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Abstract

In this paper, we study the group membership and
view synchrony problem in a distributed system com-
posed of a group of teams of mobile robots commu-
nicating by physical robot messengers.

Communication by robot messengers raises new is-
sues and relevant fault tolerance techniques that are
different from those in traditional distributed sys-
tems.

1 Introduction

In this paper, we define a distributed system com-
posed of a group of teams of cooperative autonomous
mobile robots, communications between teams take
place by sending physically a robot messenger from
the team sender to the team receiver. A distributed
system composed of teams of autonomous mobile
robots communicating by robot messengers has dis-
tinct aspects and issues that are different of those in
conventional distributed systems.

comparison with traditional distributed sys-
tems : a team of mobile robots maps to a process
in traditional distributed system, with a difference
that a team can not send any message, if its pool of
messengers is empty, unless it receives a messenger

from another team, while a process can send mes-
sages at any time.

Obviously, communications by messengers take
longer delays and larger transmission time between
nodes, compared to conventional communication me-
dia such as radio, electric signals, and infrared beams.

A remarkable advantage of teams of mobile robots,
is that a robot messenger has enough memory to
carry any quantity of available of messages from a
team source to a team destination, in contrast to
bandwidth limitations for communication channels in
traditional distributed systems.

Concerning fault-tolerance aspects, we assume in
this paper that either teams or messengers fail by
crash. a team failure maps to a process failure, and a
messenger failure corresponds to lossy channels, with
the major difference resides in fault-tolerant tech-
niques. In order to tolerate a bounded number of
faulty messengers, the team sender sends a set of mes-
sengers such that its cardinality is greater than the
maximal number of faulty messengers in the system,
so this method guarantees a reliable communication
channel.

On the other hand, there is a particular failure de-
tection technique that is relevant to distributed sys-
tem composed of teams of mobile robots communicat-
ing by messengers, that is different from conventional
failure detection mechanisms. It is well-known that it



is impossible to correctly and deterministically detect
a process crash in purely asynchronous distributed
systems [5], because it is impossible to distinguish be-
tween a crashed process and a very slow one. But in a
context of robots communicating by physical messen-
gers, the detection of a crashed team occurred locally
on its site, by at least one correct messenger, and con-
sequently the system is augmented with some perfect
failure detector.

Example Let us illustrate the motivations of this
approach with a simple example. Consider a dis-
tributed application composed of a group of teams
of cooperative mobile robots searching mineral ob-
jects inside a mine. In this underground application
there is no established radio communications infras-
tructure, also it is not practical at all to establish any
radio communication system like (e.g., [2]) in this en-
vironment. 1 Using ultrasonic sound media in this
situation is not feasible. On the other hand commu-
nicating by infrared technology (e.g., [7]) can solve
the problem of the absence of radio communication
infrastructure, but it needs a line-of-sight between
communicating robots, and signals could be inter-
rupted because of moving obstacles.

So, it is convenient to communicate by physical
robot messengers in such applications, and also in
similar environments, like underwater and spatial
applications. Also, communications by messengers
could be used to tolerate catastrophic crashes of a
whole radio or infrared communicating system be-
tween teams of robots.

Group Membership and View Synchrony In
a distributed system composed of teams of mobile
robots, with presence of failures, it is desirable to
establish a group membership and view synchrony
protocol to:

• Allow teams to join and/or leave a group in a
consistent manner.

• Enable teams to install a new view such that all
teams in the system agree on every new installed

1the communication infrastructure in [2] is developed for
autonomous vehicles applications.

view.

So, a group membership and view synchrony proto-
col must generate an ordered sequence of consistent
views.

Definitions We define a group as a set of teams
which are said to be members of the group. A team
becomes a group member by requesting to join the
group; it can cease being a member by requesting to
leave the group. A view is the output of membership
service, consisting of the list of the current members
in the group, and a sequence number.

Contribution In this paper, we define a dis-
tributed system composed of teams of cooperative
autonomous mobile robots, such that the inter-team
communications “communications between teams”
occur by sending robot messengers.

We assume that the system is completely con-
nected, so there exists a “communication route” be-
tween each pair of teams, and every team has a pool
of robot messengers for sending messages to other
teams. In our system model, a group is a set of teams
communicating by robot messengers, we present and
discuss a distributed algorithm which is the group
membership and view synchrony in this system model
prone to messenger failures and team failures.

We handle the join of a new team to a group, the
leave of a team, the establishment and confirmation
of a new view in the system. We discuss three models
of failures, the first model assumes that messengers
and teams are both correct, the second model handles
the failures of messengers assuming that all the teams
are correct, and the third is the most general model
in which we consider both messengers and teams fail-
ures.

We present a group membership algorithm and give
arguments showing its correctness, then we evaluate
briefly the required energy and time, to run the algo-
rithm in each failure model.

Related work There exists group membership and
view synchrony protocols for conventional distributed
systems. Schemmer et al. [9] developed an archi-
tecture allowing mobile systems to schedule shared
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resource in real-time based on wireless communica-
tions, they present two membership protocols which
allow mobile systems to join and leave a group with
predictable delay at any time, these protocols dynam-
ically allocate bandwidth to joining stations. Their
approach aimed at solving the problem of congestion
in traffic control systems. Briefly, many protocols
has been presented (e.g., [1, 4, 8, 9]) based on differ-
ent scheduling techniques to allocate shared resources
such as the bandwidth to joining stations for dynam-
ically changing groups.

Abstractions of the existing protocols concerning
group membership and view synchrony for traditional
distributed systems, cannot be adapted to our dis-
tributed system model. On the other hand, the mo-
bile agents approach is based on software migration,
consequently this agent could be easily replicated,
but in our model a messenger is a physical entity.
Mobile agents approach does not meet our system
model and requirements.

Structure The rest of the paper is organized as
follows. Section 2 describes the system model and the
basic concepts and assumptions. Section 3 describes
the three failure models, the failure-free, messengers
failure, and both teams/messengers failure models.
Section 4 describes our group membership algorithm
with correctness arguments and behavior evaluation
for each failure model, and Section 5 concludes the
paper.

2 System model & definitions

2.1 System model

We consider a distributed system composed of a
group of n teams of autonomous mobile robots and
m messengers. n and m are > 1. These teams co-
operate with each other to achieve a required task
determined by the upper layer. The system is purely
asynchronous, so there exists no bounds neither on
the speeds of processing information by teams, nor
on the messages delays. Teams communicate between
each other by exchanging robot messengers. Figure 1
illustrates our system model.

Figure 1: System model

We assume that there exists a “communication
route” between each pair of teams, such that each
team can communicate directly with other teams,
and the system is completely connected.

The system (S) is a group of teams S =
{T1, T2, . . . , Tn}. Every team has an identifier, a set
of robots named “workers” responsible for executing
the required tasks, and a pool of robot messengers.

In this model, a robot messenger is ready to trans-
mit messages on behalf of its team and also on behalf
of other teams, and we assume that the capacity of
memory of a messenger is large enough such that it
can carry all available messages.

When a team receives a message, the cardinality of
its pool is incremented by one, and it is decremented
by one when it sends a message. We assume that
each messenger has enough energy to move two hops
at most, after that it requires a power supply from
any team in the system.

2.2 Metrics

In addition to the complexity metrics used in tradi-
tional distributed systems, we consider a new metric
that we call energy complexity.
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Roughly speaking, the energy complexity of an al-
gorithm A measures the total amount of energy spent
by a single run of the algorithm. The energy is evalu-
ated by counting the number of hops 2 that must be
made by messengers until the algorithm terminates.

2.3 Group membership & view syn-
chrony

The membership service maintains a list of currently
active a connected processes, in failure-prone dis-
tributed systems, and delivers this information to
the application whenever it changes. The reliable
multi-cast services deliver messages to the current
view members. For more information on the sub-
ject, we refer to the survey of Chockler et al. [3]. A
group membership can also be seen as a high-level
failure detection mechanism that provides consistent
information about suspicions and failures [6, 10]. In
short, a group membership keeps a track of what a
process belongs to the distributed computation and
what process does not.

In a distributed system composed of teams of
robots communicating by messengers, a group mem-
bership service provides a list of non-crashed teams
that currently belong to the system, and satisfies
three properties: validity, agreement and termina-
tion. Validity is explained as follows: let vi and vi+1

be two consecutive views, if a team Ti ∈ vi \ vi+1

then some team has executed leave(Ti) and if a team
Ti ∈ vi+1 \ vi then some team has executed join(Ti).
The agreement property ensures that the same view
would be installed by all the teams of the group
(agreement on the view) since agreement on uniquely
identified views is necessary for synchronizing com-
munications. The termination means that if team Ti

executes join(Tq), then unless Ti crashes, eventually a
view v′ is installed such that either Tq ∈ v′ or Tp /∈ v′.
We present the following notations used in the paper:

• |Ti| is the number of messengers exist in the pool
of the team Ti.

• initiator is the team which proposes (join) or a

2We call “hop” the journey from one team to another made
by some messenger.

(leave) operation, and consequently initiates a
procedure of creating a new view.

• logical ring is a logical circular list of teams iden-
tifiers.

• vini is the initial view of the system.

• vact is the current view of the system.

• vfin is the resulting view of the system.

3 Failure Models

We consider that a messenger and a team fail by
“crash”, and discuss three possible models of failure.
In the Model A, we assume that all messengers and
teams are correct. In Model B we consider the crash
of messengers only, but all the teams are correct. We
present the most general case by the Model C, which
considers both teams and messengers crashes.

3.1 Model A: Failure-free

Model A considers the case of failure free, in this
model there are neither crash of messengers, nor
crash of teams. Model A is specified by the the two
following properties:

• property A1: All messengers are correct.

• property A2: All teams are correct.

3.2 Model B: Messenger failure

In this model, we consider the failures of messengers
only, so a robot messenger may fail by crash while it
moves between teams carrying messages. (no crash
of teams in Model B).

We assume that number of faulty messengers is
bounded, and denote this upper bound by M .

In this model, We have the following properties:

• property B1 : A messenger can fail by crash, and
when it crashes, this crash is permanent.

• property B2 : A whole team of robots never
crashes, so all the teams in the system are cor-
rect.
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• property B3 : There is at least one correct mes-
senger in the system, so (M < m).

3.3 Model C: Team/messenger fail-
ure

In this model, the system contains some faulty teams
and some faulty messengers. We assume that the
number of faulty teams and faulty messengers is
bounded, we denote the maximal number of faulty
(teams, messengers) in the system by: (T , M).

In this model we have the following properties:

• Property C1 : A whole team(s) may fail by crash
and when a team crashes, this crash is perma-
nent.

• Property C2 : A correct messenger never crashes
while doing its jobs by carrying messages be-
tween teams, but if its team has crashed and
it was inside it at the moment of crash, then the
correct messenger crashes with its team. 3 Cor-
rect messengers that were outside their teams
never crash.

• Property C3 : The crash of a team implies the
crash of all the robots inside that team, the
crashed robots can be classified in two categories:
the workers of the crashed team, and its messen-
gers either faulty or correct which are still inside
the team at the moment of crash.

• Property C4 : There is at least one correct team,
and at least one correct robot messenger in the
system, we can express this condition as follows:
T < n and M < m.

• Property C5 : Any set composed of T teams,
should contain totally at most m−M −1 robots
messengers, at any instant. This condition can
be formalized as follows:

∑T
k=1 |Tk| ≤ m−M−1

The intuition underlying this condition (property
C5) is the following: it guarantees that there still ex-
ists at least one correct robot messenger in the system
if T simultaneous crashes occurred.

3this property is justified by the crash of the energy source
of the pool.

4 Group Membership and
View Synchrony algorithms

In this section, we study the problem of group mem-
bership and view synchrony in our system model,
considering the three precedent failure models. The
algorithms for models (A, B, C) are presented in the
appendix.

For each failure model, we give a brief explanation
and illustrate our algorithm by an example, then we
give arguments showing its correctness, and finally
we evaluate the energy and time required to run the
algorithm.

We represent the system as a logical ring of nodes
sorted by increasing order of teams identifiers, each
node in the list represents a team of robots, the initial
view contains all the teams in the system.

4.1 Group membership & failure-free
(Model A)

We study the group membership and view synchrony
in our system model, free of failures.

4.1.1 Description of the algorithm (Model A)

• Condition: The team initiator has at least one
messenger in its pool.

We illustrate the group membership algorithm, in the
case of failure-free by the following simple example:

Consider a system composed of three teams, we
construct a logical ring of nodes {T1, T2, T3}. The ini-
tial view is: {T1, T2, T3}. We suppose that the team
(T2) starts to propose a new view (team initiator),
and it invokes join(Tp) operation, the team T3 in-
vokes a leave(T3) operation, and T1 does not execute
any operation.

The team T2 starts the propose round by sending
a messenger to T3, the next team in the logical ring.
The messenger transports a message which proposes
the view: vi

T2
= {T1, T2, T3, Tp}.

When the team T3 receives this message, it behaves
as follows:

1. generates its own message: T3 .leave(T3 )
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2. merges msgT2 and msgT3 then proposes the view
vi

T3
= {T1, T2, Tp}.

3. sends a messenger to T1, with the new view vi
T3

.

When the team T1 receives the messenger, it be-
haves in the same previous manner with the difference
that T1 does not change any thing, it acknowledges
the current proposed view, and sends a messenger to
T2, which terminates the propose round and starts
the commit round.

T2 starts the commit round by sending the mes-
sage commit{T1, T2, Tp} to T3 which acknowledges
the current view vi and sends a messenger to the
next team.

The algorithm terminates when T2 receives back
the commit message that it has sent, and the group
membership algorithm is successfully terminated,
such that the team Tp has joined the group and T3

has left it, and the new view is vi = {T1, T2, Tp}.

4.1.2 Correctness arguments (Model A)

In this model, both messengers and teams are correct,
which guarantees the correctness of the communica-
tions between teams, so all messages sent by a team
are correctly received by the destination team, and
also proves the correct termination of this algorithm,
since it is guaranteed that a messenger returns back
to the initiator after both the propose and commit
rounds.

We show that the three properties of the Group
Membership protocol, are satisfied by our algorithm.

1. Validity: According to the algorithm A, the re-
moval of a team from a view is impossible unless
some team executes the operation leave(). Also,
the existence of a new team in a view, is possible
only by executing the operation join(new-team).

2. Agreement: The commit round of the algorithm,
allows to circulate the same view vfin to all the
teams, so the new view is vfin, and after the ter-
mination of the algorithm, any two teams install
the same view.

3. Termination: When a team Tp executes join(Tq),
this request is broadcasted to the teams that

follow Tp in the logical ring during the propose
round, and then all the teams in the system agree
on join(Tq) via the commit round. So, eventually
a view v′ is installed such that Tq ∈ v′.

4.1.3 Behavior Evaluation (Model A)

The algorithm executes two rounds, propose and
commit. Since there are no failures in this model,
the messenger performs 2n hops between the teams,
in order to define a new view. In the Model A, the
energy and time required are equivalent to O(2n).

4.2 Group membership & messengers
failure (Model B)

We study the group membership and view synchrony
in our system model, in presence of messengers fail-
ure.

4.2.1 Description of the algorithm (Model B)

• Condition: The team initiator has initially at
least (M + 1) messengers in its pool.

In Model B, the team initiator executes the propose
and commit rounds by sending a set of messengers
which has at least one correct. We illustrate the al-
gorithm by the same example of Model A:

The team T2 starts the propose round by sending
a set of (M + 1) messengers to T3, such that each
messenger carries the same message which proposes
the view: vi

T2
= {T1, T2, T3, Tp}.

When the team T3 receives this set of messengers
(or at least one), it behaves as follows:

1. unifies all the identical messages received from
T2.

2. generates its own message: T3 .leave(T3 ).

3. merges msgT2 and msgT3 , then proposes the
view vi

T3
= {T1, T2, Tp}.

4. sends the set of messengers that it has received
to T1, with the new view vi

T3
.
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When T1 receives the set of messengers from T3,
it does not change the view, acknowledges the cur-
rent proposed view, and sends the messengers to T2,
which terminates the propose round and starts the
commit round when it receives at least one mes-
senger from T1. T2 starts the commit round by
sending the same set of messengers with the mes-
sage commit{T1, T2, Tp} to T3 which acknowledges
the current view vi and sends the set to T1.

The algorithm terminates when T2 receives back at
least one messenger of this set carrying the commit
message that it has sent, and the group membership
algorithm is successfully terminated, such that the
team Tp has joined the group and T3 has left it, and
the new view is vi = {T1, T2, Tp}.

4.2.2 Correctness arguments (Model B)

The condition |initiator| ≥ (M + 1) guarantees that
the team initiator has at least one correct messen-
ger, we show that this condition ensures the correct
termination of the algorithm.

In the Model B, we need to send (M + 1) mes-
sengers from the initiator to the next team, in order
to guarantee the correct reception of messages by the
next team, 4 supposing that all the teams are correct.
(assumptions of this failure model)

The cardinality of this set remains ≥ 1 and ≤
(M + 1) because some messengers may crash before
reaching their destinations, and this set of messengers
is responsible of all the communications between the
teams until return back to the initiator. (propose and
commit rounds).

The algorithm guarantees that the same new view
is acknowledged by all the teams in the system, since
there is no team crash in this model.

The properties: Validity, Agreement, and Termina-
tion are discussed exactly as in the previous failure-
free model.

4The set of messengers moving between teams may become
smaller after each step of the algorithm, but this set is never
empty.

4.2.3 Behavior Evaluation (Model B)

The initiator sends a set of (M + 1) messengers, and
this same set performs 2n hops between the teams, so
the energy consumed is of the order: O(2(M + 1)n).
But the time required is the same as in the Model A,
because the robots move simultaneously. So, the time
required to run the algorithm is O(2n).

4.3 Group membership & teams and
messengers failure (Model C)

We study the algorithm of group membership in pres-
ence of both teams and messengers failure.

4.3.1 Description of the algorithm (Model C)

• Condition 1 : The team initiator is a correct
team.

• Condition 2 : The team initiator has initially at
least (M + 1) messengers in its pool.

We illustrate the group membership algorithm by the
following simple example:

Consider a system composed of four teams, we con-
struct a logical ring of nodes {T1, T2, T3, T4}. The
initial view is: {T1, T2, T3, T4}. We suppose that the
team T2 starts to propose a new view (team initia-
tor), and it invokes join(Tp) operation, for simplicity
we suppose that other teams do not execute any op-
eration, and the teams T1 and T3 are faulty.

propose round The team T2 starts the propose
round by sending a set composed of (M + 1) mes-
sengers to T3, such that each messenger in the set
carries the same message which proposes the view:
vi

T2
= {T1, T2, T3, T4, Tp}. When this set of messen-

gers arrives to the site of T3, it performs a crash de-
tection protocol based on hand-shaking with all the
workers of T3. It confronts 2 cases:

• T3 has crashed: the set of messengers returns
back to T2 indicating the crash of T3, then the
initiator changes the current view by removing
T3 from the group (forced leave) and sends this
set of messengers to T4 provided with the current
proposed view vi

T2
= {T1, T2, T4, Tp}.
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• T3 is alive: it unifies the identical messages, and
sends the set of messengers to T4, as in Model B.

The propose round terminates when the team initia-
tor receives back its set of messengers (or part of it).

commit round T2 starts the commit round by
sending the set of messengers with the message
commit{T1, T2, T4, Tp} to T4, which acknowledges the
current view vi and sends the set to T1. When the
messengers arrive to the site of T1 they confront 2
cases:

• T1 has crashed: the set of messengers returns
back to T2 indicating the crash of T1, then the
initiator changes the current view by removing
T1 from the group (forced leave) and restarts the
commit round by sending this set of messengers
to T4 again, provided with the current commit
view vi

T2
= {T2, T4, Tp}. Then T4 acknowledges

the commit view and sends the messengers to T2.

• T1 is alive: it unifies the identical messages, and
sends the set of messengers to T2, as in Model B.

The algorithm terminates when T2 receives back at
least one messenger belongs to the set it has sent, pro-
vided with the commit message, and the group mem-
bership algorithm is successfully terminated, such
that the team Tp has joined the group and (T1, T3)
have left it because of their crashes, and the new view
is vi = {T2, T4, Tp}.

4.3.2 Correctness arguments (Model C)

In this model we have team failures in addition to
messenger failures, so we need extra specifications
concerning a team correctness.

We show that the two previous conditions guaran-
tee that the algorithm terminates correctly. In our
model a messenger can perform at most two hops, so
when a messenger moves to a crashed team, the next
hop should be to a correct one, else the messenger
would be idle. The messenger returns to the team
initiator after detecting a crashed team, and the ini-
tiator is a correct team according to (condition 1),
while (condition 2) guarantees that the set of mes-
sengers sent by the initiator, has at least one correct

messenger. This set performs all the hops between
the teams as we discussed in the Model B.

In this model, we provide the system with a perfect
failure detector, because the detection of a crashed
team is carried out by a local hand-shaking mecha-
nism, between at least one correct messenger and all
the workers of the team. After detecting a crashed
team by a messenger, this messenger moves to the
team initiator (correct team), and proclaims the
crashed team, consequently, the crash is detected cor-
rectly and deterministically.

The commit round, permits to provide each non-
crashed-team with the most recent view, because the
initiator restarts the commit round whenever it de-
tects a crashed team, so the commit round terminates
correctly by delivering the same view vfin to all non-
crashed teams.

The properties: Validity, Agreement, and Termi-
nation are discussed exactly as in the Model A.

4.3.3 Behavior Evaluation (Model C)

The set of (M + 1) messengers may perform addi-
tional hops because of teams failures, so this set needs
to go backward to the initiator whenever it detects
a crashed team. (additional T hops in the propose
round), and (n · T hops during the commit round).
The energy consumed by messengers is calculated as
follows:

Propose round(worst case):(n + T )(M + 1).
Commit round(worst case):(n · T )(M + 1).
The total energy consumption is (M + 1)(T + 1) ·

n + T (M + 1).
The behavior evaluation in terms of energy can be

written as : O(α · n + β).
The behavior in terms of time is (T + 1) · n + T ,

also it can be expressed as: O(λ · n + µ).

Discussion The required energy and time to run
the algorithm increase when fault tolerance require-
ments become harder. In the Model A the algorithm
requires energy and time proportional to (2n), where
n is the size of the system (group of teams). In
Model B the energy becomes more significant than
in Model A. It is M times greater, which is justified
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by the cost required to tolerate the messenger fail-
ures, but the execution time is equivalent to that in
Model A. When the system is proned to team failures
in addition to messenger failures in Model C, the re-
quired energy is (M · T ) times greater than that in
the Model A, while the execution time is only T times
greater.

5 Conclusion

We have introduced a distributed asynchronous sys-
tem model composed of a group of teams of coopera-
tive mobile robots. The teams in our model commu-
nicate by physical robot messengers. We have pre-
sented a group membership algorithm, discussed its
correctness, and evaluated its behavior in terms of
energy and time, in three possible failure models, the
failure-free, the messenger failures, and both team &
messenger failures models.

We have shown the conditions that should be sat-
isfied to solve the problem of group membership in
our system model in each different failure model.
This technique of communications between teams of
robots permits to implement a perfect failure detector
since the detection of a crashed team takes place lo-
cally on its site. This property permits to solve many
agreement problems in asynchronous distributed sys-
tems composed of a group of teams of robots.

Furthermore, in this model faulty robot messen-
gers can be mapped to lossy channels in classical dis-
tributed systems. We guaranteed reliable communi-
cations in Model B by using one set of messengers
that has at least a correct messenger, this set circu-
lates the messages and supports all the communica-
tions between the teams of the system.

The model presented in our paper can be applied in
situations where there are no established communi-
cations infrastructures for cooperative mobile robots.

In the future, we also intend to further investi-
gate other distributed algorithms for cooperative au-
tonomous mobile systems.
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Algorithm of group membership
& failure-free

In this section, we present our algorithm of group membership
in the case of failure-free (Model A):

Algorithm(A): Group membership (failure-free)

Initial phase

1: S ← {T1, T2, . . . , Tn}
2: vini ← {Ti, i ∈ [1..n]}
3: vact ← vini

4: old view ← vini

5: msg ← ∅
6: operation = {join(new team), leave(team)}

main algorithm (Ti)
7: if (operation = join (new team)) then
8: Ti.propose (vact ← vact

S
{new team})

9: end if
10: if (operation = leave(team)) then
11: Ti.propose (vact ← vact \ {team})
12: end if
13: if (Ti = initiator) and (|initiator| ≥ 1) then
14: msg.initiator ← initiator(ID)
15: msg ← msg

S
{vact}

16: send a messenger with (msg) to next(Ti)
17: wait until reception of the messenger sent
18: when reception of the messenger sent
19: begin-commit-round()
20: end when
21: end if
22: if (Ti 6= initiator) then
23: msg ← msg

S
{vact}

24: send the messenger received from previous(Ti) with
(msg) to next(Ti)

25: end if
procedure begin-commit-round

26: if (Ti = initiator) then
27: vfin ← vact

28: msg ← commit(vfin)
29: send the messenger received from previous(Ti) with

(msg) to next(Ti)
30: wait until reception of the messenger sent
31: when reception of the messenger sent
32: terminate-commit-round()
33: end when
34: else
35: send the messenger received from previous(Ti) with

(msg) to next(Ti)
36: end if

end procedure
37: new view ← vfin

Algorithm of group membership
& messengers failure

We present in this section, our algorithm of group membership
in presence of messenger failures (Model B):

Algorithm(B): Group membership (messengers fail-
ure)

Initial phase

1: S ← {T1, T2, . . . , Tn}
2: vini ← {Ti, i ∈ [1..n]}
3: vact ← vini

4: old view ← vini

5: msg ← ∅
6: operation = {join(new team), leave(team)}

main algorithm (Ti)
7: if (operation = join (new team)) then
8: Ti.propose (vact ← vact

S
{new team})

9: end if
10: if (operation = leave(team)) then
11: Ti.propose (vact ← vact \ {team})
12: end if
13: if (Ti = initiator) and (|initiator| ≥ (M + 1)) then
14: msg.initiator ← initiator(ID)
15: msg ← msg

S
{vact}

16: send set of (M + 1) messengers provided with (msg) to
next(Ti)

17: wait until reception of the messengers sent
18: when reception of messengers sent
19: begin-commit-round()
20: end when
21: end if
22: if (Ti 6= initiator) then
23: unify all the identical propose messages received from

previous(Ti) into one message (msg)
24: msg ← msg

S
{vact}

25: send the set of messengers received from
previous(Ti) provided with (msg) to next(Ti)

26: end if
procedure begin-commit-round

27: if (Ti = initiator) then
28: vfin ← vact

29: msg ← commit(vfin)
30: send the set of messengers received from previous(Ti)

provided with (msg) to next(Ti)
31: wait until reception of the messengers sent
32: when reception of messengers sent
33: terminate-commit-round()
34: end when
35: else
36: unify all the identical commit messages received from

previous(Ti) into one message (msg)
37: send the set of messengers received from previous(Ti)

provided with (msg) to next(Ti)
38: end if

end procedure
39: new view ← vfin
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Algorithm group membership
(teams and messengers failure)

In this section, we present our algorithm of group membership
in presence of both teams and messengers failure (Model C):

Algorithm(C): Group membership (teams and mes-
sengers failure)

Initial phase

1: S ← {T1, T2, . . . , Tn}
2: vini ← {Ti, i ∈ [1..n]}
3: vact ← vini

4: old view ← vini

5: msg ← ∅
6: list← vini

7: operation = {join(new team), leave(team)}
main algorithm (Ti)

8: if (operation = join (new team)) then
9: Ti.propose (vact ← vact

S
{new team})

10: end if
11: if (operation = leave(team)) then
12: Ti.propose (vact ← vact \ {team})
13: end if

messenger:
function detect crash(messenger, team)

14: detect crash← TRUE
15: for all robot-worker (w) ∈ team do
16: if shake-hand(messenger, w) then
17: detect crash← FALSE {the team is still alive}
18: exit
19: end if
20: end for

end function
21: if detect crash(messenger, Ti) then
22: move to the team initiator.
23: end if

Team:
24: if (Ti = initiator) and (|initiator| ≥ (M + 1)) then
25: msg.initiator ← initiator(ID)
26: msg ← msg

S
{vact}

27: send set of (M + 1) messengers provided with (msg) to
next(Ti)
Handling crashed teams(propose round)

28: when reception of messengers carrying the failure de-
tection message:Tk has crashed and the current message
is (msg)

29: vact ← vact \ {Tk}
30: msg ← msg

S
{vact}

31: if (next(Tk) 6= initiator) then
32: send the received set of messengers carrying

(msg) to next(Tk)
33: else
34: begin-commit-round()
35: end if
36: end when

end Handling crashed teams (propose round)
37: wait until reception of messengers sent.

38: when reception of messengers carrying a “non failure-
detection message”

39: begin-commit-round()
40: end when
41: end if
42: if (Ti 6= initiator) then
43: unify all the received identical propose messages into one

message (msg).
44: msg ← msg

S
{vact}

45: send the received set of messengers carrying (msg)
to next(Ti)

46: end if
procedure begin-commit-round

47: if (Ti = initiator) then
48: vfin ← vact

49: msg ← commit(vfin)
50: list← list\{detected crashed teams} {vfin is identical

to the updated logical ring of teams identifiers, so when a
team receives the commit message, it discovers the next
team to send.}

51: if (the number of detected crashed teams < n-1) then
52: send the received set of messengers carrying

(msg) to next(initiator) in the new logical ring.
53: else
54: terminate-commit-round() {the number of

detected crashed teams = n-1, i.e. the initiator is the
only correct team in the system}

55: end if
Handling crashed teams(commit-round)

56: when reception of messengers carrying the failure de-
tection message:Tk has crashed and the current message
is (msg)

57: vact ← vact \ {Tk}
58: msg ← msg

S
{vact}

59: begin-commit-round {restart from the beginning}
60: end when

end Handling crashed teams (commit-round)
61: wait until reception of messengers sent
62: when reception of messengers carrying a “non failure-

detection message”
63: terminate-commit-round()
64: end when
65: else
66: unify all the received identical commit messages into one

message (msg)
67: send the received set of messengers carrying (msg)

to next(Ti) in the new logical ring.
68: end if

end procedure
69: new view ← vfin
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