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Abstract

Many people rightly consider that failure detection shouldbe provided as a generic distributed system service to
be used to support fault-tolerance within many applications, in spite of possibly very diverse requirements. Reality
is however different, as classical techniques are normallyunable to cope with many distributed applications running
simultaneously. To overcome this problem, we advocate a different approach to failure detection, whereby the failure
detection service associates a real number to each process being monitored, representing the level of confidence that
this process has crashed.

In this paper, we present an adaptive failure detection algorithm based on the above principle. When compared
experimentally with other recent failure detector implementations, we find that our algorithm performs significantly
better with conservative failure detection (high accuracy, slow detection), and equally well with aggressive failure
detection (quick detection, low accuracy). This comes in addition to a greater potential for flexibility offered by the
model.

I. I NTRODUCTION

Failure detection is a fundamental building block for ensuring fault tolerance in distributed systems. It is hence
natural to consider that failure detection should be provided as a generic system service. This has been advocated
by many people [1]–[5] without meeting much success so far inspite of several important breakthroughs. One
of the major obstacles to building such a service is that applications with completely different requirements must
be able to tune the service to meet their needs, even though they might run simultaneously. Moreover, many
distributed applications can greatly benefit from setting different levels of failure detection to trigger different
reactions (e.g., [6]–[8]). For instance, an application can take precautionary measures when the confidence in a
suspicion reaches a given level, and then take more drastic actions once the confidence raises above a second (much
higher) level.

In distributed systems, failure detectors are traditionally based on a simple interaction model wherein processes
can only either trust or suspect the processes that they are monitoring. In contrast, we advocate an approach whereby
a generic failure detection service outputs a value on a continuous normalized scale. Roughly speaking, this value
captures the degree of confidence that the corresponding process has crashed. It is then left to each application
process to set a suspicion threshold according to its own quality-of-service requirements. Beside, even within the
scope of a single distributed application, it is often desirable to trigger different reactions to increasing degrees of
suspicions. The main advantage of our approach is that its very design allows it to scale well with respect to the
number of simultaneously running applications and/or triggered actions within each application.

In earlier work [9], [10], we outlined a failure detection scheme based on a similar approach, called the
ϕ-failure detector. Experimental results in wide-area networks [10] have shown that current adaptive failure
detection (including our failure detectors) is poorly adapted to very conservative failure detection. In particular,
our experiments showed that, when tuned well, nearly all wrong suspicions come as the result of message losses.
Unfortunately, current adaptive failure detectors eitherignore the problem (e.g., [9], [11]) or are based on the
assumption that the loss of consecutive messages are uncorrelated [12]. In contrast, our experiments have shown
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us that message losses are strongly correlated and tend to occur in bursts of various length, which is consistent
with observations made by Keidar et al. [13], as well as many people in the networking research community.

In this paper, we present the concept ofκ-failure detector as a way to address the problems mentionedabove.
Rather than a failure detector per se, the concept should rather be seen as a way to extend an existing failure detection
scheme in order to address the requirements of conservativefailure detection. Theκ-failure detector outputs a value
which is calculated as a sum of contributions from expected heartbeats. Actions triggered by high thresholds will
be less sensitive to long bursts of message losses and/or temporary network partitions. In this paper, we describe
the κ-failure detector and prove some important properties. After this, we present an implementation based on
the ϕ-failure detector mentioned above and evaluate its behavior over a transcontinental network connection. Our
experiments show that theκ-failure detector can be tuned in the conservative range to avoid wrong suspicions.

The remainder of the paper is structured as follows. Section IIdescribes the system and lists important definitions.
Section III presents related work on the implementation of failure detectors. In Section IV, we describe theκ-failure
detector and prove that it satisfies the property known as strong completeness. Section V describes a possible
implementation of theκ-failure detector. This implementation was used to conduct experiments whose results are
summarized in Section VI. In Section VII, we briefly review the relationship between our work and recent advances
on group membership services. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL & D EFINITIONS

A. System Model

We consider a simple asynchronous model consisting of two processesp and q. The processes are subject to
crash failures only and, crashes are permanent. The processes are connected by two unidirectional channels that
cannot create, duplicate, or garble messages. The channels are fair-lossy which means that, if a process, sayp,
sends an infinite number of messages to processq and q is correct, thenq eventually receives an infinite number
of messages fromp. In practice, a fair-lossy channel can be implemented by some best-effort lossy communication
service, such as UDP.

In addition, processes have access to some local physical clock giving them the ability to measure time. We
assume nothing regarding the synchronization of these clocks.

In the remainder of the paper, we consider the situation where processq monitors processp.
Our system model is similar to that used by Chen et al. [12].

B. Unreliable Failure Detectors

Being able to detect the crash of other processes is a fundamental issue in distributed systems. In particular,
several distributed agreement problems (e.g., Consensus)cannot be solved deterministically in asynchronous systems
if even a single process might crash [14]. The impossibility is based on the fact that, in such a system, a crashed
process cannot be distinguished from a very slow one.

The impossibility result mentioned above no longer holds if the system is augmented with some unreliable
failure detector oracle [15]. An unreliable failure detector is one that can make mistakes, to a certain degree. As
an example, we present here the properties of a failure detector of class♦S, which is one of the weakest1 failure
detectors to solve Consensus:

Property 1 (Strong completeness):There is a time after which every process that crashes is permanently
suspected by all correct processes.

Property 2 (Eventual weak accuracy):There is a time after which some correct process is never suspected by
any correct process.

1To be exact, the weakest failure detector for solving Consensus is♦W [16]. However, any♦W failure detector can be transformed into
a ♦S failure detector [15].
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C. Quality of Service of Failure Detectors

Chen et al. [12] propose a set of metrics to evaluate the quality of service (QoS) of failure detectors. Given our
assumption that there are two processesp and q where q monitorsp, the metrics that we use in this paper are
defined below. Notice that the first definition relates to the completeness, whereas the other metrics relate to the
accuracy of the failure detector.

Definition 1 (Detection timeTD): The detection time is the time that elapses since the crash ofp and until q
begins to suspectp permanently.

Definition 2 (Mistake recurrence timeTMR): The mistake recurrence time measures the time between two
consecutive wrong suspicions.TMR is a random variable representing the time that elapses froman beginning
of a wrong suspicion to the next one.TU

MR
andTL

MR
also denote an upper bound and a lower bound on the mistake

recurrence time, respectively.

Definition 3 (Mistake durationTM ): The mistake duration measures the time that elapses from the beginning of
a wrong suspicion until its end (i.e., until the mistake is corrected). This is represented by the random variableTM

of which we consider an upper and a lower bound, denoted byTU
M andTL

M respectively.

Definition 4 (Good period durationTG): This is a random variableTG representing the time thatq trustsp and
p is up. It can be expressed asTG = TMR − TM .

Definition 5 (Average mistake rateλM ): This measures the rate at which a failure detector generates wrong
suspicions. This can be expressed byλM = 1

E(TMR) .

III. FAILURE DETECTORSIMPLEMENTATIONS

A. Traditional heartbeat implementations

Using heartbeat messages is a common approach to implementing failure detectors. It works as follows:
processp—i.e., the monitored process—periodically sends a heartbeat message to processq, informing q that
p is still alive. The period is called the heartbeat interval∆i. Processq suspects processp if it fails to receive any
message fromp for a period of time determined by a timeout∆to .

The heartbeat approach leads to the following tradeoff. If the timeout (∆to) is short, crashes are detected quickly
but the likeliness of wrong suspicions is high. Conversely,if the timeout is long, wrong suspicions become less
frequent, but this comes at the expense of the detection time.

B. Adaptive implementations

The goal of adaptive failure detectors is to adapt to changingnetwork conditions. In general, adaptive failure
detectors are based on a heartbeat strategy (although nothing seems to preclude ping-style failure detection).
The principal difference with the heartbeat strategy mentioned above is that the timeout is modified dynamically
according to network conditions.

Chen et al. [12] propose an approach based on a probabilisticanalysis of network traffic. The protocol uses
arrival times sampled in the recent past to compute an estimation of the arrival time of the next heartbeat. The
timeout is set according to this estimation and a safety margin, and recomputed for each interval. The safety margin
is determined by QoS requirements (e.g. detection time) andnetwork conditions (e.g. network load).

Bertier et al. [11] propose a different estimation function, which combines Chen’s estimation with Jacobson’s
estimation of the round-trip time [17]. Bertier’s estimation provides a shorter detection time, but generates more
wrong suspicions than Chen’s estimation. The resulting failure detector is proved to belong to class♦P when
executed within a specific partially synchronous system model.

There exist also several other proposals for adaptive failure detectors, although with a more conceptual (e.g., [18])
or more specific (e.g., [4]) flavor.
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C. Theϕ-failure detector

Briefly speaking, theϕ-failure detector [9] works as follows. The protocol samplesthe arrival time of heartbeats
and maintains a sliding window of the most recent samples. This window is used to estimate the arrival time of
the next heartbeat, similar to other adaptive failure detectors [11], [12]. In addition, the distribution of past samples
is used as an approximation for the probabilistic distribution of future heartbeat messages. With this information,
it is possible to compute a valueϕ with a scale that changes dynamically to match recent network conditions.
Distributed applications use this value and set various thresholds to trigger appropriate reactions.

D. Comparison

We analyzed the behavior of theϕ-failure detector over transcontinental links [10], and compared its behavior
with that of other adaptive failure detectors [11], [12]. Theresults showed that the performance of theϕ-failure
detector was comparable with that of traditional implementations. We however found that none of the failure
detectors considered could provide adequate support for conservative failure detection because of their vulnerability
to message losses. In particular, neitherϕ nor Bertier’s failure detector consider message losses. Incontrast, Chen’s
takes account of message loses, but unfortunately relies onthe unrealistic assumption that losses are uncorrelated.
Since, in practice, message losses tend to bestrongly correlated (i.e., losses tend to occur in bursts), their failure
detector remains vulnerable to message losses.

IV. κ-FAILURE DETECTORS

In this section, we describe theκ-failure detector as a generic concept rather than a specific implementation (a
possible implementation is described in Sect. V). The basic idea is that each missed heartbeat contributes to raise
the level of suspicion of the failure detector. First, we definemore precisely what the contribution of a heartbeat is.
Then, we explain how the valueκ output by the failure detector is determined. Finally, we prove the completeness2

of the resulting failure detector.

A. Heartbeat Contributions (definition)

The κ-failure detector requires the existence of a function of time to represent the evolution of the confidence
that a given heartbeat will not be received in the future, either because it was lost or because the sending process
has crashed. The function returns a value between0 and1, where the latter means total confidence and the former
means no confidence at all. Initially, the value is zero and remains so until some time when the heartbeat begins to
be expected. Then, the value increases and ultimately converges to one. We consider this function as a black box
here. We propose a possible implementation in Section V.

More precisely, the contribution function is defined as follows:
Definition 6 (Contribution function):The contribution function is a function of time which satisfiesthe properties

below.
c : R −→ [0; 1]

• c is monotonic.
• c(0) = 0

• lim
t→+∞

c(t) = 1

The function is used for each heartbeat to determine the evolution of the confidence with respect to that heartbeat.
Notice that the function can be based on parameters that change dynamically, when new heartbeat are received.
We consider that there is a time, called the starting time, before which the heartbeat is not expected.

2We do not prove the accuracy of the failure detector essentially for the model assumed in the paper does not allow to ensure accuracy in
the formal sense (deterministically), although it does in a more pragmatic way (i.e., stochastically). Nevertheless, we evaluate QoS parameters
describing the accuracy of our failure detector experimentally in Section VI-C.1.
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Definition 7 (Starting time):Let H i denote thei-th heartbeat (withi = 1, 2, · · · ). Its starting timeT i
st has the

following property.

• ∀j
(

i < j ⇔ T i
st < T

j
st

)

It follows that the contribution of some heartbeatH i can be computed simply by (1).

ci(t) = c(t − T i
st) (1)

In practice, the nature of the contribution function is important for aggressive failure detectors but not so much
for conservative ones. This is because the contribution function defines the meaning of fractional part of the value
output byκ.

In reality, one can think of various possible contribution functions. In this paper (Sect. V), we propose an
implementation based on theϕ-failure detector as described in a recent technical report[10]. Alternatively, the
contribution of a heartbeat could be defined as a step function, thus matching single-heartbeat failure detectors
based on a conventional“trust-or-suspect” scheme, such as Bertier’s failure detector [11].

B. Computing theκ Function

The value output by the failure detector is given by a functionof timeκ(t), obtained by summing the contributions
of all expected heartbeats with a rank higher than the most recent heartbeat received so far. This is expressed by
the functionκ(t) defined below.

Definition 8 (κ): Let k be the rank of the most recent heartbeat received so far.

κ : R −→ R
+

κ(t) =
∞
∑

i=k+1

c(t − T i
st)

(2)

Notice that we also assume that, if processp is correct, thenp sends infinitely many heartbeat messages.

C. Important Properties

All properties mentioned below are based on the assumption that, when processq monitors processp, q suspects
p based on a positive constant3 thresholdK.

Lemma 1:Let p and q be two processes, whereq is correct and monitorsp. For any finite thresholdK, if p

crashes, then eventuallyκ(t) > K and this is permanent.

Proof: If p crashes, there is a time after whichq never receives any heartbeat fromp. Let Hk be the most
recent heartbeat received from processq.

Let c(t) denote the contribution function after that time. Since no more heartbeat messages are received, the
function does not change.

By its definition, the contribution function is monotonic andconverges to one. This means that there a time after
which the contribution is always greater than say1

2 . Let us call this timeT 1

2
.

3The assumption thatK that is constant is done in order to keep the proofs simple. This need not be the case in practice.
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Given a finite thresholdK, we prove the lemma by showing that there exists a timeT for which κ(T ) > K.
Let us chooseT as follows:T = T

k+2dKe+1
st

+ T 1

2
. We can now start fromκ(T ) and develop.

κ(T ) = κ(T
k+2dKe+1
st

+ T 1

2
)

Eq. (2):

= c(T − T k+1
st

) + · · · + c(T − T
k+2dKe+1
st

){...}
Def. 6:

≥ c(T 1

2
) + · · · + c(T 1

2
)

≥ (2dKe + 1) · 1
2

> 2dKe · 1
2 = dKe ≥ K

(3)

This proves the first part of the lemma. It is now easy to show the second part. Indeed, being the sum of
monotonically increasing functions,κ(t) is itself monotonically increasing. It follows that, for any time t′ > T ,
κ(t′) ≥ κ(T ) > K.

Theorem 1 (Strong completeness):A crashed process is eventually suspected by all correct processes.
Proof: This assumes that all processes monitor each other. Letp be some crashed process, andq be some

correct process that monitorsp. By Lemma 1,q eventually suspectsp (i.e., κ(t) > K). Since bothp and q have
been chosen arbitrarily, this completes the proof.

V. I MPLEMENTATION

This section describes a possible implementation of theκ-failure detector, based on a failure detection strategy
developed in earlier work. We have used this implementationto run the experiments presented in Section VI.

A. Description

In this implementation, the contribution function of heartbeats is computed from the arrival intervals between
two consecutive heartbeats. Namely, we use the estimation made for theϕ-failure detector [10], and consider that
the arrival interval between two consecutive heartbeats isa random variable that we approximate with a normal
distribution. The failure detector module is divided into two main tasks, namely, the sampling of heartbeat arrivals,
and the computation of the current value forκ(t). We now describe the two tasks of the failure detector.

Task 1: Sampling:The sampling task is executed whenever a new heartbeat is received, and gathers information
about recent heartbeat arrivals. In particular, the task maintains a sliding window of past arrivals with parameterWS

as the window size. Upon receiving a new heartbeat, the task reads the process clock and stores the heartbeat rank
and arrival time into the sliding window (thus discarding the oldest heartbeat if necessary).

The task keeps track of four values that are of particular importance for the estimation ofκ: the meanµ and the
varianceσ2 of inter-arrival times, as well as the rankk and the arrival timeAk, wherek is the highest rank among
all received heartbeats. For the first two values, this is doneby simply keeping track of the sum and the sum of
squares of inter-arrival times.

Task 2: Computingκ: This task is invoked when some application process queries the failure detector. The
task reads the process clock and computes the value for the function κ(t). This is done by approximating the
contribution function of expected heartbeats and summing each of them.

Given the values obtained by the first task (i.e.,µ, σ2, k, Ak), the contribution functionc(t) is approximated
from the cumulative normal distribution function.

c(t) =







1
σ
√

2π

t
∫

−∞
e−

(x−µ)2

2σ2 dx if t > 0

0 otherwise
(4)

It follows that, for some heartbeatH i, wherei > k, the contribution is computed by the functionci(t) shown
below. Also, in Eq. (4), the contribution of heartbeatH i starts one heartbeat interval before its estimated arrival.
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Hence, the starting timeT i
st of heartbeatH i is given by the following equation.

T i
st = Ak + (i − k − 1)µ

ci(t) = c(t − T i
st)

(5)

Computing the current value of the functionκ(t) is done by summing the contribution of all heartbeatsH i for
which the starting time is past (i.e., wheret > T i

st ).

VI. EXPERIMENTS

We have analyzed the behavior of our implementation of theκ-failure detector over a transcontinental network
connection for a total duration of three weeks. We have set several experimental scenarios of which we present the
most relevant ones. We begin the section by describing our experimental setup, then we describe our measurements,
present the experimental results, and finish the section witha discussion.

The main goal of our experiments was to observe the ability of theκ-failure detector to tolerate message losses in
a tunable way. Besides, we wanted to compareκ-failure detector with other adaptive failure detectors, and observe
the effect of certain parameters on a real-world environment.

A. Experimental Setup

Our experiments involved two computers, with one in Japan and the other in Switzerland, and connected through
a normal intercontinental Internet connection. One machine was sending heartbeats (thus acting like processp)
while the other one was recording the arrival times of each heartbeat (thus acting like processq).

The sending host was located in Switzerland, at the Swiss FederalInstitute of Technology in Lausanne (EPFL).
The machine was equipped with a Pentium III processor at 766 MHzand 128 MB of memory. The operating
system was Red Hat Linux 7.2 (with Linux kernel 2.4.9).

The receiving host was located in Japan, at the Japan AdvancedInstitute of Science and Technology (JAIST). The
machine was equipped with a Pentium II processor at 450 MHz and512 MB of memory. The running operating
system was Red Hat Linux 9.0 (with Linux kernel 2.4.20).

All messages were transmitted using the UDP/IP protocol. Interestingly, using thetraceroute command has
shown us that most of the traffic was actually routed through the United States, rather than directly between Asia
and Europe.

B. Experiments Overview

The experiment was done in two phases. First, we have recorded heartbeat arrivals using the experimental
setup described above. Then, we have used simulation to replay the recorded traces with different failure detector
implementations. As a result, the failure detectors are compared based onexactlythe same scenarios, thus ensuring
the proper fairness of the comparisons.

Phase 1: Recording heartbeat arrivals:For the first phase, we have run a program on the EPFL machine
to generate heartbeat messages. Another program ran on the JAIST machine to record the arrival time of each
heartbeat and log the information into a file. Neither machinefailed during the experiment. The experiment lasted
for three weeks, during which heartbeat messages were generated at a constant rate of one every 30 seconds. A total
of 60, 489 heartbeat messages were generated. Among those messages,219 messages were lost; this corresponds
to a loss rate of about0.36%. We observed that message losses tended to occur in bursts, the longest of which
was 13 heartbeats long (i.e., it lasted for about7 minutes). We observed27 different bursts of consecutively
99 lost messages (see Fig.2). The mean arrival interval of received heartbeats (filtering out lost messages) was
30.00467 seconds with a standard deviation of about24.5 ms, meaning that arrival times were quite stable (see
Fig. 1). As a final note, we have monitored the CPU load average on the two machines during the whole period of
the experimentation. We observed that the load was nearly constant throughout, and that the load was well below
the capacity of the machines.
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Fig. 2. Occurrence of message losses and network partitions

Phase 2: Simulating failure detectors:Using the trace file obtained during the first phase of the experiments,
we have run several simulations involving theκ-failure detector with various parameters. To provide a reference
for comparison, we have also run simulations with the failure detector of Chen et al. [12]. In particular, we have
done simulations according to the three scenarios described below (the corresponding results are discussed in
Section VI-C).

Scenario 1 (Mistake rate):The first scenario measures the mistake rateλM , obtained with theκ-failure detector.
In particular, we observe the evolution of the mistake rate when the thresholdK that triggers suspicions increases.
The scenario is important to determine how theκ-failure detector behaves with respect to conservative failure
detection. We do the same simulations with three different window sizes for the history, namely1, 000, 5, 000, and
10, 000 samples.

Scenario 2 (Estimated timeout):The second scenario measures the impact of the thresholdK on the estimated
timeout (and thus, somewhat indirectly, the detection time). Similar to the previous scenario, we do the simulations
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with several window size.
Scenario 3 (Comparison with Chen’s FD):In the third scenario, we compare theκ-failure detector with the

failure detector of Chen et al. [12]. The goal of the comparison is meant as a way to provide a reference.
For a fair comparison, we have tuned the parameters of both the κ-failure detector (thresholdK) and Chen’s

failure detector (safety marginα) so that they both have the same average mistake rate. We havedetermined that
mistake rate by choosing a threshold ofK = 1 for theκ-failure detector, and measuring the resulting mistake rate,
thus obtainingλM = 0.73%. Note that we chose a small threshold to ensure a fair comparison of the two failure
detectors. Indeed,κ is designed to tolerate message losses whereas Chen’s failure detector is not.

In addition, both failure detectors were set to use the same window size of1, 000 samples for computing their
estimation. In order to compare the failure detectors in their stable state, all results obtained during the warmup
period—i.e., the period before the window is full—were simply ignored. With the above settings, we have most
notably measured the longest mistake durationTU

M and the shortest mistake recurrence intervalTL
MR

.

C. Experimental results & discussions

This section presents the results obtained after running theexperiments described in Sect. VI-B. The first two
scenarios measure the behavior of theκ-failure detector, whereas the last scenario comparesκ and Chen’s failure
detector [12].

1) Mistake rateλM (Scenario 1):We measure the mistake rateλM of theκ-failure detector, when the thresholdK

varies. Figure 3 shows the mistake rate expressed as a number of wrong suspicions on the left vertical axis, and as the
equivalent relative value in percent on the right. The figure shows three curves obtained by using different window
size (i.e.,1, 000, 5, 000, and 10, 000 samples). The horizontal dashed line is used as a reference and represents
the mistake rate equivalent to generating one wrong suspicion per day. However, the mistake rate obtained when
considering only the wrong suspicions that are due to message losses, too high, could not be represented on the
figure.

Figure 3 illustrates the fact that, as the threshold increases, fewer wrong suspicions are generated, until no
suspicions are made during the three weeks period of the experiment.
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Fig. 4. (Scenario 2) Relation between the thresholdK and the estimated timeout. The three curves correspond to different window size
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In particular, when the threshold was set to aboutK = 2, the mistake rate was determined by the message
losses. With higher thresholds, some lost messages no longer caused wrong suspicions, untilK = 13.5, beyond
which not a single wrong suspicion was generated during the whole duration of our experiment. Evidently, a longer
experimentation period or a different environment would almost certainly yield different values for the thresholdK,
and hence the value is not particularly important. What is important is simply that such a value exists, and that we
were able to observe it under real-world conditions.

The figure allows us to make some other observations. First, we can see that changing the window size had only
very little effect on the mistake rate of the failure detector. In light of this, the smallest window size of1, 000

was sufficient to ensure the stability of the estimation. Second, the mistake rate decreases gradually for threshold
valuesK ≥ 4. This shows that fine-tuning theκ-failure detector is possible for conservative failure detection. On
the other hand, the curve has a staircase-like shape for smaller values of the threshold. This part, important for
aggressive failure detection, is essentially determined by the choice of contribution function.

Another interesting value is that, with a threshold ofK = 1, we obtained438 wrong suspicions, thus an average
mistake rate ofλM = 0.73%. We have used this value to tune the parameters of Scenario 3.

2) Estimated timeout (Scenario 2):We measure the estimated timeout of theκ-failure detector in relation with the
thresholdK (Fig. 4). Then, in Figure 5, we observe the variation over time ofthe estimated timeout, with a threshold
set toK = 1. We repeat the simulations for several window size, namely1, 000, 5, 000, and10, 000 samples.

On Figure 4, we see that the estimated timeout grows in a staircase curve as the thresholdK increases. This is
because the interval between heartbeats was set to30 seconds, and the standard deviation of inter-arrival timesis
small. The figure on the right shows a closeup forK ≤ 1. It shows that the window size has an influence on the
granularity of the estimated timeout. In particular, a small window size results in a more staircase-like behavior.

Figure 5 shows the evolution of the estimated timeout over time, when the threshold is set toK = 1 and the
window size to1, 000, 5, 000, and10, 000 samples. The plot on the right is a closeup around30 seconds. The plot
confirms the intuition that a small window is more sensitive totransient behaviors on the network, while a larger
window size results in a larger expected timeout.

3) Comparison with Chen’s FD (Scenario 3):We compare the behavior of theκ-failure detector with that of
Chen et al. [12]. To do so, we set the threshold ofκ to K = 1, and tuned the parameterα (i.e., the safety
margin) of Chen’s failure detector, so that both failure detectors have the same mistake rate (K = 1, λM = 0.73%,
α = 3.95 ms). We then compared the failure detectors based on other QoS metrics. In particular, we have measured
the average estimated timeout,4 the range of the mistake duration[TL

M , TU
M ], as well as the range of the mistake

4The estimated timeout is indirectly related to the detection timeTD. However, since we did not have synchronized clocks between the
two machines, we could not accurately measure the detection time.
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Fig. 5. Estimated timeout over time, withK = 1. The three curves correspond to different window size (1, 000, 5, 000, 10, 000 samples).

TABLE I

κ-FD VS. CHEN’ S ESTIMATION.

κ-FD Chen’s estimation
Parameters K = 1 α = 3.95e-03
Window size 1,000 1,000
Average estimated timeout [s] 30.073 30.117
Wrong suspicions 438 438
λM [%] 0.73 0.73
TL

M [s] 1.68e-05 7.16e-06
TU

M [s] 387.952 386.828
TL

MR
[s] 30.010 30.008

TU
MR

[s] 48,786.912 35,435.059

recurrence time[TL
MR

, TU
MR

]. The results are summarized in Table I.
The results in Table I do not show any significant difference in performance between the two failure detectors,

except for the upper bound of the mistake recurrence time which is about37% longer forκ. This tends to suggest
than κ benefits from longer good periods (measured byTG) than Chen’s failure detector. However, many more
experiments would be needed to verify this, and we are satisfied to conclude that both failure detectors had similar
performance whenκ was set as an aggressive failure detector.

Another point of interest is about the warmup period. The results in Table I have been computed after discarding
suspicions that occurred during the warmup period. We have looked at the behavior of the failure detectors during
the warmup period. We have found that, during this period, Chen’s failure detector generated80 wrong suspicions,
whereasκ generated only6.

Figure 6 depicts the evolution of the estimated timeout for both κ and Chen’s failure detectors, during the three
weeks that the experiment lasted. The parameters are set to the same values as those described in Table I.

Fig. 6 shows the transition of the estimated timeout in both failure detectors over three weeks according to the
setting described in Table I. The upper bound on the estimatedtimeout of theκ-failure detector is less than one
in Chen’s failure detector. The plots show that, although thefailure detectors have comparable performance, their
behavior is different. For instance, it is interesting to note that theκ-failure detector was more sensitive during the
first half of the experiment, while Chen’s was subject to two peaks during the12-th and the13-th days.

VII. R ELATION WITH GROUPMEMBERSHIP

Group membership is a popular approach to ensuring fault-tolerance in distributed applications. In short, a group
membership keeps track of what process belongs to the distributed computation and what process does not. In
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Fig. 6. Evolution of the estimated timeout forκ and Chen’s failure detectors. (parameters are described in Table I.)

particular, a group membership usually needs to exclude processes that have crashed or partitioned away. For more
information on the subject, we refer to the excellent surveyof Chockler et al. [19]. A group membership can also be
seen as a high-level failure detection mechanism that provides consistent information about suspicions and failures
[8].

In a recent position paper, Friedman [20] proposed to investigate the notion of a fuzzy group membership as
an interesting research direction. The idea is that each member of the group is associated with a fuzziness level
instead of binary information (i.e., member or not member).Although Friedman does not actually describe an
implementation, we believe that a fuzzy group membership could be built based on theκ-failure detector.

Similarly, theκ-failure detector could also be useful as a low-level building block for implementing a partitionable
group membership, such as Moshe [13]. Such a group membershipmust indeed distinguish between message losses,
network partitions, and actual process crashes. For instance, Keidar et al. [13] decide that a network partition has
occurred after more than three consecutive messages have been lost. Typically, this could be done by using the
κ-failure detector and setting an appropriate threshold.

VIII. C ONCLUSION

In this paper, we have presented a novel approach to implementing tunable conservative failure detection in
distributed systems. Theκ-failure detector presented in this paper addresses the problem of conservative failure
detection by taking account of message losses and short-lived network partitions. In addition, the failure detector
outputs information on a continuous scale rather than usingthe traditional “trust-or-suspect” model. This improves
its flexibility as applications can trigger suspicions basedon their own requirements, without interfering with each
other.

The κ-failure detector was described as a generic concept whereby a loss-intolerant detection strategy can be
used as the basis for computing the contribution of a single heartbeat. Yet, the combination of contributions makes
it possible to set a threshold so that consecutive message losses are tolerated.

The paper describes an implementation of theκ-failure detector, where the contribution of a heartbeat isbased
on theϕ-failure detector [9], [10] described in our earlier work. The resulting implementation is compared with
the failure detector of Chen et al. [12]. Our results show that the κ-failure detector behaves as expected in the
conservative range, since it can be set so that messages losses do not trigger wrong suspicions. Also, when setting
κ for aggressive failure detection, we found that its performance were comparable to that of the failure detector
of Chen et al. [12]. However, we believe that there exists room for improvement, especially whenκ is set as an
aggressive. In particular, it might be interesting to evaluate other contribution functions, but we leave this for future
work.
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