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Abstract

Reaching agreement among a set of mobile robots is one of the most fundamental issues in distributed robotic

systems. This problem is often illustrated by the gathering problem, where the robots must self-organize to even-

tually meet at some arbitrary location. That problem has the advantage that, while being very simple to express, it

retains the inherent difficulty of agreement, namely the problem of breaking symmetry. In their fully asynchronous

model with oblivious robots and limited visibility, Flocchini et al. [7] show that gathering is solvable, as long as

the robots share the knowledge of some direction, as provided by a compass. It turns out that, in robotic systems,

compasses are devices that are often subject to instabilities. In this paper, we thus define a model with unreliable

compasses and, focusing on the gathering problem, show that the algorithm of Flocchini et al. is unable to tolerate

unstable compasses. We then give a gathering algorithm that solves the problem in a system where compasses are

unstable for some arbitrary long periods, provided that they stabilize eventually.

Keywords: Mobile computing, Distributed algorithms, Robots, Unreliable compasses, Oblivious computa-

tions, Limited Visibility, Self-stabilization.

1



1 Introduction

The problem of reaching agreement among robots has attracted considerable attention within the last few years.

However, most of the algorithmic results we are aware of do not consider cases when sensors are unreliable.

Particularly, most of the work on asynchronous models for cooperative mobile robots relies on the assumption

that compasses provide perfect information. However, these components are frequently prone to failures. For

instance, we can imagine a magnetic field created near the robots, which would make their compasses point in

erroneous directions. As a result, if the algorithms are not designed to tolerate such transient failures, the robots

will not accomplish their given task. In this paper, we study the solvability of the gathering problem in one class

of unreliable compasses. In particular, we look at this problem in the face of instability of the compasses and

we provide a new deterministic algorithm for solving the gathering problem in an asynchronous system, where

robots are oblivious (i.e., they don’t remember past actions and observations), they have limited visibility and their

compasses are unstable for a certain amount of time unknown to the robots. Our algorithm is guaranteed to recover

from any arbitrary configuration when the compasses of the robots eventually stabilize. One can argue that our

algorithm is intrinsically self-stabilizing [12]1 and offers protection against any number of transient failures.

Related work. Despite its apparent simplicity, the problem of gathering robots at a single point has been

studied extensively in the literature, in different models and under several assumptions. In fact, several factors

render this problem difficult to solve [3, 4, 7, 10, 12]. In particular, in all these studies, the problem has been

solved only by making some additional assumptions on the capabilities of the robots. In particular, in the asyn-

chronous model, Flocchini et al. [7] proposed a deterministic algorithm for the gathering problem in the limited

visibility setting. However, the proposed algorithm requires that the robots share a compass that provides perfect

information. In contrast, we study the solvability of the gathering problem in the face of compass instability. The

work of Flocchini et al. [7] is the closest to our work, and our algorithm is developed on their model. However,

their algorithm fails to solve the gathering problem if we assume instable compasses. Subsequently, we provide a

self-stabilizing algorithm that tolerates any number of transient failure in the compasses. The gathering problem

has been also studied in the presence of faulty robots by Agmon and Peleg [1] in synchronous and asynchronous

settings. In particular, they proposed an algorithm that tolerates one crash-faulty robot in a system of three or more

robots. They also showed that in an asynchronous environment it is impossible to perform a successful gathering

in a 3-robot system with one Byzantine failure. Other studies of the gathering problem include the work of Suzuki

and Yamashita [12]. In their model, refereed as a semi-synchronous model,2 they proposed an algorithm to solve

the gathering problem deterministically in the case where robots have unlimited visibility. In the same model,

Ando et al. [2] propose an algorithm to address the gathering problem in systems wherein robots have limited

visibility. Their algorithm converges toward a solution to the problem, but it does not solve it deterministically. In

1Self-stabilization is the property of a system which, starting in an arbitrary state, always converges toward a desired behavior [6, 11]
2Currently, three main models are considered in the literature, depending on the degree of synchrony between robots’ activation. Agmon

and Peleg [1] classified them as synchronous, semi-synchronous [12] and asynchronous [9]. The model of Suzuki and Yamashita [12]
assumes that activations (observe, compute, move) occur atomically, resulting in a form of implicit synchronization. The model is called
semi-synchronous model for this reason.
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the CORDA model, referred as an asynchronous model3 [9], Cielibak et al. [4] proposed a deterministic algorithm

that gathers the robots at a point in systems in which robots have unlimited visibility. Among other things, one

feature the robots must have in order to solve this problem is the ability to detect a multiplicity of robots at one

point. Other studies of the gathering problem has been devoted to design convergence solutions to the problem [5].

Contribution. The main contribution of this paper is to consider an important agreement problem (gathering)

in face of unreliable compasses. In particular, we study the solvability of the gathering problem with respect

to one class of unreliable compasses, that is, eventually consistent compasses. We first show that the gathering

algorithm proposed by Flocchini et al. [7] can not cope with instabilities in the compasses. Second, we propose

a self-stabilizing distributed algorithm for the gathering problem in a system in which the robots have limited

visibility, relying on compasses that are eventually consistent. The proposed solution guarantees that the robots

gather at a point in finite time, given that their compasses provide correct output after some unknown period of

instability, during which our algorithm can tolerate any number of transient failures of the compasses.

Structure. The remainder of this paper is organized as follows. In Section 2, we introduce the system model

and some definitions used in this paper. In Section 3, we define the concept of compass. In Section 4, we show

that the algorithm of Flocchini et al. [7] does not solve the gathering problem assuming instable compasses. In

Section 5, we describe our gathering algorithm based on eventually consistent compasses and in Section 6, we

prove its correctness. Finally, in Section 7, we conclude the paper.

2 System Model and Definitions

2.1 CORDA model

We consider an asynchronous system of autonomous mobile robots roaming on the plane, in particular, the

CORDA model [8, 9] defined by Prencipe. In this model, each robot is modelled as a component with computa-

tional capabilities; it is able to sense its surroundings, perform computations on the sensed data, and move toward

the computed destination. This constitutes its computation cycle: inactive, sensing, computing, and moving. More

precisely, the model is described as follows. Each robot is modelled as a point on the Euclidean plane, and it has

its own local view of the world. This view includes an origin, a unit distance, and the directions and orientations of

two x and y coordinate axes. Robots do not have agreement, neither on the origin nor on a unit distance. However

they agree on the orientations and directions of the x and y axes, which means that the robots are oriented. For

instance, the robots share a compass. The robots are anonymous, in the sense that they can not be distinguished

by their appearance. In addition, there is no explicit direct means of communication among them. Hence, the only

way for robots to acquire information is by observing each other’s positions. The robots execute the same deter-

ministic algorithm, which takes as input the positions of the visible robots, and returns a destination point toward

which the robot moves. Moreover, the robots are totally asynchronous, and they do rely neither on any centralized

directives nor on any common notion of time. We further assume that the robots have limited visibility, and hence

3The CORDA model [9], assumes that activations (wait-observe, compute, move) occur in a fully asynchronous manner. The model is
called the asynchronous model for this reason.
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each robot can see only the robots which are within its visibility radius V 4 , and the robots are oblivious or memo-

ryless, which implies that they are unable to remember past actions and observations, and thus their computations

can not be based on previous observations. The computation cycle of a robot is as follows: a robot is initially

in a waiting state (Wait). Asynchronously and independently from the other robots, it observes the environment

in its visibility radius (Look) by taking a snapshot of the positions of the robots within its visibility radius with

respect to its local coordinate system5. Then, it computes a destination point based on the observed positions of

the robots (Compute)6. Finally, the robot moves toward its computed destination (Move). If the destination is the

current location, the robot is said to perform a null movement; otherwise, it is said to execute a real movement.

The speed of the robot is not necessarily uniform. In addition, the move can end anywhere before the destination

point. Finally, after moving, the robot goes back to the waiting state. The sequence Wait-Look-Compute-Move is

called the cycle of a robot. The robots can be partitioned into sets depending on their state at a given time:

• W (t) and L(t) are the sets of all robots that are respectively in state Wait and Look at time t.

• C(t) is the set of all the robots that at time t are in state Compute; the subset C∅(t) contains the robots

whose computation results in executing a null movement.

• M(t) is the set of all the robots that at time t are executing a movement; the subset M∅(t) contains the

robots executing a null movement (they stay still).

In the model, there are two limiting assumptions related to the cycle of a robot.

Assumption 1 It is assumed that the distance travelled by a robot r in a move is not infinite. Furthermore, it

is not infinitesimally small: there exists a constant δr > 0, such that, if the target point is closer than δr , r will

reach it; otherwise, r will move toward it by at least δr.

Note that without this assumption, it would be impossible for any algorithm to terminate in a finite time.

Assumption 2 The amount of time required by a robot r to complete a cycle (wait-look-compute-move) is not

infinite. Furthermore, it is not infinitesimally small; there exists a constant εr > 0, such that the cycle will require

at least εr time.

2.2 Definitions

We now introduce further definitions and lemmas that come from Flocchini et al. [7].

Definition 1 (Distance graph) Let G = (N, E) indicate the distance graph of the robots, where the nodes

represent the robots, and the edges represent the distance between the pairs of robots. Informally, the graph G is

connected if for each pair (r, r′) of robots in the set of robots N , the segment rr′ belongs to the set of edges E, and

the distance between r and r′ is less or equal to V . Formally, G is connected if ∀(r, r′) ∈ N, (rr′ ∈ E) ∧ (rr′) ≤
V .

4We assume that all the robots have the same visibility radius.
5Note that a robot is unable to detect multiplicity, i.e., whether there is one or more robots on any of the observed points, including the

position where the observing robot is.
6The destination point could be the current position of the robot.
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Lemma 1 If the distance graph is disconnected, the gathering problem is unsolvable.

Definition 2 (Mutual visibility) Informally, two robots r and r′ are mutually visible at time t, if they include

each other in their computations. Formally, two robots r and r′ are mutually visible at time t if and only if the

following both conditions hold:

1. 0 < r(t)r′(t) ≤ V

2. r, r′ ∈ L(t)
⋃

C∅(t)
⋃

M∅(t)
⋃

W (t)

Since initially all the robots are in a waiting state, then all the pairs of robots that are initially within distance

V from each other are initially mutually visible. Note that the definition of mutual visibility does not include the

robots that are on the same point.

2.3 Notations

We denote by U the universe, including all the robots in the system. Given some robot r, r(t) is the position

of r at time t. Look(r, t) denotes the look operation performed by robot r at time t. As a result, the circle Cr(t),
centered at r, and with radius V denote the circle of visibility of r at time t. When no ambiguity arises, we shall

omit the temporal indication.

Let A and B be two points; with AB, we will indicate the segment starting at A and terminating at B. When

no ambiguity arises, we will also use the notation AB to denote the length of such segment. By construction,

we denote by C(r, R)(t), the circle centered at r, and with radius R at time t. Also, we denote by C(rr′), the

circle with diameter rr′ passing from robot r and r′, provided that r �= r′. Given a region X , we denote by

|X|, the number of robots in that region at time t. Finally, given three distinct point A, B, and C, we denote by

�(A, B, C), the triangle having them as corners.

We now introduce some important lemmas that will be used later in the paper.

2.4 Geometric properties

Lemma 2 Every internal chord of a circle has a length less than or equal to the diameter. That is, the distance

between any two points that belong to a circle is less or equal to the diameter.

Lemma 3 Any point that belongs to an internal chord of a circle is located inside the circle.

Lemma 4 Every internal chord of a triangle has length less than or equal to the longest side of the triangle.

Lemma 5 Given three points A, B and D with distinct positions and non collinear, and two circles C(AB)
and C(AD) that intersect in two points A and H . Then, B, H and D are collinear.

PROOF. H belongs to the circle C(AB) and C(AD) by definition (refer to Figure 1). Consequently, the angle

∠AHB is angular on H since AB is the diameter of the circle C(AB), and H ∈ C(AD). Similarly, the angle

∠AHD is angular on H . Hence, the measure of the angle ∠BHD is equal to 180◦, and B, H and D are collinear,

and the lemma holds. �Lemma 5

5



δr

A

H
D

B

Figure 1. The circles C(AB) and C(AD) intersect on A and H: H is collinear with B and D.

3 Compasses

3.1 Definition

Definition 3 (Compass) A compass is a function of time and robots. The function outputs a vector of direction

(for instance, north). compassr (t) denotes the orientation of the compass of robot r at time t.

By looking at the property of the compass, we derive the following two classes:

3.2 Perfect compass

With a perfect compass, the robots always agree on the same direction, i.e, the robots agree on the directions and

orientations of both x and y axes. In other words, the directions of the compasses of the robots are the same at any

time t. Formally, the robots on the universe U share a perfect compass if and only the agreement and invariance

properties are satisfied:

Definition 4 (Perfect compass) A perfect compass is defined by the following two properties:

1. Agreement: ∀r, r′ ∈ U ,∀t, compassr(t) = compassr′(t)

2. Invariance: ∀r ∈ U ,∀t, t′, compassr(t) = compassr(t′)

3.3 Eventual compass

With an eventual compass, there exists a time after which all the robots agree on the same compass direction.

The agreement holds after some time GST (Global Stabilization Time) unknown to the robots. It is only guar-

anteed that the agreement will hold, but the time for which the agreement holds is unknown. More precisely, an

eventual compass has the following properties: (1) The direction of a robot’s compass can change with time. (2)

At a given time, the compasses of any two robots may disagree. (3) In any execution, there exists some time GST
after which the compasses of all the robots agree for a sufficiently long period. Yet, the robots does not know
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when the time GST will occur. Formally, the robots on U share an eventual compass if and only if the eventual

agreement and invariance properties hold:

Definition 5 (Eventual compass) An eventual compass has the following two properties:

1. Eventual agreement: ∃GST ,∀r, r′ ∈ U ,∀t ≥ GST , compassr(t) = compassr′(t)

2. Invariance: ∀r ∈ U ,∀t, t′ ≥ GST , compassr(t) = compassr(t′)

We further introduce the following notations. We denote by Leftr(t), Rightr(t), Topr(t) and Bottomr(t)
respectively, the left, right, top and bottom side according to the orientation of the compass of some robot r at time

t. Note that, the robot r is not included in any of the sides. When no ambiguity arises, we shall omit the temporal

indication.

4 Flocchini et al. Algorithm [7] in the face of Eventual Compasses

In this section, we show that the algorithm proposed by Flocchini et al. [7] does not solve the gathering problem

if we assume eventual compasses. The Flocchini et al. [7] algorithm is described briefly as follows. Recall that the

distance graph is connected. Depending on the positions of the robots in its circle of visibility, robot r computes a

destination point as follows:

• Null move: if r sees robots to its left or above on its vertical axis, it does not move.

• Vertical move: if r sees robots only below it on its vertical axis, it moves down toward the nearest robot.

• Horizontal move: if r sees robots only to its right, it moves horizontally toward the vertical axis of the

nearest robot.

• Diagonal move: if r sees robots both below on its vertical axis and on its right, then it considers the nearest

one below it and the nearest one to its right and performs a diagonal move as illustrated in Figure 2(a). In this

move, the destination point of r is always computed in such away that it lies inside its circle of visibility.

That is, r forms an angle 2β with its mutually visible robots, and this move ensures that the destination

point is always computed based on an angle 60 ≤ β ≤ 90 so that robot r remains visible to the robots in its

visibility range.

Assume now that the robots will execute the Flocchini et al. [7] algorithm, but they do not agree on the com-

passes, that is the robots can have different directions and orientations of their x and y axes. As a result, the

distance graph will be disconnected. We will demonstrate this by a counter example where the algorithm is

unable to solve the problem.

Lemma 6 In a system in which robots have eventual compasses, the algorithm of Flocchini et al. [7] results in

a disconnection of the distance graph.
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δr

r

A

r

Ψ

H

B

2

r

Cr

(a) Diagonal move in Flocchini et
al. [7]

r

r

r

t

H

r

t

H

r
Cr

o

(b) r executes a diagonal move, while
r′ executes an horizontal move. As a
result, HH ′ > V : r and r′ are not
mutually visible any more.

Figure 2. Flocchini et al. [7] algorithm based on a perfect compass.

PROOF. Let us consider the example illustrated in Figure 2(b). Robot r performs a look operation Look(r , t).
According to its compass, r sees robot r′ below it on its vertical axis and r′′ to its right. By the algorithm, r will

perform a diagonal move. Let H be its destination such that H ∈ Cr(t), i.e, β = 60◦. Assume also that r′ performs

a look operation Look(r ′, t). According to its compass, robot r′ sees robot r to its right. Consequently, r′ will

perform an horizontal move. Let H ′ be the destination of r′ such that, rH ′ = r′H ′ as illustrated in Figure 2(b).

By considering this simple example, we will show that the movement of r to H , respectively r′ to H ′ will lead

to a situation where r and r′ are at distance greater than the visibility radius V ; i.e, HH ′ > V . Let us denote by

C(rr′), the circle with diameter rr′, and by o, its center. H ′ ∈ C(rr′) because rH ′ ⊥ r′H ′ by the algorithm. We

also have H ∈ Cr(t) because β = 60◦ by construction. Then, rH = rr′ = r′H . Hence, the triangle �(r, r′, H)
is equilateral. As a result, the perpendicular on rr′ passing through H passes by the center o of C(rr′). In

addition, the perpendicular to rr′ passing through H ′, passes by o because the triangle �(r, r′, H ′) is isosceles by

construction. Hence, we compute the distance HH ′ as follows:

HH ′ = oH + oH ′

=
√

rH
2 − or2 + oH ′

=
√

V 2 − (V/2)2 + V/2

=
√

3
2

V + V/2 > V
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δr r4

r1

r

A

r3

r2

Cr

C(r r2 )

C(r r1 ) C(r r )4

C(r r )3

(a) r computes all the circles between
itself and its mutually visible neigh-
bors: r moves to A by at most V/2.

δr

r2

r

H
Cr

C(r ,V/ 2 )

C(r r2 )

(b) r has only r2 on its visibility cir-
cle: r moves toward r2 by at most
V/2.

δr

r4

r1

r

A

r3

r2

(c) r1 and r3 are the two limit robots.

Figure 3. Principle of the algorithm.

Thus, we conclude that HH ′ > V . In consequence, r and r′ are unable to see each other any more. This results

in a disconnection of the distance graph, and the lemma holds. �Lemma 6

Theorem 1 In a system in which robots have eventual compasses, the algorithm of Flocchini et al. [7] does not

solve the robots gathering problem.

PROOF. From Lemma 2, the gathering problem is unsolvable if the distance graph is disconnected. However,

from Lemma 6, we conclude that the algorithm of Flocchini et al. [7] leads to a disconnection of the distance graph

if we assume eventual compasses. Hence, the lemma follows. �Theorem 1

5 Gathering with Eventual Compasses

Unlike the CORDA model, where the robots share perfect compasses, we assume that the robots have eventual

compasses, which means that there is a time after which the agreement on the compass holds, and for a sufficiently

long period, however this time is unknown to the robots. In this section, we present a deterministic algorithm for

solving the gathering problem based on eventual compasses.

5.1 Description

The idea of the algorithm is to solve the problem by achieving the following two subgoals at every time instant

t. (1) Robots that are mutually visible at time t remain mutually visible at time t + 1. (2) The robots located on
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the leftmost side at time t ”get closer” in some sense to their mutually visible robots (i.e, robots located on their

visibility radius) at t + 1.

The gathering algorithm is depicted in Algorithm 1 and described in more detail as follows. First, at every

Algorithm 1 Gathering with an Eventual Compass
Algorithm:
1: compassr .query();
2: if |U| = 0 then
3: Do nothing(); {gathering terminated}
4: else
5: Ψ:= vertical axis passing through r according to compassr ;
6: if (|Leftr| > 0 then
7: Do nothing();
8: else if ((|Topr

⋂
Ψ|) > 0 ∧ |Rightr | = 0) then

9: Do nothing();
10: else
11: SΨ := set of all robots on Ψ except r;
12: SR := set of all visible robots to Rightr ;
13: S:= SΨ ⋃

SR;
14: if |S| = 1 then
15: A := {s ∈ S}
16: else
17: Srobot := Two Limit Robots(S); (see Function 2)
18: for (s in Srobot ) do
19: {A, r} :=

⋂
s∈Srobot C(rs);

20: end for
21: end if
22: if (rA ≤ V/2) then
23: Move(A);
24: else
25: H := {(p ∈ rA)/rp = V/2};
26: Move(H);
27: end if
28: end if
29: end if

time instant t where robot r becomes active, it query its compass to get information on the direction and then, it

considers all the robots in its circle of visibility Cr(t). If robot r sees robots to its left side Leftr, then it does not

move. This restriction will allow the robots located on the leftmost side to move toward the ones located on the

right, and hence, fulfill the second subgoal. If robot r sees only robots above it on its vertical axis Ψ and no robots

on its right, then it does not move; due to the asynchrony of the robots, this restriction is required in order to break

symmetry. For instance, in a system with two robots that occupy distinct positions, it might happen that each

time, each robot would try to move to the position of the other; as a result, the two robots would swap positions

endlessly, and the algorithm would never terminate. Let us now consider that robot r has robots to its right, and

maybe some above it on its vertical axis, but none to its left. Then, with each robot in its circle of visibility, r

computes the circle with the diameter the two points corresponding, respectively, to its position and the position of

its visible neighbor r′ (i.e, C(rr′)). S is the set of robots that r sees on its circle of visibility Cr at time t, and CS

is the set of all the circles that r forms with its neighbors in CS (refer to Figure 3(a)). To achieve the first subgoal,

i.e, keep the sight with the robots on its circle of visibility, r must move to one of the points in the intersection of
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all the circles in CS . This point must be at a distance of at most V/2 from its current position. This move ensures

that r always stays mutually visible with its neighbors. Depending on the intersection of the set of circles CS , the

destination of r is computed as follows:

• If the intersection of the set CS is one point, then obviously this point is r. In this case, the destination point

of r is itself. Hence, r performs a null move.

• CS = 1, that is, r sees only one robot on its visibility circle (for instance, r2 in Figure 3(b)). In this case, r

moves toward r2 by V/2 if rr2 > V/2; otherwise it moves to r2.

• The intersection of the set CS is a region (refer to Figure 3(a)). In this case, r can move to any point in this

region by a distance of at most V/2. Notice that, this region always results from the intersection of exactly

two circles in CS . These two circles are the circles that r forms with exactly two robots; we refer to these

robots as the two limit robots (they are given by Function 2). The intersection of these two circles is two

points, one point is r, and the second point, say A. The destination of r is A if the distance rA is less than

or equal to V/2; otherwise, it is the point H that belongs to the segment rA, and at a distance V/2 from r.

Note that, by the algorithm, the maximum distance that a robot can travel in one cycle is at most V/2. We

now explain how the two limit robots are computed. They are given by the function Two limit robots(S) which is

depicted in Algorithm 2. This function takes as input the set of all the robots in the visibility circle of robot r, and

returns as result a set of exactly two robots; these robots constitutes the two limit robots. Given the set S of robots

in the visibility circle of r, r computes the list of the angles that it forms with each pair of robots in S. Note that

these angles have r as a corner. The two limit robots are the robots that form the maximum angle with r. If there

is more than one pair of robots that forms the maximum angle with r, then among these robots, some of them

are aligned together and aligned with r. In this case, the robot with minimal distance from r is selected (refer to

Figure 3(c)).

Algorithm 2 Function Two Limit robots(S)
Function Two Limit robots(S)
1: Scand := {r1, r2}/∠r1rr2 = MAX{∠r′rr′′, ∀r′, r′′ ∈ S ∧ (r′ �= r′′});
2: if (|Scand | = 2) then
3: Return (Scand )
4: else
5: Sres := ∅;
6: S1 = {ri ∈ Scand/(r, ri) ∈ wedge1}
7: S2 = {rj ∈ Scand/(r, rj) ∈ wedge2}
8: if rr1 = MIN{rr′/r′ ∈ S1} then
9: Sres := Sres ⋃{r1};

10: end if
11: if rr2 = MIN{rr′′/r′′ ∈ S2} then
12: Sres := Sres ⋃{r2};
13: end if
14: Return (Sres )
15: end if
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6 Correctness

In this section, we prove the correctness of our algorithm by presenting its proof of correctness. We proceed in

two steps to prove that our algorithm is correct. In the first step, we show that the connectivity of the distance graph

is preserved during the entire execution of the algorithm. That is, regardless of the orientation of their compasses,

the robots which are initially visible remain always visible. In a second step, we show that after the time GST , if

the agreement on the compasses of the robots holds for a long enough time, then all robots will gather at one point

in finite number of steps. Before proceeding, let us recall an important lemma proved by Flocchini et al. [7]; if

the distance graph is disconnected, the gathering problem is unsolvable. Hence, in the following, we will always

assume that the distance graph is connected.

6.1 Preserved connectivity

We now prove that the connectivity of the distance graph is preserved during the entire execution of the al-

gorithm. The following two lemmas show that the robots which are initially mutually visible remains mutually

visible during the entire execution of the algorithm until they collide on the same point. Recall that the robots may

disagree on the orientations of their compasses, including the robots that are located on the same point.

Lemma 7 Let U be composed of two robots r and r′ that are mutually visible at time t. Then, at any time t̄ > t,

r and r′ are mutually visible or collide at the same point. Moreover, at all times between t and t̄, r and r′ are at a

distance at most V .

PROOF. Recall that the compasses of the robots may disagree. Consequently, three cases may arise. In the first

case, both r and r′ do not move. In the second case, only one robot decides to move. In the third case, both r and

r′ move. The three cases are detailed as follows:

• Both r and r′ do not move. Observe that the lemma trivially holds if Leftr is not empty when r performs

Look(r, t) (r sees r′ to its left) and also Leftr′ is not empty when r′ performs Look(r′, t′) (r′ also sees r to

its left) with t′ ≥ t. In fact, according to the algorithm none of the robots moves. Thus, r and r′ remain

at the initial distance from each other which is less than V . Similarly, the lemma holds if Topr

⋂
Ψ is not

empty as a consequence of Look(r, t) (r sees r′ above it on its vertical axis) and Topr′
⋂

Ψ is not empty as

a consequence of Look(r′, t′). Again, according to the algorithm none of the robots moves.

• Only one robot moves. Assume that Leftr is empty when r performs Look(r, t) and Leftr′ is not empty

when r′ performs Look(r′, t′), with t′ ≥ t that is r′ sees r to its left. Consequently, r′ can not move as

long as it sees r to its left. Let H be the destination point computed by r as a consequence of its look

operation Look(r, t). Then, by the algorithm r moves to r′ if r(t)r′(t) ≤ V/2 (in this case H = r′),
otherwise it moves towards r′ by V/2 (rH = V/2), thus shortening their distance. Assume that r finishes

its move at time t′′ > t. Between time t and t′′, r will be to the left of r′, hence r′ can not move. Thus,

∀p ∈ r(t)r′(t), pr′(t) ≤ V . By applying the same argument, the lemma holds if Topr

⋂
Ψ is empty when

r performs Look(r, t) and Topr′
⋂

Ψ is not empty when r′ performs Look(r′, t′) with t′ ≥ t. Similarly, r

will move toward r′, and ∀q ∈ r(t)r′(t), qr′(t) ≤ V .

12
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Figure 4. The movement of robot r preserve the vision connection with r′ and r′′.

• Both r and r′ move. This case is interesting because both robots r and r′ move. Assume that for r,

Rightr is not empty when r performs Look(r, t). Similarly, for r′, Rightr′ is not empty when r′ performs

Look(r′, t′). Let H be the destination point computed by r as a consequence of its look operation Look(r, t).
Let us first assume that r(t)r′(t) ≤ V/2. That is H = r′(t). Thus, r will move to the point r′(t), and

consequently ∀p ∈ r(t)r′(t), pr′(t) ≤ V/2 ≤ V . Let also H ′ be the destination point computed by r′

as a consequence of its look operation Look(r′, t′) with t′ ≥ t. Then, by the algorithm H ′ is equal to

the position of r at time t′ (H ′ = r(t′)). Consequently, ∀q ∈ r(t′)r′, r(t′)q ≤ V/2 ≤ V . In addition,

∀p ∈ r(t)r′(t),∀q ∈ r(t′)r′(t′), pq ≤ V/2 ≤ V .

Let us now assume that r(t)r′(t) > V/2, Then, according to the algorithm r moves toward r′(t) by V/2
(let’s call this point H). Consequently ∀p ∈ r(t)H, pr′(t) ≤ V since r(t)r′(t) ≤ V . Let also H ′ be

the destination point computed by r′ as a consequence of its look operation Look(r′, t′) with t′ ≥ t. By

the algorithm, if r′(t′)r(t′) ≤ V/2. Then, r′ moves to r(t′), otherwise r′ moves toward r(t′) by V/2.

Consequently, ∀q ∈ r′(t′)H ′, qH ′ ≤ V/2, and thus qr(t′) ≤ V/2 ≤ V . In addition, ∀p ∈ r(t)r′(t),∀q ∈
r′(t′)r(t′), pq ≤ V , and the lemma holds.

�Lemma 7

Lemma 8 Let the pairs of robots r and r′ and r and r′′ be mutually visible at time t. Moreover, let r′ and r′′

be the two limit robots of r at time t. Then, at any time t̄ > t, r and r′ and r and r′′ are mutually visible or collide

on the same point. Moreover, at all times between t and t̄, r and r′ and r and r′′ are at a distance at most V .

PROOF. The proof consists of showing that the movement of any of the robots at any time will not lead to

a situation in which the pairs of robots r and r′ and r and r′′ are at distance greater than V from each other.

Depending on the orientation of the compass of r, r′ and r′′, we shall consider three possible situations:
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side C(r′l).

Figure 5. The movement of robot r and r′ preserve the vision connection of the robots.

• Only r moves (r′, r′′ do not move). r performs a look operation Look(r, t) and decides to move. Let t′ and

t′′ the time when r starts its move and when it stops, respectively. r′ and r′′, whenever they look between t′

and t′′, they decide not to move (because they see some robots to their left, or each of them computes as a

destination point its current location.) Let H be the destination point computed by r as a consequence of its

look operation at time t. By the algorithm, H ∈ C(rr′) and H ∈ C(rr′′).

Let us first assume that rH ≤ V/2 (refer to Figure 4(a)). By Lemma 4 on triangle �(r, H, r′), ∀p ∈ rH ,

pr′ ≤ rr′ ≤ V . Similarly, by Lemma 4 on triangle �(r, H, r′′), ∀q ∈ rH , qr′′ ≤ rr′′ ≤ V .

Let us now assume that rH > V/2 (refer to Figure 4(b)). Let A be the point that belongs to rH such

that rA = V/2. Since r, H ∈ C(rr′), then by Lemma 3, A lies inside the circle C(rr′). It follows

that by Lemma 2, ∀p ∈ rA, pr′ ≤ rr′ ≤ V . By applying the same argument on r′′, we get ∀q ∈ rA,

qr′′ ≤ rr′′ ≤ V . Consequently, as long as r′ and r′′ do not move, the distance between r and r′, and r and

r′′ is at most V between the time t′ and t′′.

• Both r and r′ move (r′′ does not move). Robot r performs a look operation Look(r, t) and decides to

move. Let H be its destination point (refer to Figure 5(a)). Let us first assume that rH ≤ V/2. We denote

by t′ and t′′ the time when r starts its move, and when it stops, respectively. r′ also decides to move as

a consequence of some of its look operations performed between time t′ and t′′. We denote by t̄ the time

when r′ performs its look operation whose result is a real movement (t′ < t̄ ≤ t′′). Let H ′ be its computed

destination. Let l be the point position of r at time t̄. Explicitly, r′ observes r at time t̄ at position l. We

denote by t̄′ and t̄′′ the time when r′ starts its move, and when it stops, respectively. Assume that t̄′′ ≥ t′′.
Now we will show that H and H ′ are at distance at most V . Moreover, at all times between , t′ and t̄′′, r and
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r′ are at distance at most V . Notice that, for any time between t′ and t̄′, r and r′ are at distance at most V .

This was demonstrated in the above case (before time t̄′, r′ didn’t start to move yet). Between time t̄′ and

t̄′′, the proof consists of showing that ∀p ∈ lH , and ∀q ∈ r′H ′, pq ≤ V . As r′ includes r on its computation

at position l, then, the destination H ′ of r′ is at least a point in the intersection of the two circles C(r′l) and

C(r′, V/2). Therefore, H ′ lies inside C(r′l). By Lemma 5, H belongs to r′r′′, thus rH⊥Hr′. We have

also l ∈ rH , therefore lH⊥Hr′. Hence, H ∈ C(lr′). As a consequence, ∀p ∈ lH , l is inside C(r′l). In

addition, ∀q ∈ r′H ′, q is inside C(r′l), and then by Lemma 2, ∀p ∈ lH , ∀q ∈ r′H ′, pq ≤ lr′ ≤ V .

Let us consider now the case where the distance between r and its computed destination is greater than V/2
(refer to Figure 5(b)). Let H be the point at distance V/2 from r, and A be the second point of intersection

of C(rr′) and C(rr′′). Observe that l ∈ rA, and rA⊥r′A. Then, A ∈ C(r′l). Thus, ∀p ∈ lA, p is inside

C(r′l). Therefore, H is inside C(r′l). Consequently, ∀p ∈ lH , p is inside C(r′l). In addition, ∀q ∈ r′H ′, q

is inside C(r′l), and then by Lemma 2, it follows that ∀p ∈ lH , ∀q ∈ r′H ′, pq ≤ lr′ ≤ V .

• All robots r, r′ and r′′ move. Robot r performs a look operation Look(r, t) and decides to move. We denote

by t′ and t′′ the time when r starts its move, and when it stops, respectively. r′ and r′′ both decides to move

as a consequence of some of their look operations performed between time t′ and t′′. The proof for this case

is the same as the previous one, and is thus omitted here.

In the three cases, r and r′ and r and r′′ are at a distance of at most V . Moreover, at all times during their

movements, r and r′ and r and r′′ are at a distance of at most V . This completes the proof. �Lemma 8

The above two lemmas show that if two robots are mutually visible, they will continue to be so at future times.

Lemma 9 Let t0, be the time when the robots are in their initial configuration. Then, at any time t̄ > t0, if all

the robots gather or not on the same point, the distance graph is connected.

PROOF. We omit this proof since it has been proved in [7]. �Lemma 9

From Lemma 7, Lemma 8, and Lemma 9, we conclude that:

Theorem 2 The distance graph is connected during the entire execution of Algorithm 1.

6.2 Termination of the algorithm

In this section, we show that the robots will gather at one point in finite number of steps. To do so, we assume

that, the robots reach the time GST , and their compasses agree for a sufficiently long time after GST . First of

all, we show that in any configuration with two robots at distinct positions, in finite number of steps, all the robots

gather at one point in finite time. Then, we show that any configuration, with three or more robots in distinct

positions in reduced to a configuration of two robots at distinct positions in finite time.

Lemma 10 Let U be composed of two robots r and r′ that are mutually visible at time t. Then, there exists a

time t̄ > t where r and r′ collide at the same point.

PROOF. Let us assume that r′ is prevented to move because of r, then r is either located to the left of r′ or

above r′ on its vertical axis. Let us consider the first case where r is on the left of r′. Then, according to the
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algorithm, r′ is prevented to move as long as it sees r to its left. While r is moving, it will be always to the left

of r′. Hence, r′ will stay still. By Assumption 1, the minimum distance travelled by a robot in a move is δr, then

the number of steps performed by r to reach r′ is at most rr′/δr which is finite. Hence, r reaches r′ in finite time.

Similarly, if r lies above r′ on its vertical axis, then by the algorithm, r′ can not move as long as it sees r′ on its

top. Then, by the same argument as above, r will reach r′ in finite number of steps and the lemma holds. �Lemma 10

Lemma 11 By the algorithm, if a robot r sees robots both below and above it on its vertical axis Ψ, it will

execute a null movement.

PROOF. Let r1 and r2, be two robots above r on its vertical axis Ψ, and r3 is below r on Ψ. By the algorithm, the

intersection of the circles C(rr1), C(rr2) and C(rr3) is equal to r. In addition, the intersection of these circles

with the circle C(r, V/2) is r. Consequently, r computes as destination its current position r. Then, r will stay

still, and the lemma holds. �Lemma 11

Lemma 12 Any configuration with three or more robots that are located at distinct positions, and collinear is

reduced to a configuration with two robots at distinct positions in a finite number of steps.

PROOF. In a configuration where robots are collinear, there exist two cases; either all the robots are located on

the same vertical axis Ψ, or all the robots are collinear, but not on Ψ. In both cases, exactly one robot can move

at any time instant. Consider the first case, only the topmost robot can move at a time instant t. In addition, by

Assumption 2, the cycle of a robot is finite and by Assumption 1, the distance travelled by a robot in a move is at

least δr. Then, in any configuration, the topmost robot at time instant t will gather with the robot below it in finite

time. Since the number of robots is finite, then, in finite time this configuration is reduced to a configuration of

two robots at distinct positions. In the second case, by using the same argument as above, in any configuration,

the leftmost robot will reach the nearest one to its right in finite time. Since the number of robots is finite, then,

this configuration is reduced in finite time to a configuration of two robots at distinct positions. In both cases, any

configuration in which three or more robots are collinear is reduced to a configuration of two robots in finite time,

and the lemma holds. �Lemma 12

Lemma 13 Any configuration with three or more robots located at distinct positions and non collinear is re-

duced to a configuration with two robots at distinct positions in finite number of steps.

PROOF. We show that, at any time instant, in any configuration of three robots, one or two robots are able to

move, and that their movements will lead in finite time to a configuration where only one robot can move. From

this configuration, there is also a finite time within which this configuration is transformed into configuration of

two robots at distinct positions.

Let r, r′ and r′′ be three robots located at distinct positions with r and r′, respectively, r and r′′ are mutually

visible at time t. Let r lie on Leftr′ and Leftr′′ at time t. By the algorithm, r′ and r′′ are unable to move at time

t. Let H be the destination point computed by r as a consequence of its look operation at time t. By Lemma 5,
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Figure 6. Termination of the algorithm: 3 robots

H is collinear with r′ and r′′. Let r′′ be closer to r in distance than r′ at time t. We denote by Ψ′′, the vertical

axis passing through r′′ and by A, the intersection of Ψ′′ with the segment rH (refer to Figure 6(a)). Let t′ > t

and t′′ > t′ be the time when r starts its move, and when it stops, respectively. Let us assume that rH ≤ V/2 (the

case where rH > V/2 is the same, thus omitted here). By definition, r is to the left of r′ for any position q that

belongs to rH . As a consequence, robot r′ will not perform any movement between t′ and t′′. Now consider r′′,
depending where r′′ sees robot r while it is moving, and whether r′ and r′′ are mutually visible at time t or not,

we distinguish the following cases. Let us first assume that r′ and r′′ are not mutually visible at time t.

• r′′ observes r at position q before A or on A (refer to Figure 6(a)). Consider robot r moving toward H , by

definition, it is to the left of r′′ for any position q that belongs to rA and q �= A. In consequence, r′′ does

not move. Assume now that r reaches the point A, then, it becomes above r′′ on its vertical axis Ψ′′. In

addition, r′′ can not see any robot to its right by hypothesis (r′ and r′′ are not mutually visible). Again, by

the algorithm, r′′ will not move.

• r′′ observes r at position p to the right of A (refer to Figure 6(b)). Assume that robot r reaches a position

p which is to the right of A at time t̄ > t′. Assume also that r′′ performs a look operation at time t̄′′ ≥ t̄,

and it sees r at position p, which is to its right. Then, by the algorithm, r′′ will move to p by V/2. Assume

also that pr′′ ≤ V/2. Then, after finishing their movements, robot r and r′′ will be respectively at positions

H and p. Robot r′ remains stationary. Let us call this configuration γ. Both robots r and r′′ reach the
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configuration γ in a finite time; the maximum number of steps performed by r to reach H is rH/δr which

is finite. Also, the maximum number of steps performed by r′′ to reach p is r′′p/δr which also finite. In this

new configuration γ, r′′ and r′ become mutually visible. We will now show that this configuration γ is also

transformed in finite time into a configuration γ′ with two robots at distinct positions. In γ, r′′ is located

to the left of r (at position H) and r′. Then, both r and r′ can not perform any movement. For robot r′′,
it includes both r and r′ in its computation. Let H ′′ be its computed destination. By the algorithm, H ′′ is

collocated with r at H . Then, r′′ moves to the position of r. This movement is done in finite time. Hence, r

and r′′ gather in the same point H in finite time. As a result, the configuration γ with three robots at distinct

positions is transformed into configuration γ′ with two robots at distinct positions in finite time.

• r′′ observes r at position H . If robot r′′ observes r only at position H , then this configuration represents a

collinear configuration of three robots at distinct positions, and by Lemma 12 , it is reduced in finite time to

a configuration of two robots at distinct positions (in this case r′′ will gather with r at position H).

Let us now assume that r′ and r′′ are also mutually visible at time t. Again, r′ will not perform any movement

because it sees robot r and r′′ to its left. Consider now r′′. If r′′ observes r at position q before A, then in

this case r′′ will not move because r is located to its left. If r′′ observes r at position H , then this case also

represents a collinear configuration of three robots at distinct positions, and by Lemma 12 it is reduced in finite

time to a configuration of two robots at distinct positions. Let us now consider the more interesting case where

r′′ observes r at position A or at position p to the right of A (refer to Figure 6(c)). We will only treat this case in

which r′′ observes r at position A. The case in which r′′ observes r at position p to the right of A is very similar

and is therefore omitted here. Let H ′′ be the destination of r′′. By Lemma 5, H ′′, A and r′ are collinear. From

Assumption 2, the cycle time of a robot is finite, hence, respectively r and r′′ reach H and H ′′ in finite time. Let

us call this configuration γ. In this configuration, both r and r′ are unable to move because r′′ is located to their

left (at position H ′′). Let H ′′
2 , be the destination computed by r′′ as a consequence of its look operation performed

in γ. By Lemma 5, H ′′
2 is collinear with r (position H) and r′. Furthermore, it is located to their left. Thus, for any

position q that belongs to H ′′H ′′
2 , r′′ is to the left of r and r′. Again neither robot r nor r′ can move until r′′ reaches

H ′′
2 . As a consequence, the movement of r′′ to H ′′

2 results on a collinear configuration, and from Lemma 12 , this

configuration is reduced to a configuration of two robots in finite time.

In all cases, any configuration with three or more robots located at distinct positions is reduced to a configura-

tion where only two robots are at distinct positions in finite time, and the lemma holds. �Lemma 13

Lemma 14 Any configuration in which three or more robots are located at distinct positions is reduced to a

configuration with two robots at distinct positions in finite number of steps.

PROOF. From Lemma 12, any configuration in which three or more robots are collinear is reduced to a config-

uration of two robots at distinct positions in finite time. By Lemma 13, we conclude that any configuration with

three or more robots at distinct positions and non collinear is reduced to a configuration with two robots at distinct

positions in finite time, hence, the lemma follows. �Lemma 14
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Lemma 15 Under Algorithm 1, all the configurations in which all the robots gather in one point are stable.

PROOF. Assume that at some time t, all the robots gather in one point. In such a configuration, none of the robots

sees other robots on its visibility circle. Thus, by the algorithm, none of the robots will ever move. Consequently,

such configuration is stable and the lemma holds. �Lemma 15

Theorem 3 Under Algorithm 1, all the robots gather at one point in finite time.

PROOF. From Lemma 14, any configuration with three or more robots at distinct positions is reduced to a

configuration with two robots at distinct positions in finite time. By Lemma 10, any configuration of two robots

located at distinct positions will lead to a configuration wherein the two robots gather at one point in finite time.

Moreover, by Lemma 15, this configuration is stable. This terminates the proof. �Theorem 3

By Theorem 2 and Theorem 3, it follows that:

Theorem 4 In an asynchronous system, with n anonymous, oblivious mobile robots, with limited visibility, and

assuming eventual compasses, the gathering problem is solvable deterministically.

7 Conclusion

In this paper, we took a new look at the gathering of a group of oblivious asynchronous mobile robots with

limited visibility. While, previous work [7] showed that this problem can be solved if the robots are equipped

with compasses, we have shown that their algorithm can not tolerate any transient failure of those compasses.

We have shown that gathering can nevertheless be solved with unreliable compasses, as long as these compasses

eventually stabilize to provide consistent information to the robots (the robots are not aware of when this actually

happens). The main benefit of our algorithm is that we solve the problem with a weaker assumption by assuming

eventual compasses rather than perfect ones. This weaker assumption leads to stronger results. In particular, it

allows the algorithm to tolerate any number of transient failures, and also it gives the algorithm the nice property

of self-stabilization. One important result of this work is that a perfect compass is unnecessary to maintain vision

connectivity between robots. However, it is only required for the termination of the algorithm (i.e, gather the

robots at a single point in finite time). For this reason, we can claim that one property, ”eventual compass”, has the

same computational power as ”perfect compass” for solving the robot gathering problem if the agreement on the

compasses of robots eventually holds for a sufficiently long period. This result is important in practice. Finally,

the results of this paper raise new interesting research questions. For instance, the eventual compasses constitutes

one class of unreliable compass. An other class of unreliable compasses is the imprecise compasses. The question

is can we still solve the gathering problem if the compasses of the robots are imprecise, i.e, they are bounded by

some errors. Currently, we are investigating this issue.
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