
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A sowing routing protocol for dense mobile ad hoc

networks

Author(s) Cartigny, Julien; Defago, Xavier

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2005-009: 1-8

Issue Date 2005-07-19

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/4789

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

A Sowing Routing Protocol
for Dense Mobile Ad Hoc Networks

Julien Cartigny1, Xavier Défago1,2

1School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)
2PRESTO, Japan Science and Technology Agency (JST)

July 19, 2005
IS-RR-2005-009

ISSN 0918-7553

Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
http://www.jaist.ac.jp/

A Sowing Routing Protocol for Dense Mobile
Ad-Hoc Networks
Julien Cartigny∗ and Xavier Défago∗†

∗School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
†PRESTO, Japan Science and Technology Agency (JST)

Email: {cartigny,defago}@jaist.ac.jp

Abstract— To reduce the number of control messages in
dense ad-hoc networks, some protocols reduce the redundancy
(or overlap) between communication radii to limit the routing
overhead. In this paper, we propose a novel method to decrease
the routing overhead by reducing redundancy of data between
neighbors: a node selectively sends routing information that was
not recently sent by neighbors, and transmits it using the payload
of HELLO messages. In addition, the node introduces a bias
favoring information pertaining to nearby nodes, as information
about farther nodes need to be updated less often. When a
route is needed, the route request message is relayed only by
nodes that are closer to the destination, thus forming a broadcast
limited to a subset of the network. The protocol, called SiRuP
(Sowing Routing Protocol) provides a low-overhead routing for
dense networks and offers good resistance against route request
failures, when nodes are highly mobile.

I. INTRODUCTION

Ad-hoc networks consist of mobile hosts with a wireless
radio interface, forming a decentralized network. Because of
the radio nature of the communication, a node can directly
communicate with its neighbors (a message is received si-
multaneously by all neighbors within the radio transmission
radius). But when a node wants to reach farther nodes, the
message must be forwarded by other nodes to the destination.
Hence, the network is only supported by the users.

Dense ad-hoc networks are defined as ad-hoc networks with
a high number of nodes in a bounded space. Each node
has numerous neighbors and competes with them to send a
message. To reduce the number of collisions (nodes receiving
two messages at the same time cannot understand either)
and the routing overhead, messages have to be short and the
interval between two packets sent by the same node must be
long enough.

Dense ad-hoc networks are a challenging environment for
ad-hoc routing protocols. For instance, the proactive routing
protocol Destination-Sequence Distance Vector (DSDV) [1]
has a high and constant overhead in term of control messages,
as each node periodically exchanges its routing table with its
neighbors. Ad hoc On-demand Distance Vector (AODV) [2]
has a high packet overhead, as route request messages are
forwarded by every node in the network. Optimized Link State
Routing (OLSR) [3] reduces the control overhead by reducing
the number of relays used when a message is broadcasted in

the network. A heuristic algorithm selects the minimal set of
one-hop neighbors. This set covers every two-hop neighbors,
and thus topology control messages are broadcast in the
network at a lower cost than with classical blind flooding.
However, OLSR requires that every HELLO message includes
the list of neighbors, which can become large in a network
with high density.

In this paper, we propose a new routing protocol, called
Sowing Routing Protocol (SiRuP) that reduces the number of
collisions and routing overhead. The main idea of the protocol
is to diffused identifiant in control messages with a lower
overhead cost. This routing information is not reliable to find
an optimal unicast route as other routing protocol. To find the
optimal, a broadcast is started every time a route is needed,
but this broadcast is limited to a part of the network, because
nodes uses the information disseminated by control messages
to limit the expanison of the broadcast.

SiRuP is a hybrid routing protocol composed of two parts.
First, a table-driven proactive algorithm called Proactive Net-
work Discovery protocol (PND) disseminates identifiers with
low redundancy: each node tries to add only information not
recently sent by neighbors in the HELLO messages. Then,
a reactive algorithm called Reactive Route Request protocol
(RRR) uses the information disseminated by PND to limit the
size of the route request broadcast. Sowing Routing Protocol
is efficient in dense networks, using the reduction of data
redundancy in HELLO message and a size-limited broadcast
to reduce the cost of a route request. Furthermore, because
of the reactive route request broadcast, it is very efficient in
case of high mobility in the network. The main contributions
of the paper is a new method to reduce routing overhead by
minimizing data redundancy between neighbors and limiting
the size of a route request broadcast.

Periodically, PND selects a subset of known node identifiers
and broadcasts it to its neighbors in HELLO messages. This
subset contains the identifiers of the nodes with the oldest
timestamp (i.e., identifiers not heard recently from neighbors
nodes). Consequently, the routing information is disseminated
with a low overhead, as nodes are able to listen to data sent
by other nodes and thus avoiding to waste bandwidth by
broadcasting the same information. Furthemore, the number

no rebroadcast

rebroadcast

hop=1hop=3hop=4 hop=2
DST

SRC

Fig. 1. Example of nodes forwarding the request message from the source
(src) to the destination (dst)

of identifiers in the subset is based on a policy indicating the
number of node identifiers located within a given number of
hop. Nodes are selected within this region (for instance, x
identifiers of nodes located at one hop, y identifiers of nodes
located at two hops, etc. . .). We propose in this paper different
policies with a goal inspired from the fisheye protocol [4]:
select more identifiers of closer nodes than farther nodes,
because closes nodes need to be updated more often than
farther nodes.

PND minimizes data redundancy between neighbors, but is
not as accurate as other protocols for several reasons. First,
as SiRuP does not use a topology approach, it does not
guarantee that routing information is correctly diffused within
the network. Second, as it uses unicast route requests, the
length of the discovered route is likely not optimal. Finally,
the diffusion of identifiers is slow (compared to protocols
like OLSR), as only HELLO messages are used to diffuse
control information. Note, howevers that PND has not thegoal
to diffuse accurate routing information. The identifiers sent by
each node are “sown” in the network to help the reactive route
request protocol to find the route and limit the broadcast size.

RRR is the route search part of SiRuP. Each time a node
needs a route, it sends a route request message to its neighbors,
including the last information it knows about the destination
through PND. When a node receives a route request message,
it rebroadcasts it only if the distance to the destination is
shorter than the distance in the route request packet. Hence,
the broadcast is limited to a geographical zone between the
source and the destination, and the route request messages
become more and more accurate as they get closer to the
destination (because the information about destination node
is more often updated). Figure. 1 shows an example of
route research. The large circles (shown as hop=1, hop=2. . .)
represent the distance in hops from the node dst diffused by
HELLO messages. The reactive route research can be seen as a
multicast covering nodes between the source and destination,
where the route request “harvests” information diffused by
PND to direct the research to the destination. Hence, several
routes can be found, and the optimal one is used as path for

the unicast route reply message.
The paper is organized as follows. Section II presents the

OLSR protocol, that we use in our performance comparaisons.
Section III is an overview of our Sowing Routing Protocol.
Simulation results are presented in Section IV. Section V
presents a review of several existing protocols. Finally, Sec-
tion VI concludes the paper and presents possible improve-
ments of the model.

II. BACKGROUND: THE OLSR PROTOCOL

To show the advantages of our algorithm we compare it
to Optimized Link State Routing protocol (OLSR) [3], [5].
OLSR is a proactive link state routing protocol designed to
minimize flooding by using only selected nodes. To achieve
such broadcast reduction, OLSR has introduced a method
called MPR (MultiPoint Relays) [6] to minimize flooding of
control packets (called Topology Control packets, or TC) by
reducing duplicate retransmissions in the same region.

To accomplish this, a set of neighbors (called multipoint
relays or MPRs) is selected by each node in the network to
act as relays. Each node periodically broadcasts a HELLO
message that includes the list of its neighbors. This way, a node
knows the neighboring topology (i.e. the identifiers of each
one-hop and two-hop neighborhood, the links between one-
hop neighborhood, and the links between one-hop neighbors
and two-hop neighbors. Hence it can compute, using a heuris-
tic algorithm, the minimal set of one-hop neighbors (the MPR
set) which cover all two hop neighbors. Afterwards, multipoint
relays of a given node are declared in the subsequent HELLO
messages, and each neighbor is able to discover if it is part of
the MPR. Topology Control (TC) messages are broadcasted
periodically (but less frequently than HELLO message) using
MPR (i.e. when a node sends the TC message, only its MPR
neighbors rebroadcast it). From the TC message data (TC
messages contain the identifier of the original sender and the
neighbor identifiers which have selected its as MPR) each node
is able to compute a route to each node in the network.

OLSR is efficient in reducing the routing overhead, as
the percentage of relays for broadcasting of TC messages is
decreasing when the density grows up (compared to blind
flooding, where every node rebroadcasts the message). But
OLSR suffers from several drawbacks. First, OLSR is a
uniform protocol: it diffuses the same information periodically
to every node in the network using TC messages. But, as
presented by the protocol Fisheye (described in Section. V),
information about distant node can be less frequent than
information about close nodes. Second, a node needs to know
information about its one and two-hop neighbors. To be able
do gather this information, OLSR periodically sends the list
of its one-hop neighbors in each HELLO message. But, if d is
the density of the neighborhood, then each node periodically
receives Θ(d2) identifiers. Hence, the number of identifiers
is thus rather high for a dense network, as the probability of
collisions at the MAC layer level increases when the density
grows. Finally, two neighbors need at least two exchanges to
construct their MPR set and, in case of high mobility, the

MPR set of each node can become inconsistent because of
the numerous link changes in the neighborhood.

III. SOWING ROUTING PROTOCOL

The Sowing Routing Protocol (or SiRuP) is a hybrid routing
protocol designed for dense networks. It is composed of two
parts where one is proactive and the other one is reactive. First,
the Proactive Network Discovery protocol (PND) is a proactive
identifier dissemination algorithm. A node periodically sends
HELLO messages to its neighbors to sown identifiers in the
network. The payload of these HELLO messages is a list
of identifiers selected according to a given policy and the
reception timestamp of known node identifiers. The second
part, the Reactive Route Request protocol (RRR), is a reactive
route research algorithm. The starting node sends a route
request packet to its neighbors. A node forwards the request
message only if that node is closer to the destination than
the node from which it has received the request (distance are
estimated from information disseminated by PND). When the
destination receives the route request message, it sends back
an unicast route reply message to the source to establish the
route between the two nodes.

A. Proactive Network Discovery (PND)

Each node Nodei maintains a table called sowing i. Each
table entry contains the identifier of some other node, together
with its distance in a number of hops. More precisely, an entry
sowing i[j] contains the following information about Nodej :

• id: the identifier of Nodej ;
• sn: the last sequence number of Nodej seen in HELLO

messages;
• hop: the estimated number of hops between Nodei and

Nodej ;
• stamp: the timestamp of the creation or last update of the

entry sowing i[j] (i.e., the time when the last message was
received with information about Nodej). The timestamp
is based on the local clock of each node. Hence, no time
synchronization is needed between nodes in the network.

For the sake of the explanation, let us decompose the
table sowing i in several subsets sowingk

i , consisting of the
entries with a hop distance of k (i.e. ∀entry ∈ sowingk

i :
entry .hop = k). Let also define sowing≥k

i which consists of
the entries with a hop distance of at least k (i.e. entry ∈
sowing≥k

i : entry .hop ≥ k).
Nodei periodically sends a HELLO message with interval

hello interval . The payload of the HELLO message contains
information about Nodei and selected , a subset of sowing i.

The process of selecting the entries to be added in selected
is based on the following:

• a policy of entry selection in function of the distance;
• the timestamp of the entries in sowing i.
We next describe how the policy is specified. The policy

customizes the number of entries added in selected in function
of the hop distance, in order of giving more frequent informa-
tion about close nodes. It reflects the distance effect (described

in Section. V): a node needs more frequent information about
close nodes than distant nodes.

The policy defines the number of entries to be added in
selected among entries with each possible hop distance, i.e.,
it specifies the number of entries about nodes at one hop,
the number of entries about nodes at two hops,. . . The policy
has a parameter size policy : entries about nodes at at least
size policy are grouped together, and the policy specifies the
number of entries to be added from this group. Hence, we
consider every entry where the hop-distance is superior or egal
to size policy as one scope, due to the distance effect. Thus
the policy is defined by size policy and size policy integers:

policy = {scope(1), scope(2), . . . , scope(≥ size policy)}

Nodei chooses the sowing i oldest entries. Because Nodei

listens to neighborhood communications (and updates the local
timestamp of sowing i entries accordingly), it will select a
set of entries different from those that have been recently
sent by neighbors. Hence, nodes exchange different entry sets,
thus reducing the overhead due to control message (when
compared with other solutions where neighbors may send
identical control messages, even when they are near each
other).

Hence, following the policy, we can define the sets selectedk

contain the oldest entries (i.e., those with oldest timestamp)
of sowingk

i with |selectedk| = max (scope(k), |sowingk
i |).

Likewise, the set selected≥k contains the oldest entries (i.e.,
those with oldest timestamp) of sowing≥k

i with |selected≥k| =
max (scope(≥ k), |sowing≥k

i |). They represents the subset of
sowing i to be included in the HELLO message.

The payload of HELLO messages also contains information
about the sender Nodei. The field infoi contains the same
information as a sowing entry (except for the stamp field, as it
is based on the local clock) with infoi.id containing the sender
identifier and info.hop is set to zero. For infoi.sn , it contains
the current sequence number of Nodei called sn helloi. The
role of the sequence number is to help other nodes find the
most recent information about Nodei. It is initialized to zero
at startup and incremented for each HELLO message sent.

Then, the payload of the HELLO message sent by Nodei

contains the union of all theses sets and infoi:

(
∪size policy−1

k=1 selectedk
)
∪ selected≥size policy) ∪ infoi

When a Nodei receives a HELLO message, PND checks
every entry in the payload of the HELLO message, updates
sowing i if necessary and discards the message. Because each
node wants to keep fresh information and shortest distance,
an update in sowing i is applied if only the sequence number
is more recent or if the distance to the destination is shorter
than the equivalent entry stored in the table sowing i. Hence,
for each entry elem in the payload of a HELLO message:

• If ∀x : sowing i[x].id %= elem.id , a new entry
sowing i[j] is created with a copy of the field elem .

Then sowing i[j].hop is incremented (as the distance has
increase by one hop) and sowing i[j].stamp is set to the
current time of the internal clock.

• If ∃j : sowing i[j].id = elem.id , then the entry is updated
if:

– the sequence number of the HELLO message entry
is more recent than the one in sowing i[j] (i.e.
sowing i[j].sn < elem.sn);

– or if the sequence number of the HELLO mes-
sage entry is equal to the one in sowing i[j] (i.e.
sowing i[j].sn = elem.sn) AND the number of
hops in the HELLO message entry is lower than the
number of hops in sowing i[j] (i.e. sowing i[j].hop >
elem.hop).

The update operation consists of copying the sequence
number and the hop distance from the field to the entry:
sowing i[j].sn is set to elem.sn and sowing i[j].hop is set
to elem.hop + 1 (as the distance has increase by one hop).
sowing i[j].stamp is updated to the actual time of the internal
clock. Hence, using sequence number, nodes can find the
most recent information with the minimal distance to the
destination.

B. Reactive Route Request (RRR)
A route request message is sent when a node needs a route.

The message is only forwarded by nodes that are closer to
the destination, according to the information disseminated by
PND. Hence, the propagation of route request message is lim-
ited to a “corridor” with a length equal to the distance between
source and destination, and a width approximately equals to
the communication radius. This size-limited broadcast can be
seen as a implicit multi-path, offering several route to the
destination without incurring a high overhead for explictly
managing multipath structures.

More precisely, when a source Nodesrc needs a route to a
destination Nodedst, it sends a route request message (called
request) to its neighboring. The request message includes a
copy of the entry sowingsrc[dst] in the field request .field
(sowingsrc[dst].stamp is not included in the message). The
message includes a last-hop node field request .last with the
identifier of the last node which has rebroadcasted the route
request message (to be able to send back the unicast route reply
message). The message also contains the distance from the
source with the field (called request .distance) and a sequence
number (called request .sn), different from sn helloi. This
sequence number is here to help other nodes to discern
different route requests issued by the same source. So, each
Nodei keeps a sn request i counter set to zero and incremented
for every route request generated by the node.

When a Nodei receives the request message, it rebroadcasts
it if an entry with the same identifier exists in its sowing
table (∃dst : sowing i[dst].id = request .field .id) and if the
number of hops of the entry is inferior to the number of the
message (sowing i[dst].hop < request .hop). The message is
rebroadcasted as it, except the hop distance is updated to the
hop distance to the entry from sowing (request .field .hop =

3

4
5

7 3

3

3

2

3

2

4

4

1

1

2

2

1

1

2

2

2

2

Fig. 2. Example of route request

sowing i[dst].hop) and the distance from the source is incre-
mented (request .distance = request .distance + 1).

When a destination Nodedst receives a route request mes-
sage, it waits for a predeterminated amount of time to receive
all other messages for the same route request. Then Nodedst

chooses the best route to Nodesrc (i.e., the route request
message with the shortest hop distance) and sends a unicast
route reply to the last-hop relay node with the shortest route
to Nodesrc. Then each node forwards the message until it
arrives to Nodesrc and therefore, Nodesrc has now a route
to Nodedst. To be able to forward the route reply message,
each node maintains a table to keep track of each route in
construction or recently established, associated with a timeout
(to remove old routes) and the last-hop node identifier of
each route request (to be able to send back the message).
Furthermore, nodes continue to listen to other messages of
the same route request broadcast. Therefore, if they receives a
route request message with the same sequence number and a
better hop distance request .distance than any previous route
request message, they update the last-hop identifier to help
finding the shortest route (but does not rebroadcast the route
request message).

The Figure. 2 presents how a route request is forwarded
from source to destination. The numbers in the figures indicate
the hop-distance to the destination acquired using PND. Each
node receiving the route request message forwards it if the
distance to the destination is shorter than the previous relay.
Several paths are found by the protocol, and the destination
can select the best way to reach the source node. Furthermore,
as seen in Fig. 1, not every node in the zone forwards the
route request message. This is because nodes rebroadcast the
message if and only if the distance to Nodedst is inferior
to the previous relay. Thus a node Nodej receiving a route
request message carrying the same hop distance as in its
sowingj [dst] does not rebroadcast the message. This behavior
helps reducing the breadth of the route request broadcast.

IV. EXPERIMENTAL RESULTS

In our simulations, we compare our protocol (SiRuP) with
OLSR (see Section. II). We used the discrete event simulator

TABLE I
PARAMETERS FOR SOWING ROUTING PROTOCOL AND OLSR

SiRuP HELLO interval 2s
sowing Information Hold Time 5 * HELLO interval

OLSR HELLO interval 2s
TC interval 5s

neighbor Hold Time 3 * HELLO Interval
Topology Information Hold Time 3 * TC interval

 90

 92

 94

 96

 98

 100

 50 100 150 200 250 300

Re
ac

ha
bi

lity
 (%

)

Number of nodes

OLSR
SiRuP

Fig. 3. Reachability as a function of the number of nodes

Omnet++ [7] together with the mobility framework [8], using
a perfect MAC layer (no collisions occur). The common
parameters for all scenarios are the following: the size of the
overall area is 1000m x 1000m with 200 nodes and 1 route
request from each node during the simulation that lasted for
90s in simulation time, the transmission radius is 210m and
the policy A is used for SiRuP (see Table. II). Each scenario
is repeated 30 times. Nodes use the random waypoint model:
a node randomly selects a destination in the area and goes
to it at constant speed (1.5m/s); Such steps are repeated until
the end of the simulation. Table. I summarizes the parameters
used for the two protocols (the OLSR parameters are the same
as the ones used in RFC 3626 [5]). Each node sends route
request messages from 10s until the end of the simulation,
at randomly chosen times. We evaluate the protocol using 4
scenarios described bellow.

A. First Scenario: Number of Nodes

In the first scenario, we observe the performance (in terms
of reachability, packet overhead, and data overhead) of both
protocols while varying the number of nodes from 50 to 300
(this is equivalent to a density from 6.93 to 41.56 nodes per
communication radius). Figure. 3 shows the reachability, that
is the percentage of route constructions that succeed. OLSR
presents a stable result, whatever is the density, but SiRuP
increases its performance as the number of nodes grows,
outperforming OLSR when the number of nodes grows beyond
150. The advantage of SiRuP when the network is dense
is due to two reasons. First, the policy is fixed in every
configuration, hence the amount of control message exchanges
between neighbors grows as the density increases, and thus
each node receives more frequent updates about the topology.
Second, due to the size-limited broadcast, the route research

 0

 50000

 100000

 150000

 200000

 250000

 50 100 150 200 250 300

Pa
ck

et
 o

ve
rh

ea
d

Number of nodes

OLSR
SiRuP

Fig. 4. Packet overhead as a function of the number of nodes

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 50 100 150 200 250 300

Da
ta

 o
ve

rh
ea

d
(b

yt
es

)

Number of nodes

OLSR
SiRuP

Fig. 5. Data overhead as a function of the number of nodes

is not limited to an unicast message and hence the destination
has a higher chance to be reached.

Figure. 4 and Figure. 5 present the routing overhead in terms
of the number of packets and the amount of data sent, respec-
tively. The gap between OLSR and SiRuP can be explained by
the different approaches used in each protocol. On one hand,
OLSR has a high overhead for updating information on the
network topology, but has a smaller cost for route construction.
On the other hand, SiRuP minimizes the redundancy of data
in HELLO packets and offers a lower constant overhead, but
the route request broadcast depends on the density. As shown
below, the gap is smaller when the number of requests per
node increases.

B. Second Scenario: Policies

In the second scenario, we are going to evaluate various
policies. Table. II presents the policies and Figure. 6 presents
the results in terms of reachability and data overhead (the
packet overhead is almost equal for each policy). The dif-
ference between each policy is low as for the reachability

TABLE II
POLICIES USED IN THE EXPERIMENTATION

size hello |selected1| |selected2| |selected≥3|
policy A 20 8 4 8
policy B 10 4 2 4
policy C 5 2 1 2

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

Policy CPolicy BPolicy A
 90

 92

 94

 96

 98

 100

Da
ta

 o
ve

rh
ea

d
(b

yt
es

)

Re
ac

ha
bi

lity
 (%

)

overhead data
reachability

Fig. 6. SiRuP performance with different policies

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

Re
ac

ha
bi

lity
 (%

)

Speed

SiRuP
OLSR

Fig. 7. Reachability as a function of the node speed

(around 1.5%), but the data overhead is as much as three times
smaller in some cases. Depending on the efficiency constraints,
choosing a policy with less information in the HELLO packet
results in only a slight performance degradation, and it might
be interesting to choose a light policy if the applications can
cope well with network failures.

C. Third Scenario: Node Speed
In the third scenario, we compare OLSR and SiRuP once

again, this time with a variable node speed ranging from
1.5m/s to 20m/s. Figure. 7 presents the results in term of
reachability. Because SiRuP uses a size-limited broadcast for
route request, it is less influenced by the node mobility, as the
reactive nature of the route requests permits a blind flooding-
like research (with good reachability) but without covering the
entire network. OLSR offer lowers performance in term of
reachability due to frequent link changes, since the multicast
relay point (MPR) set needs at least two message exchanges
to construct a viable MPR set and because the time between
two topology control (TC) messages is important.

D. Fourth Scenario: Number of Requests
The last scenario increases the number of route requests,

each node sends from 1 to 25 route requests during the
simulation (for a total of 200 to 5000 route requests). As seen
in Figure. 8, OLSR becomes more interesting in terms of the
packet overhead when each node sends 23 or more requests
during the simulation (i.e., a total of 4600 route requests during
90 seconds). In fact, most of the overhead comes from control

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 5 10 15 20 25

Pa
ck

et
 O

ve
rh

ea
d

Number of requests

SiRuP
OLSR

Fig. 8. Packet overhead as a function of the number of requests

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 5 10 15 20 25

Da
ta

 O
ve

rh
ea

d

Number of requests

SiRuP
OLSR

Fig. 9. Data overhead as a function of the number of requests

messages (HELLO or TC messages), as route request and
reply messages are forwarded like simple data packet when
routes already exist. Thus, OLSR can increase the number of
route requests at a lower cost, instead of the higher cost for
each route request (with SiRuP). In terms of data overhead, as
seen in Figure. 9, OLSR also becomes more interesting than
SiRuP for a higher number of route requests. Because the data
overhead for each of the two protocols is a linear function,
we can extrapolate that OLSR becomes better than SiRuP
when the number of route requests by node grows beyond
116 (23200 route requests in the network during 90 seconds,
i.e., 290 route requests by second on average). This value is
very high for an ad-hoc network and OLSR should be used
only for dense networks with heavy route requests.

V. RELATED WORK

Ad-hoc routing protocols can be classified into three cate-
gories: distance vector, link state, and on-demand. The first two
categories are also known as proactive (or table-driven) routing
protocols: they maintain global routes for all known destina-
tions in the background. By exchanging route information,
proactive protocols minimize delay for route construction. In
contrast, on-demand routing protocols, also known as reactive
protocols, discover the route when it is needed. Several surveys
cover these protocols [9]–[11].

Distance vector protocols belong to the class of destination
based protocols. Each node maintains a distance (in number of
hops) and a vector (next-hop identifier) to all the destinations

in the network. Distributed Bellman-Ford (DBF) is a classical
distance-vector algorithm: each node maintains the distance
for each destination in the network and periodically broadcasts
to each of its neighbors the current estimate of the shortest
distance to every node. It is well adjusted for wired networks,
but suffers of loop formation in ad-hoc networks due to the
fluctuating nature of this environment. Destination-Sequence
Distance Vector (DSDV) by Perkins et al. [1] is an ad-hoc
routing protocol based on DBF, using a tag for each route
entry with a sequence number to help nodes to select up to
date information and thus avoid formation of routing loops.
But DSDV suffers from a constant high overhead, because
each node periodically exchanges its routing table with their
neighbors. When the density and/or the size of the network
grows, nodes suffer due to transfering too much information
and too many collisions at the MAC layer. SiRuP uses less
information by avoiding taht neighbor send redundant data.

The Link state (LS) approach is preferred for wired net-
works. Protocols regularly flood the network with link state
updates to refresh the routing tables in all routers. By applying
a shortest-path algorithm, each router is able to choose its next
hop for each destination. For instance, GSR (Global State
Routing protocol) [12] reduces the number of accesses to
the MAC layer by periodically broadcasting changes in its
connectivity instead of immediately flooding the network when
a link to a neighbor change. FSR (Fisheye State Routing) [13]
extends GSR, by using different exchange periods for different
entries in the routing table: entries corresponding to close
nodes are propagated with higher frequency. This idea comes
from the distance effect described by Basagni et al. [14]:
“the greater the distance separating two nodes, the slower
they appear to be moving in respect of each other”. Another
protocol, called HSLS (Hazy Sighted Link State) [15], uses
a similar idea: link changes are collected and diffused with
a time to live (TTL) that depends on the current time index.
More precisely, a node floods recent neighborhood changes
every te (the time interval between two control messages) with
TTL set to 2, every 2 ∗ te with TTL set to 4, every 4 ∗ te
with TTL set to 8, etc. . . Hence, a distant node receives fewer
updates than a close node. The protocol presented in this paper
uses a similar concept for the diffusion of routing information,
but enhances the method by avoiding data redundancy in the
payload of HELLO messages. The idea of decreasing the
amount of control information about distant nodes is used in
SiRuP to lower the control message overhead.

On-demand routing protocols (also known as reactive) dis-
cover the route between two nodes when needed. The source
node broadcasts a route request message. Intermediate nodes
relay the message if needed and discard duplicates. When the
destination receives the request message, it sends a route reply
to the source, and this message instantiates routing information
of intermediate nodes until it reaches the source. AODV
(Ad hoc On-demand Distance Vector) [2] uses an equivalent
method but adds sequence numbers to ensure the freshness of
each route. DSR (Dynamic Source Routing) [16] emphasizes
aggressive caching and deduction of topology information

from routing packets, by adding in each route request and route
reply message the list of all intermediate nodes. Hence, each
node listening to these messages can extract route information
to all downstream nodes. However, because of the high number
of broadcast messages for route construction, neither AODV
nor DSR are efficient for dense networks. SiRuP uses a reac-
tive approach when a route is needed, but avoids broadcasting
the information in the whole network, thus reducing the impact
of the route research to a limited subset of the network. TORA
(Temporally-Ordered Routing Algorithm) [17] tries to limit the
routing overhead by broadcasting any topological changes to
a very small set of nodes near the occurrence of a topological
change. To accomplish this, the protocol maintains for each
destination a directed acyclic graph (DAG) in a distributed
fashion. Each node has the downstream or upstream links to
each of its neighbors. When a link change happens in the
neighborhood, the change is spread only to the nodes where
the link status has to change. TORA succeeds in reducing the
routing overhead but suffers of instability. Nevertheless, the
idea of local adaptation is interesting to limit the impact of a
change to a small portion of the network, hence SiRuP uses
an equivalent approach to reduce the route request broadcast
cost inside the network.

Hybrid protocols are designed to combine the advantages
of proactive and reactive routing strategies. For instance, ZRP
(Zone Routing Protocol) [18] defines zones as the set of zone-
radius hop neighbors (i.e., the hop distance from the node
to each of its zone-included nodes has to be smaller than
a fixed value). For intra-zone routing protocol, ZRP uses a
distance vector algorithm. But when a source has no route to
a destination, it invokes an inter-zone routing protocol to reach
other zones. The combination of both approaches (proactive
and reactive) offers more flexible protocols. In fact, SiRuP
is a hybrid protocol using a low-cost proactive strategy to
reduce the overhead of reactive route requests but, differently
from ZRP, uses the combination of both approaches instead
of using different strategies, depending on the distance to the
destination.

Broadcast (diffusion of a message from a source node to
all nodes in the network) is a common operation in ad-hoc
networks, and it is used by several routing protocols. Flooding
(also called blind broadcast) is the simplest broadcast protocol:
each node rebroadcasts the message once and discards dupli-
cates. AODV, SLS, GSR, DSR and HSLS use flooding with
various improvements (usually by changing the TTL value of
the broadcast packet to limit propagation in the network). The
flooding approach is reliable but has a high overhead for the
routing protocol (in term of number of packets and MAC layer
access) and the number of collisions dramatically increases in
the case of dense networks.

The problem, called “broadcast storm” by Ni et al. [19] has
been addressed by several papers, for instance with MPR, used
in the protocol OLSR. Wu and Li [20] proposed a distributed
deterministic algorithm to compute a dominating set. If G be
the graph of a given wireless network, a set is dominating if

all nodes in G are either in the set, or neighbors of nodes
belonging to the set. Hence, only nodes from the dominating
set rebroadcast the message. Stojmenovic et al. [21] proposed
some improvements to this model by using node ids as primary
key and neighbor elimination scheme to reduce failure due to
node mobility.

But the dominating set concept and MPR suffer in the
case of dense networks because they need to know the two-
hop neighbors toplogy (i.e., the identifiers of one-hop and
two-hop neighbors, the links between one-hop neighbors and
the links between one-hop neighbors and two-hop neighbors).
Therefore, each node has to send periodically a list of one-hop
neighbors. If d is the average density of the network, the each
node receives data in order of Θ(d2). Instead of reducing the
overlap of broadcast messages, SiRuP reduces the broadcast
cost by avoiding redundancy data between neighbors: if a node
sends routing data, then neighbors try to avoid to rebroadcast
the same data.

VI. CONCLUSION

In this paper, we have proposed a new routing algorithm for
a mobile ad-hoc networks, with a reduced overhead in case of
dense networks. It is particulary efficient in case of a high
density of nodes with high mobility and a limited number of
requests. The reachability is comparable with OLSR, though
a greater reduction in terms of packets and data. The idea
of avoiding redundancy of data between neighbors is efficient
because of the nature of the wireless medium: every node
is able to overhear any message sent by its neighbors. The
weaker diffusion of identifiers (when compared to OLSR for
instance) enables the use of a size-limited broadcast and avoid
the contamination of request messages in the network.

As for future works, we plan to adapt SiRuP to different
environments. Currently, SiRuP is efficient for dense networks
with a limited number of route requests. This is due to the high
cost of the route request, because the route request uses a
limited blind flooding. Even if the broadcast is not propagated
in the network, this still induces a “broadcast tempest” in
the local zone between source and destination, especially
when the density increases. This shortcomingt comes from the
fact that the number of packets for a route request depends
on both route length and the local density between source
and destination. We plan to work on the variable size of
the HELLO packet (adjusted in function of the density) and
broadcast reduction algorithm to reduce this drawback.

ACKNOWLEDGMENTS

We would like to express our gratitude to Péter Urbán and
Matthias Wiesmann for their helpful comments, and to Fran-
cisco J. Ros for his valuable advices about the implementation
of OLSR.

REFERENCES

[1] C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance vector (DSDV) for mobile computers,” ACM SIGCOMM ’94
Computer Communications Review, vol. 24, no. 4, pp. 234–244, Oct.
1994.

[2] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,”
in Proc. 2nd IEEE Workshop on Mobile Computing Systems and
Applications, Feb. 1999, pp. 90–100.

[3] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol,” in Proc. IEEE
International Multi-Topic Conference (INMIC 2001), Dec. 2001.

[4] G. Pei, M. Gerla, and T. Chen, “Fisheye state routing: A routing scheme
for ad hoc wireless networks,” in IEEE International Conference on
Communications (ICC 2000), vol. 1, June 2000, pp. 70–74.

[5] T. Clausen, P. Jacquet, A. L. P. Minet, P. Muhlethaler, A. Qayyum, and
L.Viennot, “Optimized link state routing protocol (olsr),” IETF MANET
Working Group,” RFC, Oct. 2003.

[6] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint relaying for
flooding broadcast messages in mobile wireless networks,” in Proc.
35th Annual Hawaii International Conference on System Sciences
(HICSS’02), Jan. 2002.

[7] A. Varga, “The Omnet++ discrete event simulation system,” in Proc. of
the European Simulation Multiconference (ESM’2001), June 2001.

[8] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and H. Karl,
“A mobility framework for omnet++,” in 3rd International OMNeT++
Workshop, 2003 Jan.

[9] S. Ramanathan and M. Steenstrup, “A survey of routing techniques for
mobile communications networks,” ACM/Baltzer Mobile Networks and
Applications, vol. 1, no. 2, pp. 89–104, 1996.

[10] L. Feeney, “A taxonomy for routing protocols in mobile ad hoc
networks,” SICS (Swedish Institute of Computer Science), Tech. Rep.
T99/07, Oct. 1999.

[11] E. Royer and C.-K. Toh, “A review of current routing protocols for
ad-hoc mobile wireless networks,” IEEE Personal Communications
Magazine, pp. 46–55, Apr. 1999.

[12] T. Chen and M. Gerla, “Global state routing: A new routing scheme
for ad-hoc wireless networks,” in IEEE International Communications
Conference (ICC98). IEEE, June 1998, pp. 171–175.

[13] G. Pei, M. Gerla, and T. Chen, “Fisheye state routing in mobile ad
hoc networks,” in Proc. of ICDCS Workshop on Wireless Networks and
Mobile Computing, Apr. 2000, pp. D71–D78.

[14] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. Woodward, “A distance
routing effect algorithm for mobility (dream),” in Fourth ACM/IEEE
International Conference on Mobile Computing and Networking (Mobi-
com’98), Dallas, Texas, Oct. 1998, pp. 76–84.

[15] C. Santivanez, S. Ramanathan, and I. Stravrakakis, “Making link state
routing scale for ad hoc networks,” in Proc. of the 2nd ACM in-
ternational symposium on Mobile ad hoc networking & computing
(MobiHOC’2001), Oct. 2001, pp. 22–32.

[16] D. Johnson, “Routing in ad hoc networks of mobile hosts,” in Workshop
on Mobile Computing Systems and Applications, 1994.

[17] V. Park and M. Corson, “A highly adaptive distributed routing algorithm
for mobile wireless networks,” in Proc. IEEE INFOCOM ’97, Apr. 1997.

[18] Z. Haas, “The routing algorithm for the reconfigurable wireless net-
works,” in ICUPC’97, San Diego, CA, Oct. 1997.

[19] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in Proc. MobiCom’99, Aug. 1999,
pp. 151–162.

[20] J. Wu and H. Li, “A dominating-set-based routing scheme in ad hoc
wireless networks,” in Proc. 3rd Int’l Workshop Discrete Algorithms
and Methos for Mobile Computing and Comm (DIALM’99), Aug. 1999,
pp. 7–14.

[21] I. Stojmenović, M. Seddigh, and J. Zunic, “Dominating sets and neigh-
bor elimination based broadcasting algorithms in wireless networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 1,
pp. 14–25, Jan. 2002.

