losses. With higher thresholds, some lost messages norl@ageed wrong suspicions, unfil = 13.5, beyond
which not a single wrong suspicion was generated during th@ewduration of our experiment. Evidently, a longer
experimentation period or a different environment woulti@t certainly yield different values for the threshaig
and hence the value is not particularly important. What ipartant is simply that such a value exists, and that we
were able to observe it under real-world conditions.

The figure allows us to make some other observations. First, waea that changing the window size had only
very little effect on the mistake rate of the failure detecta light of this, the smallest window size df, 000
was sufficient to ensure the stability of the estimation. Sdctime mistake rate decreases gradually for threshold
valuesK > 4. This shows that fine-tuning the-failure detector is possible for conservative failureedébn. On
the other hand, the curve has a staircase-like shape foteswalues of the threshold. This part, important for
aggressive failure detection, is essentially determingthk choice of contribution function.

Another interesting value is that, with a thresholdfof= 1, we obtainedt38 wrong suspicions, thus an average
mistake rate of\;; = 0.73%. We have used this value to tune the parameters of Scenario 3.

2) Estimated timeout (Scenario 2)¥e measure the estimated timeout of fh&ilure detector in relation with the
thresholdK (Fig. 4). Then, in Figure 5, we observe the variation over timthefestimated timeout, with a threshold
set to K = 1. We repeat the simulations for several window size, nanely0, 5,000, and 10,000 samples.

On Figure 4, we see that the estimated timeout grows in a as&ircurve as the threshaold increases. This is
because the interval between heartbeats was s#i s®conds, and the standard deviation of inter-arrival tirees
small. The figure on the right shows a closeup for< 1. It shows that the window size has an influence on the
granularity of the estimated timeout. In particular, a dmahdow size results in a more staircase-like behavior.

Figure 5 shows the evolution of the estimated timeout ovee timhen the threshold is set # = 1 and the
window size tol, 000, 5,000, and10, 000 samples. The plot on the right is a closeup arogbddeconds. The plot
confirms the intuition that a small window is more sensitiveramsient behaviors on the network, while a larger
window size results in a larger expected timeout.

3) Comparison with Chen’s FD (Scenario 3\Ve compare the behavior of thefailure detector with that of
Chen et al. [12]. To do so, we set the thresholdkofo K = 1, and tuned the parameter (i.e., the safety
margin) of Chen’s failure detector, so that both failureedétrs have the same mistake raké £ 1, \y; = 0.73%,

a = 3.95 ms). We then compared the failure detectors based on othemagtrics. In particular, we have measured
the average estimated timeduthe range of the mistake duratidl;, 7%], as well as the range of the mistake

“The estimated timeout is indirectly related to the detection tifse However, since we did not have synchronized clocks between the
two machines, we could not accurately measure the detection time.
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Fig. 5. Estimated timeout over time, with = 1. The three curves correspond to different window siz&(0, 5,000, 10,000 samples).

TABLE |
k-FD VvS. CHEN'S ESTIMATION.

k-FD Chen’s estimation
Parameters K=1 a = 3.95e-03
Window size 1,000 1,000
Average estimated timeout [§] 30.073 30.117
Wrong suspicions 438 438
A [%0] 0.73 0.73
TL [s] 1.68e-05 7.16e-06
T [s] 387.952 386.828
TL . [s] 30.010 30.008
THx [s] 48,786.912 35,435.059

recurrence timeéT'L,, TV .]. The results are summarized in Table I.

The results in Table | do not show any significant difference erfgrmance between the two failure detectors,
except for the upper bound of the mistake recurrence timetwisi about37% longer for x. This tends to suggest
than x benefits from longer good periods (measured7y than Chen’s failure detector. However, many more
experiments would be needed to verify this, and we are satigfieonclude that both failure detectors had similar
performance whem was set as an aggressive failure detector.

Another point of interest is about the warmup period. Theltsesn Table | have been computed after discarding
suspicions that occurred during the warmup period. We haokeld at the behavior of the failure detectors during
the warmup period. We have found that, during this periocer@hfailure detector generat&d wrong suspicions,
whereas< generated only.

Figure 6 depicts the evolution of the estimated timeout fahboand Chen'’s failure detectors, during the three
weeks that the experiment lasted. The parameters are set gathe values as those described in Table I.

Fig. 6 shows the transition of the estimated timeout in botluria detectors over three weeks according to the
setting described in Table I. The upper bound on the estimatesbut of thex-failure detector is less than one
in Chen'’s failure detector. The plots show that, althoughfttilere detectors have comparable performance, their
behavior is different. For instance, it is interesting tdenthat thex-failure detector was more sensitive during the
first half of the experiment, while Chen’s was subject to twakseduring thel2-th and thel3-th days.

VIl. RELATION WITH GROUP MEMBERSHIP

Group membership is a popular approach to ensuring faldétetoce in distributed applications. In short, a group
membership keeps track of what process belongs to thehdistd computation and what process does not. In
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particular, a group membership usually needs to excludegss®es that have crashed or partitioned away. For more
information on the subject, we refer to the excellent suiveghockler et al. [19]. A group membership can also be
seen as a high-level failure detection mechanism that gesvconsistent information about suspicions and failures
[8].

In a recent position paper, Friedman [20] proposed to ingatdi the notion of a fuzzy group membership as
an interesting research direction. The idea is that each mewofbthe group is associated with a fuzziness level
instead of binary information (i.e., member or not memb@édjhough Friedman does not actually describe an
implementation, we believe that a fuzzy group membershigdcbe built based on the-failure detector.

Similarly, thex-failure detector could also be useful as a low-level baiddblock for implementing a partitionable
group membership, such as Moshe [13]. Such a group membensisipindeed distinguish between message losses,
network partitions, and actual process crashes. For iostdfeidar et al. [13] decide that a network partition has
occurred after more than three consecutive messages hawveldst. Typically, this could be done by using the
r-failure detector and setting an appropriate threshold.

VIIl. CONCLUSION

In this paper, we have presented a novel approach to impkamgetunable conservative failure detection in
distributed systems. The-failure detector presented in this paper addresses thaepnoof conservative failure
detection by taking account of message losses and shed-tietwork partitions. In addition, the failure detector
outputs information on a continuous scale rather than usiagraditional “trust-or-suspect” model. This improves
its flexibility as applications can trigger suspicions basedheir own requirements, without interfering with each
other.

The «-failure detector was described as a generic concept whexdbss-intolerant detection strategy can be
used as the basis for computing the contribution of a singhatbeat. Yet, the combination of contributions makes
it possible to set a threshold so that consecutive messagedare tolerated.

The paper describes an implementation of thfailure detector, where the contribution of a heartbediased
on the ¢-failure detector [9], [10] described in our earlier work.elhesulting implementation is compared with
the failure detector of Chen et al. [12]. Our results show tha x-failure detector behaves as expected in the
conservative range, since it can be set so that messages lbesot trigger wrong suspicions. Also, when setting
x for aggressive failure detection, we found that its perfamge were comparable to that of the failure detector
of Chen et al. [12]. However, we believe that there existsirdor improvement, especially whenis set as an
aggressive. In particular, it might be interesting to eatduother contribution functions, but we leave this for fatu
work.
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