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Abstract

For many years, people have been advocating the development of failure detection as a basic
service, but, unfortunately, without meeting much success so far. We believe that this comes from
the fact that importargystem engineerinigsues have not yet been addressed adequately, thus pre-
venting the definition of a truly generic service. Ultimately, our goal is to define a service that is
both simple and expressive, yet powerful enough to support the requirements of many distributed
applications.

To this end, we consider an alternative interaction model between the service and the applica-
tions, calledaccrual failure detectorsRoughly, an accrual failure detector associates to each process
a real value representingsaispicion levelinstead of the traditional binary information (i.e., trust
vs. suspect). In this paper, we provide a rigorous definition for accrual failure detectors, demon-
strate that changing the interaction model leads to no loss in computational power, discuss quality
of service issues, and present several possible implementations.

1 Introduction

Failure detection is an essential component for building reliable distributed systems. As such, it was
proposed many times that failure detection ought to be provided as a generic service, shared among
distributed applications (e.qg., [13, 16, 29]). In spite of many ground-breaking advances made on failure
detection, such a service still remains at a distant horizon.

We contend that the current obstacles to provide failure detection as a generic system service—in
sharp contrast with the success of NTP for time synchronization—are due to the fact that several impor-
tantarchitecturalandengineeringssues have been overlooked until now. To be genuinely ubiquitous,

a failure detection service must be able to satisfy the requirements of a large variety of application
classes without introducing unnecessary limitations. To this end, the following two major issues must
be addressed properly. Firstly, at any time, the service must be able to provide various levels of quality
of service (QoS) in order to meet the requirements of independent applications that may run simul-
taneously. Secondly, the service must support all reasonably common usage patterns as smoothly as
possible.

Although the computational aspects of failure detectors are now well-established and several effi-
cient implementations have been proposed, only few studies have been looking at the issues mentioned
above. This paper addresses these issues by definamgal failure detectorsa concept that allows for

*Part of this research was conducted for the program “Fostering Talent in Emergent Research Fields” in Special Coor-
dination Funds for Promoting Science and Technology by the Japan Ministry of Education, Culture, Sports, Science and
Technology; the Japan Society for the Promotion of Science; a Grant-in-Aid for JSPS Fellows from the Japan Ministry of
Education, Culture, Sports, Science and Technology; and the Swiss National Science Foundation.



a cleaner decomposition of the behavior of the underlying system and the quality of service provided
to the applications. In recent work, we have proposed a possible implementation of an accrual failure
detector, called the failure detector [23].

This paper defines the generic notion of accrual failure detectors, and makes the link with the com-
putational aspects of failure detection. More specifically, this paper complements our earlier work by
(1) providing a precise definition for the conceptaaicrual failure detection(2) establishing important
properties of such failure detectors, and (3) presenting the characteristics of several useful implementa-
tions.

1.1 Failure detectors

In their seminal paper, Chandra and Toueg [7] have established the theoretical foundation of failure de-
tection. Many important results stem from their work, such as minimal conditions, equivalences, trans-
formations, metrics (e.g., [6, 8, 9, 15, 24, 28, 25, 26]). These studies concentratecomietational
power of failure detectors from an algorithmic perspective. Other studies have been aimed at imple-
menting such failure detectors over small-scale (e.g., [8, 3]) and large-scale networks (e.g., [29, 4]).
However, most failure detectors proposed in the literature are based on a binary interactiod model,
whereby a monitored process is either trusted or suspécted.

1.2 Limitations of the binary model

The binary model has some limitations when it comes to providing failure detection as a generic service.

First, a binary interaction model makes it difficult to support several applications running simultane-
ously. To see this, one must realize that there is an inherent tradeoff betarsarvativdi.e., slow and
accurate) andggressivdi.e., fast but inaccurate) failure detection. Different applications are likely to
have different requirements with respect to the QoS of the failure detection. Moreover, several levels of
QoS can be useful even within the same application. For instance, an application can take precautionary
measures against catastrophic failure when the confidence in a suspicion reaches a given level, and then
take more drastic actions once the confidence raises above a second (much higher) level.

Second, although binary failure detectors are well-adapted to meet the needs of many algorithms,
their interaction model cannot easily cope with some usage patterns that arise in practice. The simple
example below illustrates two such usage patterns.

1.3 lllustration: BoT computations

To further illustrate our point, we present a simple example taken from the execution of Bag-of-Tasks (BoT)
computations in the OurGrid platform [10] (kindly suggested to us by Francisco V. Brasileiro). This ex-
ample is particularly helpful as it shows two interesting usage patterns of failure detectors.

Consider a simplified environment with one master process and a collection of worker processes.
The master holds a list of independent tasks that need to be executed, dispatches these tasks to available
workers, and gathers results. For simplicity, assume that the master never fails but that some of the
workers may crash. Clearly, the master must be able to detect the crash of a worker and reassign the
tasks of the worker, or else the computation may never complete. Consider the following two situations,
where the master needs to use information about the possible failure of workers.

First, when assigning tasks to the workers, the master must avoid sending them to workers that
have crashed. Hence, the master needs to be able to sort workers according to how likely they are still
operationaP

1Some notable exceptions (e.g., [18, 28]) are discussed in Section 6.
2This includes the eventual leader oracle, that can be expressed in teinmst ahdsuspec{6].
30f course, other parameters, such as the load on the workers, may be equally important when assigning tasks to workers.
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Figure 1: Binary failure detectors: monitoring andrigure 2: Accrual failure detectors: monitoring
interpretation are combined. and interpretation are decoupled.

Second, when a task is being executed by a worker, the crash of this worker must be detected and
the task restarted. However, let us consider the cost of making a wrong decision: if a task is wrongly
aborted, all CPU cycles that were spent computing the task are wasted. Note that the cost of aborting
the task due to a wrong suspiciortreases as time passes

The two situations described above are difficult to handle with binary failure detectors. While ad-hoc
solutions certainly exist, a more suitable abstraction can simplify the design and thus improve the quality
of the system. We know of one attempt at defining such an abstraction, called slowness oracles [28],
that cope with the first situation by ordering processes according to their perceived speed. However,
slowness oracles do not cope well with the second situation.

1.4 Accrual failure detectors

To cope with the situations described above, we advocate a more flexible interaction model for failure
detectors, on top of which binary and other kinds of failure detectors can be constructed. More specifi-
cally, we define a family of failure detectors, callaccrual failure detectorswhereby each monitoring

process associates, to each of the monitored processes, a real number that changes over time. The value
represents auspicion levelwhere zero means that the process is not suspected at all, and the larger the
value, the stronger the suspicion. Roughly speaking, accrual failure detectors ensure that the suspicion
level associated with a monitored proceg4d) accrues toward infinity ip is faulty, and (2) is bounded

if p is correct.

1.5 Architectural issues

Failure detection can be decomposed into three basic tAdtsitoring allows the failure detector to
gather information about other hosts and their processes. This is usually done through the network, by
sampling heartbeat arrivals or query-response deleysrpretationis necessary to make sense of the
information obtained through monitoring. With binary failure detectors, this is often done by setting
some timeout and generating suspicions. QoS parameters intervene at thig\stagesare executed
as a response to triggered suspicions. This is most often done within the applications.

For a service, one of the major advantages of providing an accrual failure detector over a binary one
is that the former allows for a complétedecoupling between monitoring and interpretatidndeed,
binary failure detectors combine these two roles (see Fig. 1), and thus provide applications only with
information that is already interpreted. Applications are left with how to react to suspicions. Unfor-
tunately, suspicion tradeoffs largely depend on the nature of the triggered action, as well as its cost in
terms of performance or resource usage.

“Notice that a common misconception considers heartbeat intervals as a parameter for setting the QoS of failure detectors.
In practice, while heartbeat intervals indeed have an effect on the overall QoS, the parameter is iaghosigby the
underlying system (i.e., its behavior as well as its administration). Refer to [23] for a more detailed argumentation on this
issue.



In contrast, accrual failure detectors leave the task of interpreting the suspicion level to applications
(see Fig. 2). Thus, different applications can set different thresholds to suspect processes according to
their needs, or even directly use the suspicion level as a parameter to their actions. Note that this is
an architectural consideration: a library can still provide the interface of a binary failure detector to
applications that prefer that interaction model. However, there will be one interpretation module per
application, not one interpretation module shared among all applications within the failure detector.

1.6 Contribution & structure

The main contribution of this paper is to provide a rigorous definition for accrual failure detectors.
In particular, we focus on a class of accrual failure detectors that is computationally equivalent to an
unreliable failure detector of clas¥P (i.e., one that stops making mistakes after some time). We
identify important properties of accrual failure detectors in relation with the quality of service of failure
detectors. Finally, we discuss several possible implementations of accrual failure detectors and explain
how they are related.

The rest of the paper is structured as follows. Section 2 describes our system model, as well as some
basic definitions. Section 3 defines accrual failure detectors and their basic properties. Section 4 states
several important theorems related to particular classes of accrual failure detectors. Section 5 outlines
several possible implementations of accrual failure detectors. Section 6 discusses how accrual failure
detectors are related to previous work. Finally, Section 7 concludes the paper.

2 System model & definitions

System model. We consider a distributed system consisting of a set of procékses$pi, ..., pn}.

We assume the existence of some global time, unbeknownst to processes, the domain of which,
denoted byT, is an infinitely countable subset of real numbers with no upper bound. We assume that
processes always make progress, and that at deasO time units elapse between consecutive steps
(the purpose of the latter is to exclude the case where processes take an infinite number of steps in finite
time).

Failures. The failure model considered in this paper is based on the model of Chandra and Toueg [7].
A process can be correct or faulty. A proceskidty if its behavior deviates from its specification, and
a process isorrectif it is not faulty. We say that a proce$ails when its behavior starts deviating from
its specification. Faulty processes never recover.

A failure pattern is a functiod” : T — 2!, whereF(t) is the set of processes that have failed before
or at timet. The functioncorrect(F') denotes the set of correct processes (processes that never belong
to failure patternt’) while faulty(F') = I1 — correct(F') denotes the set of faulty processes.

Failure detectors. Chandra and Toueg [6] define failure detectors as a collection of failure detector
modules, one attached to each process, that output information on the failure pattern that occurs in an
executior® A failure detector module outputs information from a rarigef values. A failure detector
history H with rangeR is a functionH : II x T — R, whereH (p, t) is the value output by the failure
detector module of procegsat timet. H is only defined at times when the failure detector module
provides an answer toguery, the failure detector module may be queried whenever prqoctsies a

step, and each query eventually results in an answer. This follows the definition of oracles introduced

5The definition of failure detectors of Chandra and Toueg [7] restricts the output to a set of suspected processes. Accrual
failure detectors are based on the definition of Chandra et al. [6], that allows values taken from an arbitrary range.



by Aguilera et al. [2P The times at which queriel 2, - - - are answered are denoted by the sequence
RV (1), ¢4 (2), - - - . Correct processes query their failure detector modules infinitely-many times.
Binary failure detectorssuch as those defined by Chandra and Toueg [7], output values from the
rangeR = 2!, that is, the power set di. If a process is part of the output set, itsisspectedo have
failed, otherwise it igrusted An S-transitionoccurs when a trusted process becomes suspected and a
T-transitionoccurs when a suspected process becomes trusted.
Chandra and Toueg [7] define a class hierarchy of unreliable binary failure detectors, of which we
present only one, calledP (eventually perfect). The class is defined by the set of failure detector
histories that it permits, as specified by the following two propertieaipletenesandaccuracy

(STRONG COMPLETENESY Eventually every faulty process is permanently suspected by all correct
processes.

(EVENTUAL STRONG ACCURACY) There is a time after which correct processes are never suspected
by any correct process.

Quality of service metrics for failure detectors. Chen et al. [8] define metrics for the quality of
service of failure detectors. Quality of service quantifies how fast a failure detector detects failures
(completeness) and how well it avoids wrong suspicions (accuracy). All metrics are defined for a pair
of processep andg, with ¢ monitoringp. The metrics used in this paper are summarized below.

e Thedetection timgTp) is the time that elapses sinpdails and untilg starts suspecting per-
manently (i.e., until the final S-transition).

The detection time is the only completeness metric, defined on runs in wigdaulty. In contrast,
all others metrics (below) relate to the accuracy and are defined on runs inmiSicbrrect.

e Themistake recurrence tim@;z) measures the time elapsed between two consecutive mistakes,
i.e., the time between two S-transitions.

e The mistake duratior(73;) measures the time it takes for the detector to correct a mistake, i.e.,
the time from an S-transition to the next T-transition.

e Theaverage mistake raté\,;) measures the rate at which a failure detector make mistakes, i.e.,
the average number of S-transitions per time unit.

e Thequery accuracy probabilityP,) is the probability that the failure detector’s output is correct
at a random time.

e The good period duration(7) measures the length of a good period, i.e., the time from a T-
transition to the next S-transition.

3 Definition of accrual failure detectors

In this section, we define what accrual failure detectors are. We begin by defining the notion of suspicion
level between a pair of processes. Then, we define the notion of accrual failure detector for a distributed
system withn processes. Finally, we define a class of accrual failure detectors of particular interest,
calledOP ..

6aguilera et al. [2] define oracles as a sequence of quadriplesi, o) wherep is a processt is a time instant; is the
query ofp at timet ando is the answer of the oracle at timeBothi ando may take the valud_, meaning respectively that
no query is made at timeand that no answer is available at time



3.1 Suspicion level

Consider two distinct processg®ndgq, with ¢ monitoringp. Let Rar denote the real positive numbers
and zero. The suspicion level of procesmonitoring proces® expresses the confidence @in the
statement that is faulty.

Definition 1 (Suspicion level) The suspicion level of procegsvith respect to procegsis the function
slgp + T — R{. The functionsl,, has a finite resolution, i.e., it may only assume integer multiples of

an (arbitrarily small, but non-infinitesimal) positive constantvhere for allt, sz%(t) €z
Additionally, we consider that the suspicion level satisfies the following two properties.

Property 1 (Accruement) If process is faulty, then eventually, the suspicion levig),(¢) is monotonously
increasing at a positive rate.

p € faulty(F) =
SKAQVE > K 5 (slop (6™ () < slaplt°™ (h+1)) A slop (H°7 (K)) < slop(t8"™ (k+Q))

Property 2 (Upper bound) If processp is correct, then the suspicion levél,,(t) is bounded.

p€ correct(F') = 3SLpay : Vt (slgp(t) < SLmag)

3.2 Accrual failure detectors

An accrual failure detectdP,,. is a failure detector with rang = (R )™ (note the analogy to binary
failure detectors for which the range 2). Its history is defined a#l(q,t)(p) = sl (t). In other
words, failure detector modules output non-negative real values, with each value corresponding to a
process and representing the current suspicion level of that process.

We now define the clas$P,. of accrual failure detectors. We discuss other classes of accrual
failure detectors in Section 4.3.

Definition 2 (0P, accrual f. d.) For all pairs of distinct processesand ¢, the properties of Accrue-
ment (Prop. 1) and Upper Bound (Prop. 2) both hold.

3.3 Discussion on properties

We now discuss interesting characteristics of the suspicionéygt). This discussion may shed some
light on the reasons behind the definition of the properties.

e The constraints onl,,(t) in the two properties are mutually exclusivié.it were not the case,
an accrual failure detector would make it impossible to distinguish between correct and faulty
processes.

e The upper bound in the Upper Bound property is unknadiie bound was known, the interpre-
tation of the suspicion level would be trivial: applications could just compare the suspicion level
to the known bound. This is contrary to our key concept that the interpretation of the suspicion
level should be left to the application.

e The condition on the positive rate of increase mentioned in the Accruement property is necessary.
It may be tempting to consider a weaker condition that, if progasdaulty, the suspicion level
goes to infinity with time, i.e.1g li+m slgp(t) = 400
— 100

Although attractive by its simplicity, it turns out that this condition is not sufficient because it
allows situations where a correct and a faulty process can never be distinguished. This statement

6



is proved by presenting an adversary whereby a process can never make any permanent decision
(proof in the appendix; Sect. A.5).

In practice, since the minimal rate is unknown and so is the period when it becomes effective, this
is not a very stringent condition.

¢ A positive rate of increase mentioned in the Accruement property allows for stationary periods.
If p is faulty, and even after stabilizatiotf{“"? (K)), sl,,(t) need not be strictly monotonous. In
particular, it may remain constant for a bounded number of quegisHurthermore, the bound
on the number of querigg is unknown.

We could require thatl,,(t) become strictly monotonous eventually. In contrast, since the cur-
rent definition allows for period during whicti,,(t) remains constant, this leaves more flexibility

with respect to the implementation of accrual failure detectors. Indeed, implementations may find
it difficult or inconvenient to return an increased value upon every query. This would possibly
necessitate to either artificially update the suspicion level upon every query, or access some hard-
ware clock with sufficiently fine resolution to compute the suspicion level (note that such a clock
might not be available).

e The increase rate of the Accruement property is time-ffée rate is stated in terms of a number
of queries to the failure detector. Thus, it avoids referring to any notion of physical time by im-
posing a time bound on how long,,(t) may remain constant. Otherwise, we would effectively
impose some restriction on the model either (1) by imposing a minimal speed on processes, or
(2) by assuming access to synchronized clocks.

e The minimal rate of increase has a lower bound that depends amd (). In particular, the
positive rate of increase can be bounded from below during the stable perig@®@ywhereQ
is the maximal number of queries before the function is strictly required to increase jstite
difference between two consecutive values in the rangé,pft) .

slap(tq" " (K)) — slgp(tg" " (K)) _ ¢

K~k =50 @

forall k > K andk’ > Q + k (whereK is the query number when the function starts increasing
monotonously). Sinc€ can be arbitrarily large, the rate of increase can be arbitrarily small.

4 Power & QoS of accrual failure detectors

This section proves that an accrual failure detector of cfg8s. and a binary one of classP have

the same computational power. This means that any problem that can be solved with a binary failure

detector of clas®P can also be solved with an accrual failure detector of cfg8s., and vice-versa.

We show the equivalence by presenting algorithms that transform a failure detector of one class into a

failure detector of the other class.We then introduce other classes of accrual failure detectors, and also
investigate the relationship between thresholds on the suspicion level and the corresponding quality of
service.

4.1 Transformation: accrual to binary

For simplicity, Algorithm 1 is expressed for a pair of procegsandq, whereq monitorsp. Shortly,
the algorithm works as follows. The algorithm maintains the status of the binary failure detacbo(
suspeatin the variablestatus It also maintains a dynamic threshdd,,,, on the suspicion level of the
accrual failure detector, that triggers S-transitions (this is a common technique [14, 6, 17]). Similarly,



Algorithm 1 Transforming an accrual failure detector of clgg3,. into a binary one of clas$P.
1: Initialization:

2:  status := trust {current status (trust or suspegt)
3. SLgusp = slgp {threshold for suspectinig
4 l:=1 {run length of period with constant suspicion level
5. Liust =1 {run length for trusting
6:  Slyrey := Slgp {previous suspicion levgl
7: whenqueried about procegs

8 sl = slgp(t) {get current suspicion levl
9:  if sl # slyre, then {update run length
10: =0
11 [:=1+1
12:  if sl > SLgysp andstatus = trust then {suspect if level beyond threshgld
13: status := suspect
14: SLgysp := sl {increase threshold for suspectihg

15:  if (sl < slprey OFl > Lypyst) @andstatus = suspect then  {trust if level decreasing or constant for a long tifne
16: status := trust
17: Lipyst ' = Lipyst + 1 {increase run length for trusting

18 slprey 1= sl

a second threshold;s:, also dynamic, is used for T-transitions and tracks the number of consecutive
gueries during which the suspicion level does not increase.

Let us now sketch why the algorithm is correct (proofs in the appendix; Sect. A.1). Increasing
the two threshold$L,s, and L. is the key to ensuring the correctness of the algorithm. On the
one hand, ifp is correct, the algorithm ensures tt#t,,s, will grow beyond the boundL,,,, for the
suspicion level (see Property 2) and thus S-transitions stop occurring. On the other hasdaiflty,
the thresholdl;,s; will grow beyond the maximum number of queri@sduring which the suspicion
level may stay constant (see Property 1) and thus T-transitions stop occurring. After, it is easy to show
that the last transition is a T-transition in the first case and an S-transition in the second.

4.2 Transformation: binary to accrual

Algorithm 2 Transforming a binary failure detector of clas® into an accrual one of clagsP ...
1: Initialization:

2: Slprey =0 {previous suspicion levgl
3: whenqueried about procegs

4: query the binary failure detector

5. if pis suspectethen

6: Slap(t) = Slyrey = Slprev + €

7: else

8: 8lgp(t) := Slyrev =0

Again, for simplicity, Algorithm 2 is expressed in terms of two procegsasdq, whereq moni-
torsp. Upon each query to the accrual failure detector, the algorithm queries the binary failure detector
and updates the suspicion levg},, the following way: (1) ifp is suspectedsi,, increases by the
resolutione; (2) if p is trusted sy, is reset to zero.

It is easy to see that the algorithm is correct (details in the appendix; Sect. A.2) by looking at what
happens after the binary failure detector stabilizes. i# faulty, si,, increases by at each query and
thus Accruement (Prop. 1) holds. In contrasy i§ correct,sl,, remains zero and thus is bounded by
the maximal value it took before the binary failure detector stabilized. Thus, Property 2 also holds.



4.3 Other classes of accrual failure detectors

In Section 3, we defined the properties of Accruement (Prop. 1) and Upper Bound (Prop. 2) and the
QP class of accrual failure detectors: the properties must hold for any pair of processes. In this
section, we briefly introduce other classes of accrual failure detecRys:0S.. andS,.. Each of

these failure detector classes is equivalent to the corresponding binary failure detect®y, (J&sand

S [7]. The formal definitions and the proofs (using slightly different properties) appear in [12].

P.. The classP,. is based on a stronger Upper Bound property for each pair of processes. The
difference is that we require thatkmownbound holds forsi,,, whereas Property 2 requires that an
unknownbound holds.The transformation algorithm frgPg. to P is simply based on Algorithm 1 by
initializing the suspicion threshold to the value of the known bound.

0S4, We also define weaker failure detector classes. The €l&ss differs from the clas)P .
in that Upper Bound (Prop. 2) only needs to hold for all processes with respect to one single correct
processp (instead of all pairs). This is similar to the difference between the binary failure detector
classes)S andOP.

The simple implementation fapP,. (sketched in Section 5.1 and presented in Section A.4) im-
plements)S,. as well. The transformation algorithms (Algorithms 1 and 2) remain the same, and the
proofs need to be adapted only slightly.

S.c The classS,. is defined similarly. The Upper Bound property must however come with a known
bound (seéP,. above), but that property only has to hold for some correct praeéssfordsS ,.).

4.4 Multiple thresholds for differentiated QoS

The introduction stated that one accrual failure detector can serve multiple applications with different

guality of service requirements. This section explores that statement more concretely by expressing it in

terms of quality of service. We consider applications that interpret the suspicion level by comparing it

to a threshold. We show that using a lower threshold results in aggeessivdailure detection, i.e., a

better quality of service regarding the detection of actual failures but a worse quality of service regarding

wrong suspicions. Conversely, a higher threshold results in omreervativdailure detection, i.e., a

better quality of service regarding wrong suspicions at the expense of detecting actual failures.
Consider two processesandg, with ¢ monitoringp. Let applications (running oq) interpret the

suspicion level by comparing it to a given threshold (where the threshold is a function of time) and

suspect the monitored processg and only if the suspicion level is beyond the threshold:

VteT, (pis suspected &) < sly,(t) > T'(t) (2)

whereT : T — RT is a threshold function. The equation effectively describes a binary failure detector
that we denote bPr.

Now, consider two applications that use two failure deteciors and D7, with different threshold
functionsT) (t) andT»(t). Let Ti(t) < Tx(t) for any timet. We can state a number of interesting
properties about the two failure detectors and their quality of service.

Theorem 1 At all times, failure detectoDy, suspect only if failure detectorDr, suspectp.

Since the details of the proofs are not essential to convey the message, they are omitted here and pre-
sented in the appendix (Sect. A.3).
We can state the following simple corollaries in terms of quality of service metrics (see Section 2):



Corollary 2 Drp, detects failures at least as fast &,: Tp(Dp,) < Tp(Drp,) whereTp(D) is the
detection time of failure detectdp.

Corollary 3 At some random timeDy, is at least as likely to trust a process @%,: P4(Dr,) <
PA(Dr,) whereP4 (D) is the query accuracy probability of failure detectdr

There is no such simple relationship stated with the quality of service mé&tjcS 'z, Ay and
Tc. However, such relationships exist if the failure detectors interpret the suspicion level in a slightly
different manner. LeD’, andD'p, useT (t) andT5(¢) to trigger an S-transition, just as before, but
let them use theamethreshold functioril(¢) to trigger T-transitionsTy(t) < T1(t) < T»(t) holds
at any timet. With the new failure detector®’;, andD’r,, Theorem 1 and its corollaries still hold.
Additionally, we have the following theorem:

Theorem 4 If failure detectorD’, has T-transition at some timethen failure detectoD’r, also has
a T-transition at time.

The following corollaries follow from Theorems 1 and 4.

Corollary 5 D'r, generates wrong suspicions at most as frequent®y’as: Thr(D'r,) < Tur(D'1,)
and Ay (D'r,) > Ay (D',) whereTyr(D) and My, (D) are the mistake recurrence time and average
mistake rate of failure detectdp, respectively.

Corollary 6 D', rightly trusts a process for at least as long RS, both starting from an S-transition
and a random time when the process is trustéd(D'r, ) < T:(D'r,) whereT (D) is the good period
duration of failure detectoD.

Unfortunately, there is no simple derivation with the meffig. Informally, the reason is that the
failure detectorDy, can artificially obtain a better “score” by going through many brief periods of
wrong suspicions during whicBz, does not suspect.

5 Implementing accrual failure detectors

In this section, we present implementations of accrual failure detectors for systems in which processes
can crash. We start with the simplest implementation, and then present three increasingly complex and
versatile variants. For simplicity, the explanations consider just two processely, with ¢ monitoring

P-

5.1 Simple implementation

In the simplest implementation, the monitored procesends heartbeats at regular intervals to the
monitoring process. Upon a query, the accrual failure detectog atmply returns the time that elapsed
since the reception of the last heartbeat.

The algorithm assumes a partially synchronous system model in which processes fail by crashing
permanently. Informally, we can see that the algorithm implements a failure detector of&lasin
that model. Ifp crashes, it stops sending heartbeats, and thus the suspicion level will increase forever,
thus Property 1 (Accruement) is satisfied. In contragi,iff correct, it is possible to calculate an upper
bound on the maximal time elapsed between any two consecutive heartbeats, based on the characteristics
of the execution. Then, Property 2 (Upper Bound) is satisfied.

Note that if one compares the suspicion level to a constant threghtddsuspect the process, the
result is simply a binary heartbeat failure detector with timeéout

This essentially shows that accrual failure detectors can be seen as a way to decompose binary failure
detectors. The advantage is that accrual failure detectors can serve multiple applications with various
qualities of service or applications with multiple thresholds or even more general adaptation policies.
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5.2 Chen’s failure detector as an accrual one

Chen et al. [8] have proposed a well-known implementation for a binary failure detector that adapts to
changes in network conditions (unlike the simple implementation of Sect. 5.1). Briefly speaking, the
failure detector monitors heartbeat arrivals to estimate the fithevhen the next heartbeat is expected

to arrive. The algorithm sets a timeout by takifig and adding a constant safety margincomputed

from QoS requirements.

There is a simple way to transform their failure detector into an accrual one. The idea is that, when
the next heartbeat is late, i.¢.;> FA wheret is the current time, the suspicion level begins to increase
linearly over time:sl,,(t) = t— EA. Then, setting a constant suspicion threshold sésults in the
original binary failure detector.

5.3 Theyp adaptive accrual failure detector

The o failure detector [23] adapts to changing network condition just like Chen’s failure detector. How-
ever, whereas Chen et al. [8] only estimate the mean of the expected arrivajtissémates the full
distribution. It does so by estimating both the mean and the variance, and supposing a distribution of
a given shape [23] (e.g., a normal distribution for the inter-arrival time, or some Erlang distribution for
the transmission time).

Lett,,s; be the arrival time of the last heartbeidbe the current time, anB;.-(¢) be the probability
that a heartbeat will arrive more thatime units after the previous one; the latter is computed from the
distribution estimated from past heartbeat arrivals. The suspicion level is computed as follows:

Squ(t> = - IOgIO(Plater (t - tlast)) (3)
As 0 < Pyer < 1, slg, takes the full range of non-negative values. Using a thresholdl of

to suspect the monitored procgssoughly means that the likelihood of a wrong suspicioiGs?,
supposing that the behavior of the network is probabilistically stable.

5.4 Thek accrual failure detection framework

Finally, we briefly present the failure detector [22], which is a framework rather than a specific im-
plementation. The motivation is based on the following observation: the failure detectors that estimate
the arrival time of the next heartbeat do not cope well with lost heartbeats—good estimates for the
variability could not prevent wrong suspicions due to bursts of message losses. The reason is that, in
most systems, variability in arrival times and message losses are likely to have different reasons, hence
a single random distribution cannot model all cases well enough.

The « failure detector solves this problem in a different way. By design, its behavior changes
from a fine-grained estimation at low suspicion levels (aggressive range) to a coarse-grained estimation
based on counting missed heartbeats at high suspicion levels (conservative range). This change occurs
gradually as the suspicion level increases. Experimental results [21] confirnktfealure detectors
cope well with message losses while still coping with variability in arrival times.

The k failure detector works as follows. Each heartbeat that was not received contributes partly to
the suspicion level of the failure detector. The contribution of a heartbegtadually increases from
0, meaning that{ is not yet expected, tb, meaning that? is considered lost. The suspicion level is
calculated as the sum of all contributions.

The characteristics of the failure detector vary with the choice for the contribution function; this
is why we considek to be a framewaork rather than a single implementation. A suitable contribution
function is for instance the probabilit¥#,,...(t) of the ¢ failure detector, presented in the previous
section. Another, simpler contribution function sets a timeout for each heartbeat; the contribution is
simply 0 before the timeout antiafter the timeout (i.e., a step function). Many other possibilities exist.
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Finally, we present how the failure detector behaves under different conditions. When the net-
work is stable, i.e., few messages are lost, only one single heartbeat contributes to the suspicion level
significantly, and thus the suspicion level reflects the contribution function. If the contribution function
adapts well to the variability in arrival times, so will the applications usingxttiailure detector. On
the other hand, when the network is unstable with a lot of message losses, or if the monitored process
crashes, contributions for all missed heartbeats but one will likely be cldsédndhis case, the failure
detector will give a count of missed heartbeats, and the shape of the contribution function will be nearly
irrelevant.

6 Related work

We present existing work that, just like our approach, uses numeric and sometimes accruing values for
failure detection or similar purposes.

Sampaio et al. [28] define slowness oracles as an oracle that outputs a list of processes ordered
according to the perceived responsiveness of each process. Accrual failure detectors also quantify re-
sponsiveness, hence their output values could be used to establish (or estimate) this order.

Cosquer et al. [11] proposed a group membership service that allows the tuning of its failure detec-
tion (called suspectors) by applications. Applications do so by specifying interpretation conditions that
are used by the failure detector to do the interpretation. The paper introduces many excellent ideas with
respect to the tailoring of failure detectors, but does not address the issue of decoupling monitoring and
interpretation. In contrast, our work focuses on the latter issue. This said, this should not be too difficult
to adapt their system so that it implements an accrual failure detector.

More recently, Friedman [18] outlined in a position paper the idea foizay group membership
where a value called fuzziness level would be associated with each process to determine the extent
to which the process belongs to the group. Technical issues were developed later by Friedman and
Tcharny [19, 20]. Although the papers address different issues, the authors rely on some fuzzy failure
detector that outputs some integer value and uses two thresholds to define three suspicidrulsteg]s (
fuzzy or suspecteld There are no details, however, because this is not the focus of their work. In
particular, they provide no definition nor implementation of fuzzy failure detectors. We believe that,
although developed independently, our works could nicely complement each other.

Aguilera et al. [1] propose the failure detector call#® (Heartbeat) that can be used together
with an unreliable failure detector to solve Consensus in partitionable systems. Roughly speaking, the
failure detector associates to each process an integer value that increases as long as the process remains
reachable. This failure detector is used a®pmplementor other failure detectors, and not as a lower-
level building block.

Several papers have proposed failure detectors that internally used some counters. However, these
counters are used as an implementation technique and not as a means to separate decoupling system
monitoring and interpretation. Bondavalli et al. [5] proposed the notion-obunt to distinguish be-
tween the transient and permanent/intermittent faults of system components. A value is associated with
each component and incremented each time the component fails. When the value grows beyond a given
threshold, the corresponding component is reported as permanently faulty. Chu [9], and later Mostefaoui
et al. [27], present different algorithms to transform an unreliable failure detector into a leader oracle
(also called? failure detector). The two algorithms are based on a similar approach. Briefly speaking,
each process maintains a counter associated with each other process. The counters are incremented and
processes exchange information on their values using gossiping. The process with the lowest value is
deemed the most trustworthy and hence the most desirable candidate for a leader.

In recent work, Dunagan et al. [13] proposed a failure monitoring system called FUSE. They ad-
vocate providing failure detection as a global service and address several related engineering issues. In
particular, they focus on providing consistent failure notifications in large-scale and wide-area networks.
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Whereas FUSE addresses issues related to notifications about failures, accrual failure detectors provide
a solution for detecting failures, and are thus useful components on top of which a system like FUSE
could be built.

7 Conclusion

Failure detection constitutes a fundamental abstraction for fault tolerant distributed systems. However,
from a more practical perspective, the binary model of classical failure detectors limit the development
of failure detection as a generic service because this model combines monitoring and interpretation. The
accrual failure detectors presented in this paper decouple these two tasks by outputting a suspicion level
rather than a binary value, and leaving it to applications to interpret this value. Ideally, the monitoring
is done by a single service running on each machine, while the interpretation of the suspicion level is
left to each application process. Such a service can be implemented as a daemon, a linked library or a
kernel service, depending on the desired tradeoff between intrusiveness and performance.

This paper gives a rigorous definition for accrual failure detectors that is compatible with the seminal
work of Chandra and Toueg [7]. In particular, we presented important conditions for the suspicion
level under which an accrual failure detectdrH,.) is computationally equivalertib an eventually
perfect binary failure detectors (i.e., of clas®). This equivalence is important because it shows that
accrual failure detectors do not hide any additional synchrony assumptions with respect to their binary
counterparts. However, equivalence does notimply that accrual failure detectors cannot be more efficient
or expressive than binary failure detectors. In fact, we argued extensively the architectural advantages
of accrual failure detectors, and presented usage patterns that are very difficult to handle using a binary
failure detector.

We have also outlined four different ways to implement accrual failure detectors and discussed their
respective advantages. This is not exhaustive and there is room for developing many other implementa-
tions in the future.
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A Appendix

This appendix presents technical details that are not essential to convey the ideas presented in the pa-
per, but that are important to justify the correctness of the argumentation (e.g., complete proofs of the
theorems).

A.1 Proof for the transformation from accrual ($P,.) to binary (OP)

Lemma 7 (Strong completeness)siven an accrual failure detectdP,. of class¢P ., Algorithm 1
satisfies the property of Strong Completeness.

PrROOF.  Strong Completeness requires that every faulty process is eventually suspected forever by
every correct process.

Consider a faulty procegsand some correct procegshat monitorgp. We must show that there is
a time after whictp is permanently suspected by

Consider the system after the stabilization, i.e., whkp is increasing and increases by at least
once everyy) consecutive queries for some positiye

We first show that there is a last T-transition (if T-transitions occur at all). We show this by proving
that no more thard) T-transitions may occur after stabilization. Suppose that stabilizatioriaifd
transitions have already occurred. As the run length for trusfing,; increases by one at each T-
transition, L, > @ forever. As only run lengths shorter th@h will ever appear, the condition
I > Ly Will never hold. Moreover, asl,, is monotonously increasing] < sl,.., will never hold,
either. Hence we have shown that the condition to trigger a T-transiion ¢l,e, OF I > Lipys) Will
never hold again.

Now, consider a time after which both stabilization and the last T-transition have occurpet If
suspected at this time, it will be suspected forever, and the proof is complgtis. tHusted at this time,
an S-transition will occur, asl,, goes to infinity, and thus! > SL,,, will eventually hold forever,
whatever the value ofL,,s, may be. After the S-transitiom, will be suspected forever, and the proof
is complete. OLemma 7

Lemma 8 (Eventual strong accuracy)Given an accrual failure detectaP,. of class{QP,., Algo-
rithm 1 satisfies the property of Eventual Strong Accuracy.

PROOF. Eventual Strong Accuracy requires that, after some time, no correct process is suspected by
a correct process. We prove the lemma by considering two correct progesmseg chosen arbitrarily,

and such thag monitorsp. We must show that there is a time after whjcts never suspected. We can

rely on the existence of a bourtL,,,, on the suspicion levell,,.

We first show that there is a last S-transition (if S-transitions occur at all). We show this by proving
that no more thanhSL,.; /€| S-transitions occur, whereis the resolution of the suspicion level (see
Definition 1). Suppose thgtSL,,.. /€| S-transitions have already occurred. 4s, increases by at
leaste upon every S-transitiorL,sp > SLyq., and hencel > SLg,,, will never hold again. We have
shown that the condition to trigger an S-suspicion will never hold again.

Now, consider the system after the last S-transition (or any time if no S-transition occupss |If
trusted at this time, it will be trusted forever. gifis suspected at this time, a T-transition will occur, as
we show below. After the T-transitiop,will be trusted forever, and the proof is complete.

We must now prove that a T-transition occurs. kgtlenote the value thattakes during the-th
query. If the sequence is not monotonously increasing, the conditign< sl,., will hold at least
once, and thus a T-transition occurs. sJfis monotonously increasing, there will be a run made of
identical values of lengtli;..s; + 1, ass; is an infinite sequence whose elements are from a finite set
(0,€,2¢,...,|SLnae/€] - €). This implies that the conditioh> L., will hold at least once, and thus
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a T-transition occurs. Ag andq were chosen arbitrarily, we have shown that Eventual Strong Accuracy

Theorem 9 Algorithm 1 transforms an accrual failure detector of clgsB,,. into one of clas)P.

ProoF.  Follows from Lemma 7 (Strong completeness) and Lemma 8 (Eventual strong accuracy).
DTheorem 9

A.2 Proof for the transformation from binary ( {P,.) to accrual (OP)

Lemma 10 (Accruement) Given a binary failure detectoD of class{P, Algorithm 2 satisfies the
property of Accruement (Prop. 1).

PrRoOOF.  Consider a faulty procegsand a correct process Sincep is faulty, D ensures thap is
eventually suspected permanently (Strong completeness). Consider the system after the last S-transition
(or from the start ifp is never trusted)si,,(t) is obviously increasing by upon every query. We have

thus shown that Accruement holds. OLemma 10

Lemma 11 (Upper Bound) Given a binary failure detectoP of class¢P, Algorithm 2 satisfies the
property of Upper Bound (Prop. 2).

PrRoOOF.  Consider two correct processeandg. Sincep is correct,D ensures thap is eventually
trusted permanently (Strong eventual accuracy). Consider a point in time after the last T-transition (or
any time ifp is never suspected). Every query after this point in time returns 0. A suitable upper bound
for sl,, is thus the highest suspicion level returned up to this point in time. We have thus shown that
Upper bound holds. OLemma 11

Theorem 12 Algorithm 2 transform)P into 0P ..

ProoOF. Follows directly from Lemma 10 (Accruement), and Lemma 11 (Upper bouri@neorem 12

A.3 Proofs for the theorems about quality of service

In this section, we present the proofs for the theorems in Section 4.4. We start by presenting Algorithm 3,
an unambiguous description of the failure dete@b6r (whereT is a threshold function).

Algorithm 3 Transforming an accrual failure detector into a binary one using two thresholds.
1: Initialization:

2:  status := trust {current status (trust or suspegt)
3: whenqueried about process

4:  sli=slgp(t) {get current suspicion levgl

5. if sl > T(t) andstatus = trust then {suspect if level beyond high threshpld
6: status := suspect

7:  if sl < Ty(t) andstatus = suspect then {trust if level below low threshold (or equal)
8: status := trust
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PROOF. (for Theorem 1). The proof is straightforward By, andDr,:

Dr, suspect att = slgy(t) > Ta(t)
= slg(t) > T1(t) = Dr, suspectp att

The proof is more complicated f@'y, andD’y,. Consider a tim¢ whenD'y, suspectp. Let
to be the time of the preceding S-transition (or the time of the first query if there is no preceding S-
transition) and; < to < --- < tg = t, the times when the failure detectors are queried betweial
the preceding S-transition. We know that both failure detectors sugge:¢s:

D'r, suspectp atty = slgy(to) > Ta(to)
= sly(to) > Ti(to) = D'r, suspecty attg

We then prove by induction that both failure detectors suspeti;, = ¢ as well. The induction
step is the following, forany =1,..., K:

(D'r, suspect® att,_; = D'r, suspectp atty) = slgp(te) > To(ty)
= (D'r, suspecty att,_; = D'r, suspectp att)

As t was chosen arbitrarily, this completes the proof. Urheorem 1

PrRooF. (for Theorem 4)

Let the query preceding the query at timhappen at time,. We know thatD’y, trustsp att but
suspecty at ¢y, hencesl,,(t) < Ty(t). Theorem 1 ensures that al&%y, suspectp att,. This and
slgp(t) < To(t) implies that als®’r, makes a T-transition at OTheorem 4

A.4 Simple implementation in a partially synchronous model

We now describe, in further details, the simple implementation outlined in Section 5.1, and show that it
implements an accrual failure detector of cl§$3,. in a partially synchronous system model. Notice
that the algorithm described in this section is intended as a simple illustration.

Partially synchronous system model. We extend the model of Section 2, by considering that pro-
cesses communicate only by message-passing. We assume that processes have their own memory
spac€. Also, channels are reliable, and we consider only crash failures of processes. We assume
a partially synchronous model, as defined by Chandra and Toueg [7], whereusdmmavnbounds

on process speed and message delays hold after sokmowntime called GST (stands for global
stabilization timef We also assume a local clock that has a bounded drift from global time after
GST. The local clock is accessed by the functiosw. More precisely, the bounded drift means that
now(t') — now(t) > 60 - (t' —t) forallt’ >t > GST and somé > 0.

Algorithm.  The algorithm (Algorithm 4) is based on heartbeats and is actually quite simple. The code

of the algorithm, identical for all processes, is expressed for some arbitrary pgoedds A monitored

process sends heartbeat messages on a regular basis, according to its own local clock. Heartbeats are
sequence numbered. A monitoring procegeeps track of the time of arrivdl,; (p) (according to its

own local clock) of the most recent heartbeat message from a monitored ppoc€ke value of the
functionsl,,(t) is given by the time elapsed since the arrival of the most recent heartbeat (according to
the local clock of the monitoring process).

"This means that variables anet shared between processes. Although the same variable nam&y{sgymay be em-
ployed by two different processes (sayandq), this always refers to twdistinct variables (that is7},s: of p andTj,s: of

q)-
8This model is in fact a simple variation over the definitions of partial synchrony due to Dwork et al. [14].
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Algorithm 4 Simple implementation of an accrual failure detector.
code of some process q € 11:

1: Initialization:

2:  start := now

3 nextsn:=1 {Sequence number for the next heartheat
4: forall pin I — {¢} do
5: Tiast(p) := start {Arrival time of the last heartbeat from each procgss
6: SNiast(p) =0 {Seq. number of the last heartbeat received
7. whenreceive(heartbeat, sn) from p {receive heartbeat with sequence numbe}
8: if sn > SNis:(p) then
9: Tiast(p) := now

10: SNiast(p) := sn

11: periodically do

12:  broadcastheartbeat, next_sn)

13:  next_sn := next_sn + 1

14: when queried about procegsat timet
15:  if p # g then

16: Slgp(t) =1t — Tiast(p) {rounded to the precisioa}
17:  else
18: Slgp(t) :==0

Lemma 13 Algorithm 4 satisfies Prop. 1 (Accruement) fdg, , wherep and ¢ are two distinct pro-
cesses ifl.

PROOF. Let procesw be faulty. It is sufficient to prove that after some stabilization tisig,(¢) is
increasing, and that it only remains constant during a bounded number of queries.

Sincep crashes, it can send only a finite number of heartbeat messageg begthe time when the
heartbeat with the greatest sequence number ever received arrives. At this time, the algorithm updates
Ti.st(p) to now(tp) (i.e.,to in local time) and this value never changes again. It follows that, for any
timet afterty, sly,(t) = now(t) — now(ty).

This function is increasing afte. We still have to find a number of queri€g such thatsl,,
increases at least once evépgueries (aftet):

slgp(tg"" (k + Q) — slgp(tg"" (k) > €

Using that the drift of the local clock is bounded By and that at leasi time elapses between
queries (see Section 2), we obtain a lower boundsfgy(td““™ (k + Q)) — slgp(td*™ (k)):

now(td*"(k + Q)) — now(tI""V(k + Q)) > 0 - (tI""V(k + Q) —tI*"(k)) > 0-(Q-9)

We need to ensure that this lower bound is at leasthus@ = [e/d0] is a suitable choice for
ensuring thasl,,(t) increases at least once evépqueries.
ULemma 13

Lemma 14 Algorithm 4 satisfies Prop. 2 (Upper Bound) fek,, , wherep and ¢ are two distinct
processes ifl.

PROOF. Let proces® be correct. We must prove thsf,,(¢) is bounded. All times that appear are in
local time.

Let ¢; be the time when the first heartbeat messagesent afterGST arrives. Clearly, untik,
slgp(t) is bounded by, — start.
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After ¢, only heartbeat messages with a higher sequence numbeHthdmence serafter H,, are
taken into account. It follows that they are subject to the synchrony assumptions of the modal. Let
be the end-to-end upper bound on transmission time Mdrte maximal interval between the sending
of two consecutive heartbeats. It follows that the largest interval that elapses between receiving two
consecutive heartbeatsAs+ A'.
Combining the two parts, we obtain thdl,(¢) is bounded bynax(t; — start, A + A’).
DLemma 14

Theorem 15 Algorithm 4 implements an accrual failure detector of clg$3,..

PrROOF.  The proof follows directly from Lemma 13 and Lemma 14, as these lemmas hold for an
arbitrarily chosen pair of processes. Otheorem 15

A.5 Discussion on the Accruement property

When defining the suspicion level function in Section 3.1, we mentioned that there was a simple alter-
native to Accruement (Property 1):

Property 3 (Weak Accruement) If processp is faulty, then eventually, the suspicion lewgl,(¢) is
monotonously increasing and goes to infinity:

tggloo slgp(t) = +o0
We now prove that this property is not strong enough for our purposes. In particular, it does not allow
the implementation of &7 binary failure detector on top of @P,. accrual failure detector (defined
with Weak Accruement).
For simplicity, we present the proof for two procesgeand ¢, with ¢ monitoringp. Consider
any algorithmA that implementsg)P, and an adversary that controls the suspicion I8ygl Let the
adversary reply to queries using the following strategy:

1. If the algorithmA suspectp, then keeps/,,, constant, i.e., return the result of the previous query.
2. If the algorithmA trustsg, then increasel,, by e with respect to the result of the previous query.

At any timet, the history of the accrual failure detector produced by the adversary satisfies both
Properties 2 and 3. Nevertheless, algoritAndoes not implement &P failure detector. The proof is
indirect: suppose that implements &P failure detector.

1. If pis faulty, A must eventually suspegtforever. Suppose that suspectp from timet on. sl,,
will be constant aftet, and thus it does not go to infinity. Hence Weak Accruement (Property 3)
does not hold, and thysmust be correct.

2. If pis correct,A must eventually trust forever. Suppose that trustsp from timet on. Aftert,
slqp Will grow by e upon every query, hence it goes to infinity. Hence Upper Bound (Property 2)
does not hold, and thysmust be faulty.

We have come to a contradiction whethes correct or faulty, hence we have shown that no algo-
rithm A can implement &P binary failure detector on top of our adversary.

Finally, note why this adversary does not work witf?,. accrual failure detectors defined by Ac-
cruement (Property 1). The reason is that it keglps constant for an arbitrarily long period jf is
faulty, whereas the Accruement property disallows thig, may only remain constant during a limited
number of queries ip is faulty (although the limit is unknown).
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