
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Definition and specification of accrual failure

detectors

Author(s)
Defago, Xavier; Urban, Peter; Hayashibara,

Naohiro; Katayama, Takuya

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2005-004: 1-19

Issue Date 2005-03-22

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/4787

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Definition and Specification of
Accrual Failure Detectors

Xavier Défago1,2, Péter Urbán1, Naohiro Hayashibara1, Takuya Katayama1

1School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)
2PRESTO, Japan Science and Technology Agency (JST)

March 22, 2005
IS-RR-2005-004

ISSN 0918-7553

Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
http://www.jaist.ac.jp/

Definition and Specification of Accrual Failure Detectors∗

Xavier Défago(a,b), Péter Urb́an(a), Naohiro Hayashibara(a),Takuya Katayama(a)

(a)School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST),

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
(b)PRESTO, Japan Science and Technology Agency (JST).

Email: {defago,urban,nao-haya,katayama}@jaist.ac.jp

Abstract

For many years, people have been advocating the development of failure detection as a basic
service, but, unfortunately, without meeting much success so far. We believe that this comes from
the fact that importantsystem engineeringissues have not yet been addressed adequately, thus pre-
venting the definition of a truly generic service. Ultimately, our goal is to define a service that is
both simple and expressive, yet powerful enough to support the requirements of many distributed
applications.

To this end, we consider an alternative interaction model between the service and the applica-
tions, calledaccrual failure detectors. Roughly, an accrual failure detector associates to each process
a real value representing asuspicion level, instead of the traditional binary information (i.e., trust
vs. suspect). In this paper, we provide a rigorous definition for accrual failure detectors, demon-
strate that changing the interaction model leads to no loss in computational power, discuss quality
of service issues, and present several possible implementations.

1 Introduction

Failure detection is an essential component for building reliable distributed systems. As such, it was
proposed many times that failure detection ought to be provided as a generic service, shared among
distributed applications (e.g., [13, 16, 29]). In spite of many ground-breaking advances made on failure
detection, such a service still remains at a distant horizon.

We contend that the current obstacles to provide failure detection as a generic system service—in
sharp contrast with the success of NTP for time synchronization—are due to the fact that several impor-
tantarchitecturalandengineeringissues have been overlooked until now. To be genuinely ubiquitous,
a failure detection service must be able to satisfy the requirements of a large variety of application
classes without introducing unnecessary limitations. To this end, the following two major issues must
be addressed properly. Firstly, at any time, the service must be able to provide various levels of quality
of service (QoS) in order to meet the requirements of independent applications that may run simul-
taneously. Secondly, the service must support all reasonably common usage patterns as smoothly as
possible.

Although the computational aspects of failure detectors are now well-established and several effi-
cient implementations have been proposed, only few studies have been looking at the issues mentioned
above. This paper addresses these issues by definingaccrual failure detectors, a concept that allows for

∗Part of this research was conducted for the program “Fostering Talent in Emergent Research Fields” in Special Coor-
dination Funds for Promoting Science and Technology by the Japan Ministry of Education, Culture, Sports, Science and
Technology; the Japan Society for the Promotion of Science; a Grant-in-Aid for JSPS Fellows from the Japan Ministry of
Education, Culture, Sports, Science and Technology; and the Swiss National Science Foundation.

1

a cleaner decomposition of the behavior of the underlying system and the quality of service provided
to the applications. In recent work, we have proposed a possible implementation of an accrual failure
detector, called theϕ failure detector [23].

This paper defines the generic notion of accrual failure detectors, and makes the link with the com-
putational aspects of failure detection. More specifically, this paper complements our earlier work by
(1) providing a precise definition for the concept ofaccrual failure detection, (2) establishing important
properties of such failure detectors, and (3) presenting the characteristics of several useful implementa-
tions.

1.1 Failure detectors

In their seminal paper, Chandra and Toueg [7] have established the theoretical foundation of failure de-
tection. Many important results stem from their work, such as minimal conditions, equivalences, trans-
formations, metrics (e.g., [6, 8, 9, 15, 24, 28, 25, 26]). These studies concentrate on thecomputational
powerof failure detectors from an algorithmic perspective. Other studies have been aimed at imple-
menting such failure detectors over small-scale (e.g., [8, 3]) and large-scale networks (e.g., [29, 4]).
However, most failure detectors proposed in the literature are based on a binary interaction model,1

whereby a monitored process is either trusted or suspected.2

1.2 Limitations of the binary model

The binary model has some limitations when it comes to providing failure detection as a generic service.
First, a binary interaction model makes it difficult to support several applications running simultane-

ously. To see this, one must realize that there is an inherent tradeoff betweenconservative(i.e., slow and
accurate) andaggressive(i.e., fast but inaccurate) failure detection. Different applications are likely to
have different requirements with respect to the QoS of the failure detection. Moreover, several levels of
QoS can be useful even within the same application. For instance, an application can take precautionary
measures against catastrophic failure when the confidence in a suspicion reaches a given level, and then
take more drastic actions once the confidence raises above a second (much higher) level.

Second, although binary failure detectors are well-adapted to meet the needs of many algorithms,
their interaction model cannot easily cope with some usage patterns that arise in practice. The simple
example below illustrates two such usage patterns.

1.3 Illustration: BoT computations

To further illustrate our point, we present a simple example taken from the execution of Bag-of-Tasks (BoT)
computations in the OurGrid platform [10] (kindly suggested to us by Francisco V. Brasileiro). This ex-
ample is particularly helpful as it shows two interesting usage patterns of failure detectors.

Consider a simplified environment with one master process and a collection of worker processes.
The master holds a list of independent tasks that need to be executed, dispatches these tasks to available
workers, and gathers results. For simplicity, assume that the master never fails but that some of the
workers may crash. Clearly, the master must be able to detect the crash of a worker and reassign the
tasks of the worker, or else the computation may never complete. Consider the following two situations,
where the master needs to use information about the possible failure of workers.

First, when assigning tasks to the workers, the master must avoid sending them to workers that
have crashed. Hence, the master needs to be able to sort workers according to how likely they are still
operational.3

1Some notable exceptions (e.g., [18, 28]) are discussed in Section 6.
2This includes the eventual leader oracle, that can be expressed in terms oftrust andsuspect[6].
3Of course, other parameters, such as the load on the workers, may be equally important when assigning tasks to workers.

2

Monitoring

Interpretation

Action Action Action

Failure
Detector

Applications,
Protocols

suspicions

Figure 1: Binary failure detectors: monitoring and
interpretation are combined.

Failure
DetectorMonitoring

Interpretation

Action

Interpretation

Action
Parametric
Action

Applications,
Protocols

suspicion level

suspicionssuspicions

Figure 2: Accrual failure detectors: monitoring
and interpretation are decoupled.

Second, when a task is being executed by a worker, the crash of this worker must be detected and
the task restarted. However, let us consider the cost of making a wrong decision: if a task is wrongly
aborted, all CPU cycles that were spent computing the task are wasted. Note that the cost of aborting
the task due to a wrong suspicionincreases as time passes.

The two situations described above are difficult to handle with binary failure detectors. While ad-hoc
solutions certainly exist, a more suitable abstraction can simplify the design and thus improve the quality
of the system. We know of one attempt at defining such an abstraction, called slowness oracles [28],
that cope with the first situation by ordering processes according to their perceived speed. However,
slowness oracles do not cope well with the second situation.

1.4 Accrual failure detectors

To cope with the situations described above, we advocate a more flexible interaction model for failure
detectors, on top of which binary and other kinds of failure detectors can be constructed. More specifi-
cally, we define a family of failure detectors, calledaccrual failure detectors, whereby each monitoring
process associates, to each of the monitored processes, a real number that changes over time. The value
represents asuspicion level, where zero means that the process is not suspected at all, and the larger the
value, the stronger the suspicion. Roughly speaking, accrual failure detectors ensure that the suspicion
level associated with a monitored processp (1) accrues toward infinity ifp is faulty, and (2) is bounded
if p is correct.

1.5 Architectural issues

Failure detection can be decomposed into three basic tasks.Monitoring allows the failure detector to
gather information about other hosts and their processes. This is usually done through the network, by
sampling heartbeat arrivals or query-response delays.Interpretationis necessary to make sense of the
information obtained through monitoring. With binary failure detectors, this is often done by setting
some timeout and generating suspicions. QoS parameters intervene at this stage.Actionsare executed
as a response to triggered suspicions. This is most often done within the applications.

For a service, one of the major advantages of providing an accrual failure detector over a binary one
is that the former allows for a complete4 decoupling between monitoring and interpretation.Indeed,
binary failure detectors combine these two roles (see Fig. 1), and thus provide applications only with
information that is already interpreted. Applications are left with how to react to suspicions. Unfor-
tunately, suspicion tradeoffs largely depend on the nature of the triggered action, as well as its cost in
terms of performance or resource usage.

4Notice that a common misconception considers heartbeat intervals as a parameter for setting the QoS of failure detectors.
In practice, while heartbeat intervals indeed have an effect on the overall QoS, the parameter is actuallyimposedby the
underlying system (i.e., its behavior as well as its administration). Refer to [23] for a more detailed argumentation on this
issue.

3

In contrast, accrual failure detectors leave the task of interpreting the suspicion level to applications
(see Fig. 2). Thus, different applications can set different thresholds to suspect processes according to
their needs, or even directly use the suspicion level as a parameter to their actions. Note that this is
an architecturalconsideration: a library can still provide the interface of a binary failure detector to
applications that prefer that interaction model. However, there will be one interpretation module per
application, not one interpretation module shared among all applications within the failure detector.

1.6 Contribution & structure

The main contribution of this paper is to provide a rigorous definition for accrual failure detectors.
In particular, we focus on a class of accrual failure detectors that is computationally equivalent to an
unreliable failure detector of class♦P (i.e., one that stops making mistakes after some time). We
identify important properties of accrual failure detectors in relation with the quality of service of failure
detectors. Finally, we discuss several possible implementations of accrual failure detectors and explain
how they are related.

The rest of the paper is structured as follows. Section 2 describes our system model, as well as some
basic definitions. Section 3 defines accrual failure detectors and their basic properties. Section 4 states
several important theorems related to particular classes of accrual failure detectors. Section 5 outlines
several possible implementations of accrual failure detectors. Section 6 discusses how accrual failure
detectors are related to previous work. Finally, Section 7 concludes the paper.

2 System model & definitions

System model. We consider a distributed system consisting of a set of processesΠ = {p1, . . . , pn}.
We assume the existence of some global time, unbeknownst to processes, the domain of which,

denoted byT, is an infinitely countable subset of real numbers with no upper bound. We assume that
processes always make progress, and that at leastδ > 0 time units elapse between consecutive steps
(the purpose of the latter is to exclude the case where processes take an infinite number of steps in finite
time).

Failures. The failure model considered in this paper is based on the model of Chandra and Toueg [7].
A process can be correct or faulty. A process isfaulty if its behavior deviates from its specification, and
a process iscorrect if it is not faulty. We say that a processfails when its behavior starts deviating from
its specification. Faulty processes never recover.

A failure pattern is a functionF : T 7→ 2Π, whereF (t) is the set of processes that have failed before
or at timet. The functioncorrect(F) denotes the set of correct processes (processes that never belong
to failure patternF) while faulty(F) = Π− correct(F) denotes the set of faulty processes.

Failure detectors. Chandra and Toueg [6] define failure detectors as a collection of failure detector
modules, one attached to each process, that output information on the failure pattern that occurs in an
execution.5 A failure detector module outputs information from a rangeR of values. A failure detector
historyH with rangeR is a functionH : Π× T 7→ R, whereH(p, t) is the value output by the failure
detector module of processp at time t. H is only defined at times when the failure detector module
provides an answer to aquery; the failure detector module may be queried whenever processp takes a
step, and each query eventually results in an answer. This follows the definition of oracles introduced

5The definition of failure detectors of Chandra and Toueg [7] restricts the output to a set of suspected processes. Accrual
failure detectors are based on the definition of Chandra et al. [6], that allows values taken from an arbitrary range.

4

by Aguilera et al. [2].6 The times at which queries1, 2, · · · are answered are denoted by the sequence
tquery
p (1), tqueryp (2), · · · . Correct processes query their failure detector modules infinitely-many times.

Binary failure detectors, such as those defined by Chandra and Toueg [7], output values from the
rangeR = 2Π, that is, the power set ofΠ. If a process is part of the output set, it issuspectedto have
failed, otherwise it istrusted. An S-transitionoccurs when a trusted process becomes suspected and a
T-transitionoccurs when a suspected process becomes trusted.

Chandra and Toueg [7] define a class hierarchy of unreliable binary failure detectors, of which we
present only one, called♦P (eventually perfect). The class is defined by the set of failure detector
histories that it permits, as specified by the following two properties ofcompletenessandaccuracy.

(STRONG COMPLETENESS) Eventually every faulty process is permanently suspected by all correct
processes.

(EVENTUAL STRONG ACCURACY) There is a time after which correct processes are never suspected
by any correct process.

Quality of service metrics for failure detectors. Chen et al. [8] define metrics for the quality of
service of failure detectors. Quality of service quantifies how fast a failure detector detects failures
(completeness) and how well it avoids wrong suspicions (accuracy). All metrics are defined for a pair
of processesp andq, with q monitoringp. The metrics used in this paper are summarized below.

• Thedetection time(TD) is the time that elapses sincep fails and untilq starts suspectingp per-
manently (i.e., until the final S-transition).

The detection time is the only completeness metric, defined on runs in whichp is faulty. In contrast,
all others metrics (below) relate to the accuracy and are defined on runs in whichp is correct.

• Themistake recurrence time(TMR) measures the time elapsed between two consecutive mistakes,
i.e., the time between two S-transitions.

• Themistake duration(TM) measures the time it takes for the detector to correct a mistake, i.e.,
the time from an S-transition to the next T-transition.

• Theaverage mistake rate(λM) measures the rate at which a failure detector make mistakes, i.e.,
the average number of S-transitions per time unit.

• Thequery accuracy probability(PA) is the probability that the failure detector’s output is correct
at a random time.

• The good period duration(TG) measures the length of a good period, i.e., the time from a T-
transition to the next S-transition.

3 Definition of accrual failure detectors

In this section, we define what accrual failure detectors are. We begin by defining the notion of suspicion
level between a pair of processes. Then, we define the notion of accrual failure detector for a distributed
system withn processes. Finally, we define a class of accrual failure detectors of particular interest,
called♦Pac .

6Aguilera et al. [2] define oracles as a sequence of quadruples(p, t, i, o) wherep is a process,t is a time instant,i is the
query ofp at timet ando is the answer of the oracle at timet. Both i ando may take the value⊥, meaning respectively that
no query is made at timet and that no answer is available at timet.

5

3.1 Suspicion level

Consider two distinct processesp andq, with q monitoringp. Let R+
0 denote the real positive numbers

and zero. The suspicion level of processq monitoring processp expresses the confidence ofq in the
statement thatp is faulty.

Definition 1 (Suspicion level) The suspicion level of processq with respect to processp is the function
slqp : T 7→ R+

0 . The functionslqp has a finite resolution, i.e., it may only assume integer multiples of

an (arbitrarily small, but non-infinitesimal) positive constantε, where for allt, slqp(t)
ε ∈ Z

Additionally, we consider that the suspicion level satisfies the following two properties.

Property 1 (Accruement) If processp is faulty, then eventually, the suspicion levelslqp(t) is monotonously
increasing at a positive rate.

p∈ faulty(F) ⇒
∃K∃Q∀k ≥ K : (slqp(t

query
q (k)) ≤ slqp(t

query
q (k+1)) ∧ slqp(t

query
q (k)) < slqp(t

query
q (k+Q)))

Property 2 (Upper bound) If processp is correct, then the suspicion levelslqp(t) is bounded.

p∈correct(F) ⇒ ∃SLmax : ∀t (slqp(t) ≤ SLmax)

3.2 Accrual failure detectors

An accrual failure detectorDac is a failure detector with rangeR = (R+
0)Π (note the analogy to binary

failure detectors for which the range is2Π). Its history is defined asH(q, t)(p) = slqp(t). In other
words, failure detector modules output non-negative real values, with each value corresponding to a
process and representing the current suspicion level of that process.

We now define the class♦Pac of accrual failure detectors. We discuss other classes of accrual
failure detectors in Section 4.3.

Definition 2 (♦Pac accrual f. d.) For all pairs of distinct processesp andq, the properties of Accrue-
ment (Prop. 1) and Upper Bound (Prop. 2) both hold.

3.3 Discussion on properties

We now discuss interesting characteristics of the suspicion levelslqp(t). This discussion may shed some
light on the reasons behind the definition of the properties.

• The constraints onslqp(t) in the two properties are mutually exclusive.If it were not the case,
an accrual failure detector would make it impossible to distinguish between correct and faulty
processes.

• The upper bound in the Upper Bound property is unknown.If the bound was known, the interpre-
tation of the suspicion level would be trivial: applications could just compare the suspicion level
to the known bound. This is contrary to our key concept that the interpretation of the suspicion
level should be left to the application.

• The condition on the positive rate of increase mentioned in the Accruement property is necessary.
It may be tempting to consider a weaker condition that, if processp is faulty, the suspicion level
goes to infinity with time, i.e., lim

t→+∞
slqp(t) = +∞

Although attractive by its simplicity, it turns out that this condition is not sufficient because it
allows situations where a correct and a faulty process can never be distinguished. This statement

6

is proved by presenting an adversary whereby a process can never make any permanent decision
(proof in the appendix; Sect. A.5).

In practice, since the minimal rate is unknown and so is the period when it becomes effective, this
is not a very stringent condition.

• A positive rate of increase mentioned in the Accruement property allows for stationary periods.
If p is faulty, and even after stabilization (tquery

q (K)), slqp(t) need not be strictly monotonous. In
particular, it may remain constant for a bounded number of queries (Q). Furthermore, the bound
on the number of queriesQ is unknown.

We could require thatslqp(t) become strictly monotonous eventually. In contrast, since the cur-
rent definition allows for period during whichslqp(t) remains constant, this leaves more flexibility
with respect to the implementation of accrual failure detectors. Indeed, implementations may find
it difficult or inconvenient to return an increased value upon every query. This would possibly
necessitate to either artificially update the suspicion level upon every query, or access some hard-
ware clock with sufficiently fine resolution to compute the suspicion level (note that such a clock
might not be available).

• The increase rate of the Accruement property is time-free.The rate is stated in terms of a number
of queries to the failure detector. Thus, it avoids referring to any notion of physical time by im-
posing a time bound on how longslqp(t) may remain constant. Otherwise, we would effectively
impose some restriction on the model either (1) by imposing a minimal speed on processes, or
(2) by assuming access to synchronized clocks.

• The minimal rate of increase has a lower bound that depends onε and Q. In particular, the
positive rate of increase can be bounded from below during the stable period byε/2Q, whereQ
is the maximal number of queries before the function is strictly required to increase, andε is the
difference between two consecutive values in the range ofslqp(t) .

slqp(t
query
q (k′))− slqp(t

query
q (k))

k′ − k
≥ ε

2Q
(1)

for all k ≥ K andk′ ≥ Q + k (whereK is the query number when the function starts increasing
monotonously). SinceQ can be arbitrarily large, the rate of increase can be arbitrarily small.

4 Power & QoS of accrual failure detectors

This section proves that an accrual failure detector of class♦Pac and a binary one of class♦P have
the same computational power. This means that any problem that can be solved with a binary failure
detector of class♦P can also be solved with an accrual failure detector of class♦Pac , and vice-versa.
We show the equivalence by presenting algorithms that transform a failure detector of one class into a
failure detector of the other class.We then introduce other classes of accrual failure detectors, and also
investigate the relationship between thresholds on the suspicion level and the corresponding quality of
service.

4.1 Transformation: accrual to binary

For simplicity, Algorithm 1 is expressed for a pair of processesp andq, whereq monitorsp. Shortly,
the algorithm works as follows. The algorithm maintains the status of the binary failure detector (trustor
suspect) in the variablestatus. It also maintains a dynamic thresholdSLsusp on the suspicion level of the
accrual failure detector, that triggers S-transitions (this is a common technique [14, 6, 17]). Similarly,

7

Algorithm 1 Transforming an accrual failure detector of class♦Pac into a binary one of class♦P.
1: Initialization:
2: status := trust {current status (trust or suspect)}
3: SLsusp := slqp {threshold for suspecting}
4: l := 1 {run length of period with constant suspicion level}
5: Ltrust := 1 {run length for trusting}
6: slprev := slqp {previous suspicion level}

7: whenqueried about processp
8: sl := slqp(t) {get current suspicion level}
9: if sl 6= slprev then {update run length}

10: l := 0
11: l := l + 1

12: if sl > SLsusp andstatus = trust then {suspect if level beyond threshold}
13: status := suspect
14: SLsusp := sl {increase threshold for suspecting}
15: if (sl < slprev or l > Ltrust) andstatus = suspect then {trust if level decreasing or constant for a long time}
16: status := trust
17: Ltrust := Ltrust + 1 {increase run length for trusting}

18: slprev := sl

a second thresholdLtrust , also dynamic, is used for T-transitions and tracks the number of consecutive
queries during which the suspicion level does not increase.

Let us now sketch why the algorithm is correct (proofs in the appendix; Sect. A.1). Increasing
the two thresholdsSLsusp andLtrust is the key to ensuring the correctness of the algorithm. On the
one hand, ifp is correct, the algorithm ensures thatSLsusp will grow beyond the boundSLmax for the
suspicion level (see Property 2) and thus S-transitions stop occurring. On the other hand, ifp is faulty,
the thresholdLtrust will grow beyond the maximum number of queriesQ during which the suspicion
level may stay constant (see Property 1) and thus T-transitions stop occurring. After, it is easy to show
that the last transition is a T-transition in the first case and an S-transition in the second.

4.2 Transformation: binary to accrual

Algorithm 2 Transforming a binary failure detector of class♦P into an accrual one of class♦Pac .
1: Initialization:
2: slprev := 0 {previous suspicion level}

3: whenqueried about processp
4: query the binary failure detector
5: if p is suspectedthen
6: slqp(t) := slprev := slprev + ε
7: else
8: slqp(t) := slprev := 0

Again, for simplicity, Algorithm 2 is expressed in terms of two processesp andq, whereq moni-
torsp. Upon each query to the accrual failure detector, the algorithm queries the binary failure detector
and updates the suspicion levelslqp the following way: (1) if p is suspected,slqp increases by the
resolutionε; (2) if p is trusted,slqp is reset to zero.

It is easy to see that the algorithm is correct (details in the appendix; Sect. A.2) by looking at what
happens after the binary failure detector stabilizes. Ifp is faulty, slqp increases byε at each query and
thus Accruement (Prop. 1) holds. In contrast, ifp is correct,slqp remains zero and thus is bounded by
the maximal value it took before the binary failure detector stabilized. Thus, Property 2 also holds.

8

4.3 Other classes of accrual failure detectors

In Section 3, we defined the properties of Accruement (Prop. 1) and Upper Bound (Prop. 2) and the
♦Pac class of accrual failure detectors: the properties must hold for any pair of processes. In this
section, we briefly introduce other classes of accrual failure detectors:Pac , ♦Sac andSac . Each of
these failure detector classes is equivalent to the corresponding binary failure detector classP, ♦S and
S [7]. The formal definitions and the proofs (using slightly different properties) appear in [12].

Pac The classPac is based on a stronger Upper Bound property for each pair of processes. The
difference is that we require that aknownbound holds forslqp, whereas Property 2 requires that an
unknownbound holds.The transformation algorithm fromPac to P is simply based on Algorithm 1 by
initializing the suspicion threshold to the value of the known bound.

♦Sac We also define weaker failure detector classes. The class♦Sac differs from the class♦Pac

in that Upper Bound (Prop. 2) only needs to hold for all processes with respect to one single correct
processp (instead of all pairs). This is similar to the difference between the binary failure detector
classes♦S and♦P.

The simple implementation for♦Pac (sketched in Section 5.1 and presented in Section A.4) im-
plements♦Sac as well. The transformation algorithms (Algorithms 1 and 2) remain the same, and the
proofs need to be adapted only slightly.

Sac The classSac is defined similarly. The Upper Bound property must however come with a known
bound (seePac above), but that property only has to hold for some correct processp (as for♦Sac).

4.4 Multiple thresholds for differentiated QoS

The introduction stated that one accrual failure detector can serve multiple applications with different
quality of service requirements. This section explores that statement more concretely by expressing it in
terms of quality of service. We consider applications that interpret the suspicion level by comparing it
to a threshold. We show that using a lower threshold results in moreaggressivefailure detection, i.e., a
better quality of service regarding the detection of actual failures but a worse quality of service regarding
wrong suspicions. Conversely, a higher threshold results in moreconservativefailure detection, i.e., a
better quality of service regarding wrong suspicions at the expense of detecting actual failures.

Consider two processesp andq, with q monitoringp. Let applications (running onq) interpret the
suspicion level by comparing it to a given threshold (where the threshold is a function of time) and
suspect the monitored processp if and only if the suspicion level is beyond the threshold:

∀t∈T, (p is suspected att) ⇔ slqp(t) > T (t) (2)

whereT : T 7→ R+ is a threshold function. The equation effectively describes a binary failure detector
that we denote byDT .

Now, consider two applications that use two failure detectorsDT1 andDT2 with different threshold
functionsT1(t) andT2(t). Let T1(t) ≤ T2(t) for any timet. We can state a number of interesting
properties about the two failure detectors and their quality of service.

Theorem 1 At all times, failure detectorDT2 suspectsp only if failure detectorDT1 suspectsp.

Since the details of the proofs are not essential to convey the message, they are omitted here and pre-
sented in the appendix (Sect. A.3).
We can state the following simple corollaries in terms of quality of service metrics (see Section 2):

9

Corollary 2 DT1 detects failures at least as fast asDT2 : TD(DT1) ≤ TD(DT2) whereTD(D) is the
detection time of failure detectorD.

Corollary 3 At some random time,DT2 is at least as likely to trust a process asDT1 : PA(DT1) ≤
PA(DT2) wherePA(D) is the query accuracy probability of failure detectorD.

There is no such simple relationship stated with the quality of service metricsTM , TMR, λM and
TG. However, such relationships exist if the failure detectors interpret the suspicion level in a slightly
different manner. LetD′T1 andD′T2 useT1(t) andT2(t) to trigger an S-transition, just as before, but
let them use thesamethreshold functionT0(t) to trigger T-transitions.T0(t) < T1(t) ≤ T2(t) holds
at any timet. With the new failure detectorsD′T1 andD′T2 , Theorem 1 and its corollaries still hold.
Additionally, we have the following theorem:

Theorem 4 If failure detectorD′T2 has T-transition at some timet, then failure detectorD′T1 also has
a T-transition at timet.

The following corollaries follow from Theorems 1 and 4.

Corollary 5 D′T2 generates wrong suspicions at most as frequently asD′T1 : TMR(D′T1) ≤ TMR(D′T2)
andλM (D′T1) ≥ λM (D′T2) whereTMR(D) andλM (D) are the mistake recurrence time and average
mistake rate of failure detectorD, respectively.

Corollary 6 D′T2 rightly trusts a process for at least as long asD′T1 , both starting from an S-transition
and a random time when the process is trusted:TG(D′T1) ≤ TG(D′T2) whereTG(D) is the good period
duration of failure detectorD.

Unfortunately, there is no simple derivation with the metricTM . Informally, the reason is that the
failure detectorDT1 can artificially obtain a better “score” by going through many brief periods of
wrong suspicions during whichDT2 does not suspect.

5 Implementing accrual failure detectors

In this section, we present implementations of accrual failure detectors for systems in which processes
can crash. We start with the simplest implementation, and then present three increasingly complex and
versatile variants. For simplicity, the explanations consider just two processesp andq, with q monitoring
p.

5.1 Simple implementation

In the simplest implementation, the monitored processp sends heartbeats at regular intervals to the
monitoring processq. Upon a query, the accrual failure detector atq simply returns the time that elapsed
since the reception of the last heartbeat.

The algorithm assumes a partially synchronous system model in which processes fail by crashing
permanently. Informally, we can see that the algorithm implements a failure detector of class♦Pac in
that model. Ifp crashes, it stops sending heartbeats, and thus the suspicion level will increase forever,
thus Property 1 (Accruement) is satisfied. In contrast, ifp is correct, it is possible to calculate an upper
bound on the maximal time elapsed between any two consecutive heartbeats, based on the characteristics
of the execution. Then, Property 2 (Upper Bound) is satisfied.

Note that if one compares the suspicion level to a constant thresholdT to suspect the process, the
result is simply a binary heartbeat failure detector with timeoutT .

This essentially shows that accrual failure detectors can be seen as a way to decompose binary failure
detectors. The advantage is that accrual failure detectors can serve multiple applications with various
qualities of service or applications with multiple thresholds or even more general adaptation policies.

10

5.2 Chen’s failure detector as an accrual one

Chen et al. [8] have proposed a well-known implementation for a binary failure detector that adapts to
changes in network conditions (unlike the simple implementation of Sect. 5.1). Briefly speaking, the
failure detector monitors heartbeat arrivals to estimate the timeEA when the next heartbeat is expected
to arrive. The algorithm sets a timeout by takingEA and adding a constant safety marginα, computed
from QoS requirements.

There is a simple way to transform their failure detector into an accrual one. The idea is that, when
the next heartbeat is late, i.e.,t > EA wheret is the current time, the suspicion level begins to increase
linearly over time:slqp(t) = t−EA. Then, setting a constant suspicion threshold ofα results in the
original binary failure detector.

5.3 Theϕ adaptive accrual failure detector

Theϕ failure detector [23] adapts to changing network condition just like Chen’s failure detector. How-
ever, whereas Chen et al. [8] only estimate the mean of the expected arrival time,ϕ estimates the full
distribution. It does so by estimating both the mean and the variance, and supposing a distribution of
a given shape [23] (e.g., a normal distribution for the inter-arrival time, or some Erlang distribution for
the transmission time).

Let tlast be the arrival time of the last heartbeat,t be the current time, andPlater (t) be the probability
that a heartbeat will arrive more thant time units after the previous one; the latter is computed from the
distribution estimated from past heartbeat arrivals. The suspicion level is computed as follows:

slqp(t) = − log10(Plater (t− tlast)) (3)

As 0 < Plater ≤ 1, slqp takes the full range of non-negative values. Using a threshold ofT
to suspect the monitored processp roughly means that the likelihood of a wrong suspicion is10−T ,
supposing that the behavior of the network is probabilistically stable.

5.4 Theκ accrual failure detection framework

Finally, we briefly present theκ failure detector [22], which is a framework rather than a specific im-
plementation. The motivation is based on the following observation: the failure detectors that estimate
the arrival time of the next heartbeat do not cope well with lost heartbeats—good estimates for the
variability could not prevent wrong suspicions due to bursts of message losses. The reason is that, in
most systems, variability in arrival times and message losses are likely to have different reasons, hence
a single random distribution cannot model all cases well enough.

The κ failure detector solves this problem in a different way. By design, its behavior changes
from a fine-grained estimation at low suspicion levels (aggressive range) to a coarse-grained estimation
based on counting missed heartbeats at high suspicion levels (conservative range). This change occurs
gradually as the suspicion level increases. Experimental results [21] confirm thatκ failure detectors
cope well with message losses while still coping with variability in arrival times.

Theκ failure detector works as follows. Each heartbeat that was not received contributes partly to
the suspicion level of the failure detector. The contribution of a heartbeatH gradually increases from
0, meaning thatH is not yet expected, to1, meaning thatH is considered lost. The suspicion level is
calculated as the sum of all contributions.

The characteristics of theκ failure detector vary with the choice for the contribution function; this
is why we considerκ to be a framework rather than a single implementation. A suitable contribution
function is for instance the probabilityPlater (t) of the ϕ failure detector, presented in the previous
section. Another, simpler contribution function sets a timeout for each heartbeat; the contribution is
simply0 before the timeout and1 after the timeout (i.e., a step function). Many other possibilities exist.

11

Finally, we present how theκ failure detector behaves under different conditions. When the net-
work is stable, i.e., few messages are lost, only one single heartbeat contributes to the suspicion level
significantly, and thus the suspicion level reflects the contribution function. If the contribution function
adapts well to the variability in arrival times, so will the applications using theκ failure detector. On
the other hand, when the network is unstable with a lot of message losses, or if the monitored process
crashes, contributions for all missed heartbeats but one will likely be close to1. In this case, theκ failure
detector will give a count of missed heartbeats, and the shape of the contribution function will be nearly
irrelevant.

6 Related work

We present existing work that, just like our approach, uses numeric and sometimes accruing values for
failure detection or similar purposes.

Sampaio et al. [28] define slowness oracles as an oracle that outputs a list of processes ordered
according to the perceived responsiveness of each process. Accrual failure detectors also quantify re-
sponsiveness, hence their output values could be used to establish (or estimate) this order.

Cosquer et al. [11] proposed a group membership service that allows the tuning of its failure detec-
tion (called suspectors) by applications. Applications do so by specifying interpretation conditions that
are used by the failure detector to do the interpretation. The paper introduces many excellent ideas with
respect to the tailoring of failure detectors, but does not address the issue of decoupling monitoring and
interpretation. In contrast, our work focuses on the latter issue. This said, this should not be too difficult
to adapt their system so that it implements an accrual failure detector.

More recently, Friedman [18] outlined in a position paper the idea of afuzzy group membership,
where a value called fuzziness level would be associated with each process to determine the extent
to which the process belongs to the group. Technical issues were developed later by Friedman and
Tcharny [19, 20]. Although the papers address different issues, the authors rely on some fuzzy failure
detector that outputs some integer value and uses two thresholds to define three suspicion levels (trusted,
fuzzy, or suspected). There are no details, however, because this is not the focus of their work. In
particular, they provide no definition nor implementation of fuzzy failure detectors. We believe that,
although developed independently, our works could nicely complement each other.

Aguilera et al. [1] propose the failure detector calledHB (Heartbeat) that can be used together
with an unreliable failure detector to solve Consensus in partitionable systems. Roughly speaking, the
failure detector associates to each process an integer value that increases as long as the process remains
reachable. This failure detector is used as acomplementfor other failure detectors, and not as a lower-
level building block.

Several papers have proposed failure detectors that internally used some counters. However, these
counters are used as an implementation technique and not as a means to separate decoupling system
monitoring and interpretation. Bondavalli et al. [5] proposed the notion ofα-count to distinguish be-
tween the transient and permanent/intermittent faults of system components. A value is associated with
each component and incremented each time the component fails. When the value grows beyond a given
threshold, the corresponding component is reported as permanently faulty. Chu [9], and later Mostefaoui
et al. [27], present different algorithms to transform an unreliable failure detector into a leader oracle
(also calledΩ failure detector). The two algorithms are based on a similar approach. Briefly speaking,
each process maintains a counter associated with each other process. The counters are incremented and
processes exchange information on their values using gossiping. The process with the lowest value is
deemed the most trustworthy and hence the most desirable candidate for a leader.

In recent work, Dunagan et al. [13] proposed a failure monitoring system called FUSE. They ad-
vocate providing failure detection as a global service and address several related engineering issues. In
particular, they focus on providing consistent failure notifications in large-scale and wide-area networks.

12

Whereas FUSE addresses issues related to notifications about failures, accrual failure detectors provide
a solution for detecting failures, and are thus useful components on top of which a system like FUSE
could be built.

7 Conclusion

Failure detection constitutes a fundamental abstraction for fault tolerant distributed systems. However,
from a more practical perspective, the binary model of classical failure detectors limit the development
of failure detection as a generic service because this model combines monitoring and interpretation. The
accrual failure detectors presented in this paper decouple these two tasks by outputting a suspicion level
rather than a binary value, and leaving it to applications to interpret this value. Ideally, the monitoring
is done by a single service running on each machine, while the interpretation of the suspicion level is
left to each application process. Such a service can be implemented as a daemon, a linked library or a
kernel service, depending on the desired tradeoff between intrusiveness and performance.

This paper gives a rigorous definition for accrual failure detectors that is compatible with the seminal
work of Chandra and Toueg [7]. In particular, we presented important conditions for the suspicion
level under which an accrual failure detector (♦Pac) is computationally equivalentto an eventually
perfect binary failure detectors (i.e., of class♦P). This equivalence is important because it shows that
accrual failure detectors do not hide any additional synchrony assumptions with respect to their binary
counterparts. However, equivalence does not imply that accrual failure detectors cannot be more efficient
or expressive than binary failure detectors. In fact, we argued extensively the architectural advantages
of accrual failure detectors, and presented usage patterns that are very difficult to handle using a binary
failure detector.

We have also outlined four different ways to implement accrual failure detectors and discussed their
respective advantages. This is not exhaustive and there is room for developing many other implementa-
tions in the future.

Acknowledgments

The example discussed in the introduction was kindly suggested to us by Francisco V. Brasileiro.
The authors are also grateful to the following persons for their insightful comments and suggestions:
Adel Cherif, Matti Hiltunen, Michel Raynal, Robbert van Renesse, Richard D. Schlichting, Yoichi Shin-
oda, Makoto Takizawa, and Paulo Verı́ssimo.

References
[1] M. Aguilera, W. Chen, and S. Toueg. Using the heartbeat failure detector for quiescent reliable communication and

consensus in partitionable networks.Theor. Comput. Science, 220(1):3–30, June 1999.

[2] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty generic broadcast. In M. Herlihy, editor,Proc.
14th Intl. Symp. on Distributed Computing (DISC’00), LNCS1914, pages 268–282, Oct. 2000.

[3] M. Bertier, O. Marin, and P. Sens. Implementation and performance evaluation of an adaptable failure detector. InProc.
IEEE Intl. Conf. on Dependable Systems and Networks (DSN’02), pages 354–363, June 2002.

[4] M. Bertier, O. Marin, and P. Sens. Performance analysis of a hierarchical failure detector. InProc. IEEE Intl. Conf. on
Dependable Systems and Networks (DSN’03), pages 635–644, June 2003.

[5] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni. Discriminating fault rate and persistency to
improve fault treatment. InProc. 27th Intl. Symp. on Fault-Tolerant Computing (FTCS-27), pages 354–362, June 1997.

[6] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.J. ACM, 43(4):685–722,
July 1996.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.J. ACM, 43(2):225–267, 1996.

13

[8] W. Chen, S. Toueg, and M. Aguilera. On the quality of service of failure detectors.IEEE Trans. on Computers,
51(5):561–580, May 2002.

[9] F. Chu. ReducingΩ to ♦W. Inf. Process. Lett., 67(6):289–293, Sept. 1998.

[10] W. Cirne, F. Brasileiro, J. Sauvé, N. Andrade, et al. Grid computing for Bag-of-Tasks applications. InProc. 3rd IFIP
Conf. on E-Commerce, E-Business and E-Goverment, Sept. 2003.

[11] F. Cosquer, L. Rodrigues, and P. Verı́ssimo. Using tailored failure suspectors to support distributed cooperative applica-
tions. InProc. 7th IASTED Intl. Conf. on Parallel and Distributed Computing and Systems (PDCS’95), pages 352–356,
Oct. 1995.

[12] X. Défago, P. Urb́an, N. Hayashibara, and T. Katayama. On accrual failure detectors. RR IS-RR-2004-11, JAIST,
Ishikawa, Japan, May 2004.

[13] J. Dunagan, N. Harvey, M. Jones, D. Kostic, et al. FUSE: Lightweight guaranteed distributed failure notification. In
Proc. 6th Symp. on Operating Systems Design and Implementation (OSDI’04), Dec. 2004.

[14] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.J. ACM, 35(2):288–323,
Apr. 1988.

[15] R. Ekwall, A. Schiper, and P. Urbán. Token-based atomic broadcast using unreliable failure detectors. InProc. 23nd
IEEE Intl. Symp. on Reliable Distributed Systems (SRDS’04), pages 52–65, Oct. 2004.

[16] P. Felber, X. D́efago, R. Guerraoui, and P. Oser. Failure detectors as first class objects. InProc. 1st Intl. Symp. on
Distributed-Objects and Applications (DOA’99), pages 132–141, Sept. 1999.

[17] C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure detection protocol. InProc. 8th IEEE Pacific Rim Symp. on
Dependable Computing (PRDC’01), pages 146–153, Dec. 2001.

[18] R. Friedman. Fuzzy group membership. In A. Schiper, A. Shvartsman, H. Weatherspoon, and B. Y. Zhao, editors,Future
Directions in Distributed Computing, LNCS2584, pages 114–118, Jan. 2003. Position paper.

[19] R. Friedman and G. Tcharny. Evaluating failure detection in mobile ad-hoc networks. TR CS-2003-06, Technion, Israel,
Oct. 2003.

[20] R. Friedman and G. Tcharny. Stability detection in mobile ad-hoc networks. TR CS-2003-12, Technion, Israel, Nov.
2003.

[21] N. Hayashibara.Accrual Failure Detectors. PhD thesis, JAIST, Ishikawa, Japan, June 2004.

[22] N. Hayashibara, X. D́efago, and T. Katayama. Flexible failure detection withκ-fd. RR IS-RR-2004-006, JAIST,
Ishikawa, Japan, Feb. 2004.

[23] N. Hayashibara, X. D́efago, R. Yared, and T. Katayama. Theϕ accrual failure detector. InProc. 23nd IEEE Intl. Symp.
on Reliable Distributed Systems (SRDS’04), pages 66–78, Oct. 2004.

[24] M. Hurfin, A. Most́efaoui, and M. Raynal. A versatile family of consensus protocols based on Chandra-Toueg’s unreli-
able failure detectors.IEEE Trans. on Computers, 51(4):395–408, Apr. 2002.

[25] A. Mostéfaoui, E. Mourgaya, and M. Raynal. Asynchronous implementation of failure detectors. InProc. IEEE Intl.
Conf. on Dependable Systems and Networks (DSN’03), pages 351–360, June 2003.

[26] A. Mostéfaoui, D. Powell, and M. Raynal. A hybrid approach for building eventually accurate failure detectors. InProc.
10th IEEE Pacific Rim Intl. Symp. on Dependable Computing (PRDC), pages 57–65, Mar. 2004.

[27] A. Mostéfaoui, M. Raynal, and C. Travers. Crash-resilient time-free eventual leadership. TR, IRISA, Rennes, France,
Apr. 2004.

[28] L. Sampaio, F. Brasileiro, W. Cirne, and J. Figueiredo. How bad are wrong suspicions? towards adaptive distributed
protocols. InProc. IEEE Intl. Conf. on Dependable Systems and Networks (DSN’03), pages 551–560, June 2003.

[29] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In N. Davies, K. Raymond, and
J. Seitz, editors,Middleware’98, pages 55–70, The Lake District, UK, 1998.

14

A Appendix

This appendix presents technical details that are not essential to convey the ideas presented in the pa-
per, but that are important to justify the correctness of the argumentation (e.g., complete proofs of the
theorems).

A.1 Proof for the transformation from accrual (♦Pac) to binary (♦P)

Lemma 7 (Strong completeness)Given an accrual failure detectorDac of class♦Pac , Algorithm 1
satisfies the property of Strong Completeness.

PROOF. Strong Completeness requires that every faulty process is eventually suspected forever by
every correct process.

Consider a faulty processp and some correct processq that monitorsp. We must show that there is
a time after whichp is permanently suspected byq.

Consider the system after the stabilization, i.e., whenslqp is increasing and increases by at least
once everyQ consecutive queries for some positiveQ.

We first show that there is a last T-transition (if T-transitions occur at all). We show this by proving
that no more thanQ T-transitions may occur after stabilization. Suppose that stabilization andQ T-
transitions have already occurred. As the run length for trustingLtrust increases by one at each T-
transition,Ltrust > Q forever. As only run lengths shorter thanQ will ever appear, the condition
l > Ltrust will never hold. Moreover, asslqp is monotonously increasing,sl < slprev will never hold,
either. Hence we have shown that the condition to trigger a T-transition (sl < slprev or l > Ltrust) will
never hold again.

Now, consider a time after which both stabilization and the last T-transition have occurred. Ifp is
suspected at this time, it will be suspected forever, and the proof is complete. Ifp is trusted at this time,
an S-transition will occur, asslqp goes to infinity, and thussl > SLsusp will eventually hold forever,
whatever the value ofSLsusp may be. After the S-transition,p will be suspected forever, and the proof
is complete. �Lemma 7

Lemma 8 (Eventual strong accuracy)Given an accrual failure detectorDac of class♦Pac , Algo-
rithm 1 satisfies the property of Eventual Strong Accuracy.

PROOF. Eventual Strong Accuracy requires that, after some time, no correct process is suspected by
a correct process. We prove the lemma by considering two correct processesp andq chosen arbitrarily,
and such thatq monitorsp. We must show that there is a time after whichp is never suspected. We can
rely on the existence of a boundSLmax on the suspicion levelslqp.

We first show that there is a last S-transition (if S-transitions occur at all). We show this by proving
that no more thandSLmax/εe S-transitions occur, whereε is the resolution of the suspicion level (see
Definition 1). Suppose thatdSLmax/εe S-transitions have already occurred. AsSsusp increases by at
leastε upon every S-transition,SLsusp ≥ SLmax , and hencesl > SLsusp will never hold again. We have
shown that the condition to trigger an S-suspicion will never hold again.

Now, consider the system after the last S-transition (or any time if no S-transition occurs). Ifp is
trusted at this time, it will be trusted forever. Ifp is suspected at this time, a T-transition will occur, as
we show below. After the T-transition,p will be trusted forever, and the proof is complete.

We must now prove that a T-transition occurs. Letsi denote the value thats takes during thei-th
query. If the sequencesi is not monotonously increasing, the conditionsl < slprev will hold at least
once, and thus a T-transition occurs. Ifsi is monotonously increasing, there will be a run made of
identical values of lengthLtrust + 1, assi is an infinite sequence whose elements are from a finite set
(0, ε, 2ε, . . . , bSLmax/εc · ε). This implies that the conditionl > Ltrust will hold at least once, and thus

15

a T-transition occurs. Asp andq were chosen arbitrarily, we have shown that Eventual Strong Accuracy
holds. �Lemma 8

Theorem 9 Algorithm 1 transforms an accrual failure detector of class♦Pac into one of class♦P.

PROOF. Follows from Lemma 7 (Strong completeness) and Lemma 8 (Eventual strong accuracy).
�Theorem 9

A.2 Proof for the transformation from binary (♦Pac) to accrual (♦P)

Lemma 10 (Accruement) Given a binary failure detectorD of class♦P, Algorithm 2 satisfies the
property of Accruement (Prop. 1).

PROOF. Consider a faulty processp and a correct processq. Sincep is faulty,D ensures thatp is
eventually suspected permanently (Strong completeness). Consider the system after the last S-transition
(or from the start ifp is never trusted).slqp(t) is obviously increasing byε upon every query. We have
thus shown that Accruement holds. �Lemma 10

Lemma 11 (Upper Bound) Given a binary failure detectorD of class♦P, Algorithm 2 satisfies the
property of Upper Bound (Prop. 2).

PROOF. Consider two correct processesp andq. Sincep is correct,D ensures thatp is eventually
trusted permanently (Strong eventual accuracy). Consider a point in time after the last T-transition (or
any time ifp is never suspected). Every query after this point in time returns 0. A suitable upper bound
for slqp is thus the highest suspicion level returned up to this point in time. We have thus shown that
Upper bound holds. �Lemma 11

Theorem 12 Algorithm 2 transforms♦P into ♦Pac .

PROOF. Follows directly from Lemma 10 (Accruement), and Lemma 11 (Upper bound).�Theorem 12

A.3 Proofs for the theorems about quality of service

In this section, we present the proofs for the theorems in Section 4.4. We start by presenting Algorithm 3,
an unambiguous description of the failure detectorD′T (whereT is a threshold function).

Algorithm 3 Transforming an accrual failure detector into a binary one using two thresholds.
1: Initialization:
2: status := trust {current status (trust or suspect)}

3: whenqueried about processp
4: sl := slqp(t) {get current suspicion level}
5: if sl > T (t) andstatus = trust then {suspect if level beyond high threshold}
6: status := suspect
7: if sl ≤ T0(t) andstatus = suspect then {trust if level below low threshold (or equal)}
8: status := trust

16

PROOF. (for Theorem 1). The proof is straightforward forDT1 andDT2 :

DT2 suspectsp at t ⇒ slqp(t) > T2(t)
⇒ slqp(t) > T1(t) ⇒ DT1 suspectsp at t

The proof is more complicated forD′T1 andD′T2 . Consider a timet whenD′T2 suspectsp. Let
t0 be the time of the preceding S-transition (or the time of the first query if there is no preceding S-
transition) andt1 < t2 < · · · < tK = t, the times when the failure detectors are queried betweent and
the preceding S-transition. We know that both failure detectors suspectp at t0:

D′T2 suspectsp at t0 ⇒ slqp(t0) > T2(t0)
⇒ slqp(t0) > T1(t0) ⇒ D′T1 suspectsp at t0

We then prove by induction that both failure detectors suspectp at tk = t as well. The induction
step is the following, for anyk = 1, . . . ,K:

(D′T2 suspectsp at tk−1 ⇒ D′T2 suspectsp at tk) ⇒ slqp(tk) > T0(tk)
⇒ (D′T1 suspectsp at tk−1 ⇒ D′T1 suspectsp at tk)

As t was chosen arbitrarily, this completes the proof. �Theorem 1

PROOF. (for Theorem 4)
Let the query preceding the query at timet happen at timet0. We know thatD′T2 trustsp at t but

suspectsp at t0, henceslqp(t) ≤ T0(t). Theorem 1 ensures that alsoD′T1 suspectsp at t0. This and
slqp(t) ≤ T0(t) implies that alsoD′T1 makes a T-transition att. �Theorem 4

A.4 Simple implementation in a partially synchronous model

We now describe, in further details, the simple implementation outlined in Section 5.1, and show that it
implements an accrual failure detector of class♦Pac in a partially synchronous system model. Notice
that the algorithm described in this section is intended as a simple illustration.

Partially synchronous system model. We extend the model of Section 2, by considering that pro-
cesses communicate only by message-passing. We assume that processes have their own memory
space.7 Also, channels are reliable, and we consider only crash failures of processes. We assume
a partially synchronous model, as defined by Chandra and Toueg [7], where someunknownbounds
on process speed and message delays hold after someunknowntime calledGST (stands for global
stabilization time).8 We also assume a local clock that has a bounded drift from global time after
GST . The local clock is accessed by the functionnow . More precisely, the bounded drift means that
now(t′)− now(t) > θ · (t′ − t) for all t′ > t > GST and someθ > 0.

Algorithm. The algorithm (Algorithm 4) is based on heartbeats and is actually quite simple. The code
of the algorithm, identical for all processes, is expressed for some arbitrary processq ∈ Π. A monitored
process sends heartbeat messages on a regular basis, according to its own local clock. Heartbeats are
sequence numbered. A monitoring processq keeps track of the time of arrivalTlast(p) (according to its
own local clock) of the most recent heartbeat message from a monitored processp. The value of the
functionslqp(t) is given by the time elapsed since the arrival of the most recent heartbeat (according to
the local clock of the monitoring process).

7This means that variables arenot shared between processes. Although the same variable name (say,Tlast) may be em-
ployed by two different processes (say,p andq), this always refers to twodistinct variables (that is,Tlast of p andTlast of
q).

8This model is in fact a simple variation over the definitions of partial synchrony due to Dwork et al. [14].

17

Algorithm 4 Simple implementation of an accrual failure detector.
code of some process q ∈ Π:
1: Initialization:
2: start := now
3: next sn := 1 {Sequence number for the next heartbeat}
4: forall p in Π− {q} do
5: Tlast(p) := start {Arrival time of the last heartbeat from each process}
6: SNlast(p) := 0 {Seq. number of the last heartbeat received}
7: when receive(heartbeat, sn) from p {receive heartbeat with sequence numbersn}
8: if sn > SNlast(p) then
9: Tlast(p) := now

10: SNlast(p) := sn
11: periodically do
12: broadcast(heartbeat,next sn)
13: next sn := next sn + 1
14: whenqueried about processp at timet
15: if p 6= q then
16: slqp(t) := t− Tlast(p) {rounded to the precisionε}
17: else
18: slqp(t) := 0

Lemma 13 Algorithm 4 satisfies Prop. 1 (Accruement) forslqp , wherep and q are two distinct pro-
cesses inΠ.

PROOF. Let processp be faulty. It is sufficient to prove that after some stabilization time,slqp(t) is
increasing, and that it only remains constant during a bounded number of queries.

Sincep crashes, it can send only a finite number of heartbeat messages. Lett0 be the time when the
heartbeat with the greatest sequence number ever received arrives. At this time, the algorithm updates
Tlast(p) to now(t0) (i.e., t0 in local time) and this value never changes again. It follows that, for any
time t aftert0, slqp(t) = now(t)− now(t0).

This function is increasing aftert0. We still have to find a number of queriesQ such thatslqp

increases at least once everyQ queries (aftert0):

slqp(tqueryq (k + Q))− slqp(tquery
q (k)) ≥ ε

Using that the drift of the local clock is bounded byθ, and that at leastδ time elapses between
queries (see Section 2), we obtain a lower bound forslqp(t

query
q (k + Q))− slqp(t

query
q (k)):

now(tquery
q (k + Q))− now(tqueryq (k + Q)) > θ · (tquery

q (k + Q)− tquery
q (k)) ≥ θ · (Q · δ)

We need to ensure that this lower bound is at leastε. ThusQ = dε/δθe is a suitable choice for
ensuring thatslqp(t) increases at least once everyQ queries.

�Lemma 13

Lemma 14 Algorithm 4 satisfies Prop. 2 (Upper Bound) forslqp , wherep and q are two distinct
processes inΠ.

PROOF. Let processp be correct. We must prove thatslqp(t) is bounded. All times that appear are in
local time.

Let t1 be the time when the first heartbeat messageH1 sent afterGST arrives. Clearly, untilt1,
slqp(t) is bounded byt1 − start .

18

After t1, only heartbeat messages with a higher sequence number thanH1, hence sentafter H1, are
taken into account. It follows that they are subject to the synchrony assumptions of the model. Let∆
be the end-to-end upper bound on transmission time, and∆′ the maximal interval between the sending
of two consecutive heartbeats. It follows that the largest interval that elapses between receiving two
consecutive heartbeats is∆ + ∆′.

Combining the two parts, we obtain thatslqp(t) is bounded bymax(t1 − start ,∆ + ∆′).
�Lemma 14

Theorem 15 Algorithm 4 implements an accrual failure detector of class♦Pac .

PROOF. The proof follows directly from Lemma 13 and Lemma 14, as these lemmas hold for an
arbitrarily chosen pair of processes. �Theorem 15

A.5 Discussion on the Accruement property

When defining the suspicion level function in Section 3.1, we mentioned that there was a simple alter-
native to Accruement (Property 1):

Property 3 (Weak Accruement) If processp is faulty, then eventually, the suspicion levelslqp(t) is
monotonously increasing and goes to infinity:

lim
t→+∞

slqp(t) = +∞

We now prove that this property is not strong enough for our purposes. In particular, it does not allow
the implementation of a♦P binary failure detector on top of a♦Pac accrual failure detector (defined
with Weak Accruement).

For simplicity, we present the proof for two processesp and q, with q monitoring p. Consider
any algorithmA that implements♦P, and an adversary that controls the suspicion levelslqp. Let the
adversary reply to queries using the following strategy:

1. If the algorithmA suspectsp, then keepslqp constant, i.e., return the result of the previous query.

2. If the algorithmA trustsq, then increaseslqp by ε with respect to the result of the previous query.

At any time t, the history of the accrual failure detector produced by the adversary satisfies both
Properties 2 and 3. Nevertheless, algorithmA does not implement a♦P failure detector. The proof is
indirect: suppose thatA implements a♦P failure detector.

1. If p is faulty,A must eventually suspectp forever. Suppose thatA suspectsp from timet on. slqp

will be constant aftert, and thus it does not go to infinity. Hence Weak Accruement (Property 3)
does not hold, and thusp must be correct.

2. If p is correct,A must eventually trustp forever. Suppose thatA trustsp from timet on. After t,
slqp will grow by ε upon every query, hence it goes to infinity. Hence Upper Bound (Property 2)
does not hold, and thusp must be faulty.

We have come to a contradiction whetherp is correct or faulty, hence we have shown that no algo-
rithm A can implement a♦P binary failure detector on top of our adversary.

Finally, note why this adversary does not work with♦Pac accrual failure detectors defined by Ac-
cruement (Property 1). The reason is that it keepsslqp constant for an arbitrarily long period ifp is
faulty, whereas the Accruement property disallows this:slqp may only remain constant during a limited
number of queries ifp is faulty (although the limit is unknown).

19

