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Abstract

Many interesting applications of mobile robotics envision groups or swarms of robots cooperating toward a common
goal. Due to their inherent mobility and limited energy resources, it is only natural to consider that the robots form a
mobile ad hoc network (MANET) on which they can rely for their communication. Cooperation is however difficult to
obtain under the weak communication guarantees offered by MANETs. In this paper, we focus on a very fundamental
cooperation problem, namely, preventing the robots from colliding against each other in a fully decentralized manner.

This paper presents a distributed path reservation system for a group of “blind” mobile robots. The protocol as-
sumes a mobile ad hoc network formed by the robots themselves, and takes advantage of the inherent locality of the prob-
lem in order to reduce communication. In contrast with other work, our protocol requires neither initial nor complete
knowledge of the composition of the group. The protocol makes only very weak timing assumptions regarding both com-
munication and movement, and relies instead on a well-defined neighborhood discovery primitive.

1. Introduction and related work

We consider an asynchronous distributed system composed of cooperative autonomous mobile robots forming
a mobile ad hoc network MANET on which they can rely for their communication. In such a system there are no
upper bounds on the communication delays or on the speed of robots thus it is impossible for a robot to keep track
of other robots in the system.

We aim at resolving the collision freedom problem by providing a distributed path reservation protocol for a
group of blind mobile robots in this system. This protocol takes advantage of the inherent locality of the problem.
Our protocol guarantees deterministically the collision freedom between robots as a safety property, so no collision
between robots can occur during the execution of the protocol.

1.1. Related work

TCB wormholes Martins et al in ([6] and [7]) provide an implementation of a system based on Timely Comput-
ing Base (TCB) [14], designed for a wireless mobile system used in their practical demonstration, such that the
local TCB components allow detecting time failures in a timely manner. They demonstrated, under certain condi-
tions, the fundamental mechanisms underlying the construction of adaptable real-time applications with the help
of TCB by providing an emulation of 3 balls, each of them is controlled by a sentient object running in an appli-
cation trying to avoid collisions among the balls. In this scenario a sentient object controlling a ball disseminates



an event with the ball position, speed and direction, thus each object constructs a real-time image of the real-
ity. These events should be timely delivered to achieve the real-time image and avoid collisions. If timing failures
are being detected then the system stops or the balls speed is adjusted, also a timely change of a ball direc-
tion may avoid a possible collision.

Cooperative mobile applications Nett et al. [11] present a layered system architecture for cooperative mo-
bile systems in real-time applications. Coordination is the key to achieve the required effective cooperation, which
means that individual systems can take actions under local control based on a sufficiently consistent view of the
common system environment. The system model is synchronous assuming the existence of a known constant up-
per bound on the communication delays. The communication hardcore of their architecture presented in [10]
and [11] is based on a wireless LAN and the designed communication protocols use the access point as a cen-
tral router since each station participating in the group communication protocols must be within the reach of the
access point. The communication hardcore can manage real-time constraint requirements. Nett et al. [11] con-
sidered a traffic control application explained in [12] as a testbed of their system architecture. In this testbed a
group of mobile robots are driving along traces that form 2 closed loops. The two loops overlap such that there is
a shared space situation with the need for cooperation of mobile systems. Each robot near the shared zone trig-
gers an event to the Cooperative Application Development Interface (CADI) layer of the system architecture which
offers each robot near the shared zone a consistent view of the global state of the system, (i.e. the positions and ve-
locities of all the robots near the shared zone with respect to the same point of time) based on the QoS provided by
the communication hardcore. Therefore, robots can schedule their access to the shared zone by adjusting their ve-
locities in order to use it efficiently and to avoid collisions.

Robotics research The problem of robots collision avoidance has been handled using different strategies which
are sensor-based motion planning methods. Minguez et al. [8] compute collision-free motion for a robot operat-
ing in dynamic and unknown scenarios, also they survey the existing collision avoidance navigation approaches.
Motion planning algorithms consider a model of the environment (either previously known or dynamically built),
to compute a collision free path between the current robot location and the goal. In dynamic or unknown en-
vironments the trajectories generated by motion planning algorithms become inaccurate thus they can not be
applied to such environments. Solving this problem involves sensing directly within the motion planning by ap-
plying a perception-action process that is repeated periodically at a high rate. These approaches use a local frac-
tion of the information available (sensory information), so they can fall into trap situations. Some of these ap-
proaches apply mathematical equations to the sensory information and the solutions are transformed into motion
commands. (e.g., [9]). Another group of methods compute a set of suitable motion commands to select one com-
mand based on navigation strategy (e.g., [13]), while other methods (e.g., [8]), compute a high level information
description (entities near obstacles, areas of free space), from the sensory information then apply different tech-
niques simplifying the difficulty of the navigation to obtain a motion command in complex scenarios.

2. System model

We consider dynamic system of mobile robots. The number of robots is unknown. Each robot is identified by
a unique identifier. Each robot has a positioning system that returns the robot’s position with a bounded error.
There is no bound in the time needed to compute the robot’s position. We do not consider robot failures in this
model.

The robots are linked by an ad-hoc network and communicate by exchanging messages. The topology of the
network is unknown. All the robots have a limited communication range, denoted C. If the distance between two
robots Ri and Rj is less than C, Ri can receive messages sent by Rj and robot Rj can receive messages sent by
Ri. Communications channels are reliable but non FIFO. There is no bound on the time needed to process and
transmit a message

3. Neighborhood discovery (Discover )

Requirements. Our proximity detection primitive called Discover enables a robot to detect its local neighbors that
exist in a proximity of one communication hop and satisfying a certain known predefined condition. The implemen-
tation of this primitive is based on geocasting a ping message in a geographical area centered on the robot at the
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time of calling Discover with a radius equals to the communication range, then all the robots located in that ge-
ographical area and satisfying the condition must acknowledge the caller of Discover . Therefore, it can determine
its requested group of robots.
Difference with Geocast protocols. Geocasting protocols in Mobile Ad hoc Networks (MANETs) have been studied
and analyzed in different papers (e.g., [4], [16], [5]). In [4] a flooding-based geocasting protocols have been proposed,
while routing-based geocast protocols were presented in other works (e.g. [3]), and others propose cluster-based
geocast protocols (e.g. [1]). These protocols relied on strategies and techniques to improve the performance of the
geocast delivery in terms of accuracy and message overhead. Geocasting protocols were aimed at different problem
than that of our primitive Discover with different requirements.
Node presence detector. Detecting the presence of nodes in an asynchronous system where there are no bounds on
communication delays, cannot be solved deterministically. [2] The impossibility is based on the fact that, in such
systems, a very slow node can not be distinguished from an absent one. Thus, a timing property is required to
implement the primitive Discover .
Timing property. The primitive Discover relies on the following timing property: there exists a known upper
bounded time delay called (∆) such that the following property holds:

Property 1 (Delay) ∀ instant of time t, ∀Ri, If Ri starts Discover i at (t), then Ri receives an acknowledgment from
any Rj located in its communication range and satisfying a certain predefined condition, at (t’) such that: t′ − t ≤ ∆

Timing characteristics of MANETs. Providing a mobile node with access to the wireless medium in a timely man-
ner is well known subtle problem. There are some proposals to enhance MANETs with real-time capabilities, but
as far as we know they are not implemented.
Timely Computing Base concept. We base on the concept of Timely Computing Base (TCB) wormhole-based sys-
tems introduced by P. Veŕıssimo and A. Casimiro in ([14], [15]) to build our proximity detection primitive. In TCB
based systems there exist some parts which are more predictable than others. These more predictable parts can be
seen as wormholes (they are comparably small parts of the system), through which it is possible to do things much
faster than apparently possible in the other parts of the system. The architecture of a system with a TCB has a pay-
load part, in which protocols and application processes are executed. Communications take place over a global
network (payload channel). The system has also a control part, made of TCB modules in each node, intercon-
nected by a medium called control channel. In a TCB based system the payload part can have any degree of syn-
chronism, on the other hand the TCB subsystem (control part) provides some synchronism properties such as
known upper bounds on message delivery delays. A practical demonstration of a TCB system is presented in Mar-
tins et al. [6] and [7]).
Design of the primitive Discover . Our primitive Discover relies on a special communication hardcore (control net-
work) in which it uses a distinct radio channel from the channel used to exchange messages in the remainder
(main) part of our protocol (payload network). (illustrated in Fig .??). The ping messages used by the primi-
tive Discover are very light weight messages. The information carried by a ping “Discover ” message is just the po-
sition coordinates of the robot caller, while a messages used in the protocol have generally a large size carrying
information about the parameters of a complex geographical zone or carrying a long list of integer numbers rep-
resenting robots identifiers. (see Section ??) Therefore, a timely behavior of Discover can be ensured since it is
based on broadcasting light weight ping messages to a one hop proximity area over a dedicate network. This be-
havior meets the requirements to achieve this primitive.1 2

4. Definitions

Definition 1 (Chunk, Path) Ch: a chunk is a line segment along which a robot moves. P: a path is a continuous
route composed of a series of contiguous chunks.3

1 The compensation of the draw back of the hidden terminal problem on the time-bounded access to the wireless medium is out of scope
of this paper

2 Discover geocasts (broadcast) a ping message that is supposed to cover all the robots located in a circular area whose radius is the
communication range C. We do not address in this paper, the very special case where a robot existing in the given area, is not covered
by the wave of Discover .

3 A path can take an arbitrary geometric shape, but in this paper we consider only line segment based paths for simplicity without lack
of generality.
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Paths are planed and provided by an upper layer to the protocol (application layer).

Definition 2 (Geometric Incertitude) The are 3 sources of errors concerning the position and the motion of a
robot:

1. Error related to the position information provided by the positioning system denoted by εgps. In addition, the mo-
tion of a robot creates 2 additional sources of errors:

2. Error related to the translational movement, which is denoted by: εtr.

3. Error related to the rotational movement, which is denoted by: εθ.

Definition 3 (Zone) A zone is defined as the area needed by a robot to move safely along a chunk. This includes pro-
visions for the shape of the robot, positioning error and imprecisions in the moving of the robot.

The zone must have the following properties:

• be a convex shape

• contain the chunk the robot is following

5. Collision freedom protocol

All robots run the same protocol. When a robot wants to move along a given chunk, it must reserve the zone
that surrounds this chunk. When this zone is reserved, the robot moves along the chunk. Once the robot reaches
the end of the chunk, it releases the zone except for the area where the robot is waiting. When moving along a
path, the robot repeats this procedure for each chunk along the path.

Definition 4 (Reservation Zone) The reservation range specifies that a robotRi can only reserve zones that are en-
tirely within a circle centered on the robot at the time of reservation with a radius equals at most to the half the trans-
mission range. Zone ·,i ⊂ Cir i(posi,

C
2 )

5.1. Structure of the reservation zone

The reservation zone for robot Ri is composed of the following three sub zones, illustrated by (Fig. 1)

1. Pre-Motion Zone: Pre(Zone) the zone that robot Ri may occupy while waiting (not moving) until it reserves
Zone.

2. Post-Motion Zone: Post(Zone) the zone that robot Ri may occupy after the motion, while waiting until re-
serves the next zone.

3. Motion Zone: Mot(Zone) the zone that robot Ri occupy while moving.

5.2. Definitions and notations

Relation between robots and a zone. The relationship between robots and zone changes in time. A zone is said to
be free if it is not owned by any robot. A robot requests a zone, and eventually it is granted this zone. We say the
robot owns the zone and all the points contained in this zone. When the robot has left a zone, it releases the zone.
A given point can be owned by only one robot.

We define the following relations between robots and zone:

Definition 5 (Zone (released)) It is the zone released by a robot Ri. A robot releases its reserved zone and keeps
only Post(Zone) under its reservation.

RelZone ·,i = Zone ·,i \ Post(Zone ·,i)

Definition 6 (Zone (owned)) Ri is the owner of Zone ·,i if Ri reserves Zone ·,i and does not yet release the zone
RelZone ·,i

(Ri = Own(Zone ·,i)) ⇐⇒ Reserve(Ri,Zone ·,i) ∧ ¬Release(Ri,RelZone ·,i)
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Figure 1. Reservation Zone.

Relation between robots. We introduce the following definitions related to possible relations between robots during
the run of the protocol:

Definition 7 (Conflict) Ri and Rj are in “Conflict” situation if both requested zones overlap.
The Conflict relation is expressed as follows:
Conflict (Ri, Rj) ⇐⇒ (S∩ (= ∅) ∧ (S∩ ∩ Pre(Zonem,j ) ∩ Post(Zonem,j ) ∩ Pre(Zonek ,i) ∩ Post(Zonek ,i) = ∅)

Definition 8 (Risk) Ri is in “Risk” situation with Rj if the requested zone by Ri overlaps either with Pre-Motion
zone or with Post-Motion zone of Rj.

In other words, Ri is in “Risk” situation with Rj ⇐⇒ the requested zone by Ri overlaps with a brake zone of Rj.
Risk(Ri, Rj) ⇐⇒ (Zone ·,i ∩ Pre(Zone ·,j ) (= ∅) ∨ (Zone ·,i ∩ Post(Zone ·,j ) (= ∅)

We define Riskpre and Riskpost as follows:

• Riskpre(Ri,Rj) ⇐⇒ Zone ·,i ∩ Pre(Zone ·,j ) (= ∅
• Riskpost(Ri,Rj) ⇐⇒ Zone ·,i ∩ Post(Zone ·,j ) (= ∅

Definition 9 (Turn) The Turn of a robot Ri is defined as its rank order to reserve Zone ·,i, (precedence relations)
with respect to a conflicting group of robots.

If (Conflict(Ri, Rj) then Ri precedes Rj ⇐⇒
Release(Ri, RelZone ·,i) happens before Reserve(Rj, Zone ·,j).

In other words, Ri precedes Rj ⇐⇒ Turn(Ri) < Turn(Rj) denoted by: T (Ri) < T (Rj )

5.3. Variables

We present the variables used in the collision freedom protocol:

• Zone ·,i is the current requested or the current reserved zone by Ri

• Gi represents the group of robots that replied to Discover i (i.e. the robots such that the requested zone or
the reserved zone when received Discover i ) overlaps with the reservation range of Ri

Gi = {Rj : Zone ·,j ∩Cir i(posi,
C
2 ) (= ∅ when received Discover i}

• WLAfter i→ is the list of robots waiting for Ri since it precedes all the members of this list.
WLAfter i→ = {Rj : T (Ri) < T (Rj )}

• WLAfter→i is the list of robots that Ri is waiting for, since all the members of this list precede Ri

WLAfter→i = {Rj : Ri ∈ WLAfter j→}
• Overlapi is the list of robots that conflict with Ri.
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• Dependi is the list of dependencies of Ri that contains the requests (Rj , Zone ·,j) such that Zone ·,j overlaps
with Zone ·,i and also the dependencies of each request (Rj , Zone ·,j).

We define the relation “depend” denoted ∼ as follows: Ri ∼ Rj ⇐⇒ (Zone ·,i ∩ Zone ·,j (= ∅ ∨ ∃ a finite
sequence (Rk, Rk+1, . . ., Rk+n) such that Zone ·,i ∩ Zone ·,k (= ∅ ∧ ∀ 0 ≤ p ≤ n− 1, Zone ·,k+p ∩ Zone ·,k+p+1

(= ∅∧ Zone ·,k+n ∩ Zone ·,j (= ∅)

5.4. Protocol description

All robots run the same protocol. We explain the phases of the protocol with respect to Ri. The protocol can
be decomposed in four phases:

1. Discover : Ri calls the neighborhood discover primitive Discover i, then Ri determines the group Gi.
2. Negotiate phase: The goal of the Negotiation phase is that Ri determines the conflicting robots with it, then

Ri builds the graph of the precedence relations to determine the group of robots that precede it and the group
of robots that pass after it. The vertices of the graph represent the conflicting robots and the directed edges
represent the precedence relations. The Negotiation phase can be summarized by the following steps:

• Ri multicasts a message reqi to all the members of Gi carrying all the parameters of Zone ·,i.
• Ri waits until it receives either a Discover j or a message msgj from each robot Rj ∈ Gi.
• The group Gi contains two disjoint subgroups of robots: the first subgroup denoted G1 i is composed of

robots Rj such that Ri does not belongs to Gj and a second subgroup denoted G2 i is composed of robots
Rj such that Ri belongs to Gj . In other words, the first subgroup G1 i denotes the robots Rj such that
Discover i happened after they determine Gj , while the second subgroup G2 i denotes the robots Rj such
that Discover i happened before they determine Gj . When a robot Ri calls the primitive Discover i then
all robots that may collide with Ri receives Discover i and reply to it, consequently Ri can determine its
group Gi. After that if Ri receives a request from a robot Rk then the requested or the reserved zone by
Rk when it received Discover i was not overlapping with the reservation range of Ri but the current one
overlaps.

• Ri receives a message “AfterMe” from robots in the group G1 i if the requested zone Zone ·,i overlaps
with Zone ·,j , otherwise Ri receives “OK” message from robots of G1 i. Ri constructs the list Overlapi by
adding the Rj to the list with the dependency type (“AfterMe”).

• Ri receives a message msgj that contains the parameters of the requested zone Zone ·,j from robots in
the group G2 i if Zone ·,j and Zone ·,i overlaps, otherwise msgj indicates “OK”. Ri updates its Overlapi

list by adding Rj .
• After Ri has determined its Overlapi list, it multicasts the Overlapi list to each robot in that list, and it

waits until receive the Overlapj from each robot Rj that belongs to Overlapi, so it builds the list Dependi

which contains the group of robots that conflict with Ri in addition to the conflicting robots with each
element of that group. The motivation behind exchanging the dependency list is that all the conflicting
robots can build the same Directed Acyclic Graph Dagres of the precedence relations consistently.

• Ri constructs from the list Dependi the graph DagAfterMe related to “AfterMe” precedence relation,
(see 5.5) and then it adds the precedence relations related to Risk constraints (see 5.6), thus, it con-
structs the graph Dagrisk composed with the graph DagAfterMe. If a cycle is created by adding a directed
edge to Dagrisk then an exception is raised to the upper layer that can make a decision to resolve the con-
flict.

After that, Ri constructs the final precedence relations graph Dagres that contains DagAfterMe and
Dagrisk. The construction of the final graph Dagres is done by adding directed edges according to a
sorting criteria specified by the application layer (see 5.7). If adding a directed edge creates a cycle
in Dagres then the orientation of the directed edge is reversed which breaks the cycle. Dagres is built
starting from the vertex that represents the robot of the minimal identifier in the increasing order of the
robots identifiers. The idea of scanning the vertices according to a specified predetermined order is to
ensure that Ri and all the members of Dependi build the same graph Dagres in a consistent manner.

• After building the precedence relations graph Dagres, Ri determines the group of robots that precede it
WLAfter→i and the group of robots that pass after it WLAfter i→.
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• Ri waits until receiving the release messages from all the members of the group that precede it WLAfter→i.

The modular design of our protocol yields a flexibility concerning the ordering techniques and strategies
depending on the application requirements. To determine the turn relation between two robots it is possible
to consider their distances to the intersection zone and in case of equidistance situation then the identifiers
are considered.

3. Reserve phase: This phase starts when Ri receives a release message from all its predecessors, then it reserves
Zone ·,i and becomes Own(Zone ·,i). Since Ri reserves its requested zone it moves inside it.

4. Release phase: When Ri finishes moving inside its reserved zone Zone ·,i, it multicasts a release message to all
its followers (members of the group WLAfter i→).

Algorithm 1 Collision Avoidance Protocol
1: Discover i ⇒ Gi
2: Overlapi := ∅
3: Dependi := ∅

Thread Reply
4: reply to the primitive Discover sent by other robots.
5: if Receive request(Zone·,k) from Rk /∈Gi then
6: if Conflict(Rk, Ri) then
7: Send(“AfterMe” + Zone·,i, Rk)
8: WLAfter i→:= WLAfter i→ ∪ {Rk}
9: end if

10: end ifEnd of the thread Reply
Negotiate phase

11: Multicast (request(Zone·,i), Gi)
12: Wait until Receive(msgj) from all Rj ∈Gi
13: if Ri /∈Gj ∧Zone·,j ∩ Zone·,i (= ∅ then
14: Receive(“AfterMe” + Zone·,j) {Rj has determined its Gj before Discover i}
15: WLAfter→i:= WLAfter→i ∪ {Rj}
16: Overlapi:= Overlapi ∪ (Rj ,Zone·,j , type := “AfterMe′′)
17: end if
18: if Ri ∈Gj ∧Zone·,j ∩ Zone·,i (= ∅ then
19: Overlapi:= Overlapi ∪ (Rj ,Zone·,j)
20: end if
21: Dependi := Overlapi
22: for all Rj ∈Overlapi do
23: Multicast(Dependi, Rj) {disseminate the dependencies}
24: end for
25: Wait until Receive Dependj from all Rj ∈Overlapi
26: Dependi := Dependi∪Overlapj
27: DagAfterMe := AfterMeHandler(Dependi)
28: Dagrisk(Ri) := Risk Handler(DagAfterMe, Dependi)
29: Dagres(Ri) := Conflict Resolver(Dagrisk(Ri), Dependi, Sorting-Criteria SC)
30: Update(WLAfter→i, WLAfter i→)

Reserve phase
31: when reception of release messages from all members of WLAfter→i
32: Reserve(Ri, Zone·,i)
33: end when
34: Move()

Release phase
35: when Release(Ri, RelZone·,i)
36: Multicast a release message to members of: WLAfter i→
37: end when

5.5. AfterMe Handler

This handler generates a graph of precedence relations concerning the relation “AfterMe”. The input of Af-
terMe Handler is the list of dependencies of Ri Dependi and the output is the Directed Acyclic Graph DagAfterMe

such that its vertices represent the robots related by the relation “AfterMe” and each directed edge represents a
precedence relation between a couple of robots Rx and Ry. If Ry sent a message “AfterMe” to a Rx then a di-
rected edge (Ry, Rx) is added to the graph.
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If Rj sent a message “AfterMe” to Ri then Ri should be after Rj and after any Rk predecessor to Rj . Conse-
quently, no circular precedence relationship can occur when generating DagAfterMe.

Algorithm 2 AfterMe Handler algorithm
1: procedure AfterMe Handler(Dependi)
2: for all (Rx, Ry) ∈ Dependi do
3: if DependType= “AfterMe” then
4: DagAfterMe := DagAfterMe ∪ DirEdge(Ry −→ Rx) {Ry sent “AfterMe” message to Rx}
5: end if
6: if DirEdge(Rx, Ry) and DirEdge(Ry, Rz) then
7: Dagrisk := Dagrisk ∪ DirEdge(Rx −→ Rz) {if Ry sent “AfterMe” message to Rz then Rz should be after any Rx

that precedes Ry}
8: end if
9: end for

10: end

5.6. Risk Handler

The Risk Handler is responsible for handling the situations concerning the “Risk” relation (i.e. when there is
an overlapping between a requested zone by a robot Ri with a Pre-Motion or a Post-Motion zone of another robot
Rj).

The input of the Risk Handler of Ri is the list of dependencies of Ri and DagAfterMe generated by the Af-
terMe Handler, since Dagrisk represent both Risk and AfterMe relations. Risk Handler delivers: either the graph
Dagrisk(Ri) which determines the precedence relations between robots in “Risk” situation with Ri, or raising ex-
ceptions whenever a detectable deadlock situation occurs or a circular precedence relationship is detected.

The precedence relations of Dagrisk is specified according to the constraints of the “Risk” situation only. A di-
rected edge between two vertices (Rx, Ry) in Dagrisk means that Rx is in Risk situation with Ry and that Rx

must precede Ry because of “Risk” constraints. When a circular precedence relationship is created by adding a di-
rected edge, or a deadlock situation is detected then the appropriate exception is raised to the upper layer be-
cause Risk Handler can not modify the precedence relations due to the constraints of “Risk” situation. A circular
precedence relation may occur while generating Dagrisk as follows: there is a directed edge (Rj , Ri) due to “Af-
terMe” relation, and a directed edge (Ri, Rj) is going to be added to Dagrisk because of a Risk situation. In a
such a case an appropriate exception is raised to the upper layer.

Description of the Risk Handler

• Riskpre(Ri,Rj) means that Zone ·,i overlaps with Pre(Zone ·,j ). If Zone ·,i overlaps with Pre(Zone ·,j ) only, then
Rj must precede Ri.

• Riskpost(Ri,Rj) means that Zone ·,i overlaps with Post(Zone ·,j ). If Zone ·,i overlaps with Post(Zone ·,j ) only,
then Ri must precede Rj .

• A detectable deadlock situation (e.g., Deadlock3) occurs if both Riskpre(Ri,Rj) and Riskpost(Ri,Rj). In this
case Zone ·,i overlaps with both Pre(Zone ·,j ) and Post(Zone ·,j ). Consequently, neither Ri nor Rj can move,
therefore a detectable deadlock situation occurs. Other detectable deadlock situations (Deadlock1, Deadlock2,
Deadlock4) are deduced by a similar reasoning.

• Dagrisk is constructed by adding directed edges between vertices according to the constraints of “Risk”.

• Detectable deadlock situations “direct” between two robots can occur in the system are explained in the Risk
Handler algorithm (Deadlock1, Deadlock2, Deadlock3, Deadlock4) situations. They are caused by overlapping
between zones in special cases.

• Other detectable deadlock situations “indirect” can happen because of circular precedence relationship in the
Dagrisk. In such a case an exception is raised since it is not possible to change the direction of any edge in
Dagrisk

8



Algorithm 3 Risk Handler algorithm
1: procedure Risk Handler(DagAfterMe, Dependi)
2: for all (Rx, Ry) ∈ Dependi do
3: Deadlock1 = Riskpre(Rx, Ry) ∧ Riskpre(Ry, Rx)
4: Deadlock2 = Riskpost(Rx, Ry) ∧ Riskpost(Ry, Rx)
5: Deadlock3 = Riskpre(Rx, Ry) ∧ Riskpost(Rx, Ry)
6: Deadlock4 = Riskpre(Ry, Rx) ∧ Riskpost(Ry, Rx)
7: if Deadlock1∨ Deadlock2 ∨ Deadlock3 ∨ Deadlock4 then
8: Raise Exception “what to do?” to the upper layer.
9: end if

10: if Riskpost(Rx, Ry) ∨ Riskpre(Ry, Rx) then
11: Dagrisk := Dagrisk ∪ DirEdge(Rx −→ Ry)
12: end if
13: if Riskpre(Rx, Ry) ∨ Riskpost(Ry, Rx) then
14: Dagrisk := Dagrisk ∪ DirEdge(Ry −→ Rx)
15: end if
16: if DetectCycle(Dagrisk(Ri)) then
17: Raise Exception “what to do?” to the upper layer.
18: end if
19: end for
20: end

All robots generate the same Dagrisk, since all robots know the dependencies of other robots.
The possibility that a deadlock situation happens is due to different parameters, such as the geometrical char-

acteristics of the reservation zone. In some situations, deadlock cases can be reduced or canceled by a careful path
planning managed by the application layer.

The protocol raises an exception to the upper layer in order to handle such situations. The upper layer decides
an action which can be an alternative paths provided to robots.

5.7. Conflict Resolver

The Conflict Resolver of Ri constructs Dagres(Ri) which separates the set of the robots conflicting with Ri in
two subsets: the predecessors and the successors of Ri. The input of the Conflict Resolver is the following: the
dependencies of Ri (Dependi), Dagrisk created by the Risk Handler, and a sorting criteria (SC) provided by the
application layer.

Description of the Conflict Resolver algorithm The goal is to determine the precedence relations betweenRi and the
conflicting robots with Ri. This is performed by sorting each couple of the conflicting robots (Ri and its dependen-
cies) according to the sorting criteria SC. When a circular precedence relationship is created then the precedence
relation between the couple of robots that caused the cycle is reversed to break this circular precedence situa-
tion.

Conflict Resolver permits to build Dagres(Ri) in a consistent manner such that Ri and the conflicting robots
with Ri build the same Dagres(Ri). To achieve the consistency, each robot builds Dagres as follows:

• Ri adds a directed edge to Dagres between two vertices (Rx, Ry) according to SC, starting from the vertex that
represents the robot of minimal identifier among the set of dependencies of Ri, compared with the remainder
of the vertices in the increasing order of their identifiers.

• If adding the directed edge (Rx, Ry) creates a cycle in Dagres then replace the directed edge (Rx, Ry) by the
directed edge (Ry, Rx) to break the circular precedence relationship.

6. properties of our protocol

The properties achieved by our protocol are the following:
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Algorithm 4 Conflict Resolver algorithm
1: procedure Conflict Resolver(Dagrisk(Ri), Dependi, Sorting-Criteria SC)
2: if SC == “NULL” then
3: Run a consensus algorithm {If there is no a specified sorting criteria, then the conflicting robots run a consensus

algorithm}
4: else
5: Dagres(Ri) := Dagrisk(Ri)
6: for (x := MinID; x ≤ MaxID; Rx ∈ Dependi) do
7: for (y > x; y ≤ MaxID; Ry ∈ Dependi) do
8: if Conflict(Rx, Ry) then
9: DirEdge(Rx, Ry) := SortSC(Rx, Ry) {sort the 2 robots according to the Sorting Criteria SC}

10: Dagres(Ri) := Dagres(Ri) ∪ DirEdge(Rx, Ry)
11: if DetectCycle(Dagres(Ri)) then
12: DirEdge(Rx, Ry) := DirEdge(Ry, Rx) {If a cycle is detected then inverse the direction of the edge}
13: end if
14: end if
15: end for
16: end for
17: end if
18: end

6.1. Safety property

The collision freedom property is the Safety property of our protocol, so no collision between robots can occur.
This property is expressed as follows:

Property 2 (Mutual exclusion) If the requested zone of Ri overlaps with that of Rj then one and only one of them
becomes “Owner” to its required zone. In other words, a zone in the plan can be owned by one and only one robot.

(Zone ·,i ∩ Zone ·,j (= ∅) ⇒ (Ri = Own(Zone ·,i)) XOR (Rj = Own(Zone ·,j ))

Property 3 (Integrity) A robot can release a zone if and only if it has previously reserved this zone. This property
is expressed as follows:

For any zone Zone ·,i, Release(Ri, RelZone ·,i) takes place only if previously: Reserve(Ri, Zone ·,i)
Reserve(Ri,Zone ·,i)(happensbefore)Release(Ri,RelZone ·,i)

6.2. Liveness properties

Property 4 (No Circular Precedence Relationship) Ourprotocol has no circular precedence relationship, con-
sequently if Ri requests Zone ·,i then it eventually reserves it, so no starvation occurs unless one of the detectable dead-
lock situations explained in the Risk Handler section (see 5.6). Dealing with detectable deadlock situations takes place
in the upper layers, our protocol present the lowest layer that handles the safety property of the system.

Resolving the detectable deadlock situations in the upper layers can be carried out by different strategies such as of-
fering an alternative path or an alternative chunk of a certain path (motion planning).

7. Advantages and improvements

We mention some advantages of our locality preserving protocol:

1. A robot Ri can use its maximal speed to move along a reserved chunk since it is deterministically guaranteed
that Ri is exclusively the only owner of the reserved zone.

2. The protocol does not require any routing techniques except for avoiding circular precedence relationships
(deadlock situations).

3. It is possible to improve the performance in terms of time that a robot Ri requires to reach its destina-
tion by adjusting the reservation range according to the local density of robots around Ri returned by the
neighborhood discovery primitive Discover i

10



4. By adding a mechanism that enables a robot Ri to demand an alternative path or alternative chunk from an
upper layer (path planner layer) a tangible improvement can be performed as follows:
Ri can “hear” gratuitously the required zones by its local neighbors due to the nature of communications in
Mobile Ad Hoc networks. If the requested zone Zone ·,i conflicts with a certain number of requested zones
by the local neighbors then Ri demands an alternative chunk or an alternative path where the congestion is
lower.

8. Conclusion

We introduced a collision freedom protocol for asynchronous cooperative mobile robots based on a distributed
path reservation system. Our protocol takes advantages of the inherent locality of the problem.

This protocol offers a dynamic scheduling mechanism for zone reservation requests coming dynamically in this
system, our protocol copes with this dynamic context, relying on a dynamic mechanism to manage the order of
requests in a consistent manner.

Our protocol requires neither initial nor complete knowledge of the composition of the group. It is based on a
well-defined neighborhood discovery primitive and makes very weak timing assumptions.
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