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Abstract

Protocol stacks and other distributed applications have
been structured as a set of collaborating components with
more or less well-defined interfaces. Recent frameworks
provide flexible interfaces, arrangements and communica-
tion patterns, and thus allow for finer-grained components,
called microprotocols. Multi-threaded programming is the
key to high performance in these frameworks. This paper
investigates what support for multi-threaded programming
such frameworks provide and should provide for program-
mers. Along with a survey and detailed discussions of the
features of existing frameworks, we propose features that
can be offered without significant changes in programs, and
that have a negligible performance impact. This includes
the following: (1) sets of single-threaded microprotocols
that coexist with multi-threaded microprotocols, thus taking
the best of two worlds; (2) non-overlapping execution of mi-
croprotocols involved in a chain of asynchronous communi-
cation, to avoid inconsistencies; and (3) ordering guaran-
tees for asynchronous communication among microproto-
cols. To our knowledge, our definition for a particular ex-
tension of causal order is the simplest so far.
Keywords: Protocols, distributed applications, micropro-
tocol frameworks, middleware, components, concurrency,
asynchronous communication, causal order.
Technical areas: Operating Systems and Middleware
Corresponding author’s email: urban@jaist.ac.jp

1. Introduction

Context. For several decades, protocol stacks (and more
complex distributed applications) have been structured as

a set of collaborating components with more or less well-
defined interfaces. In traditional protocol stacks, these com-
ponents are called layers and their arrangement and commu-
nication pattern is fixed: each layer can only communicate
with the layers directly above and below. At every level, a
layer uses the one below it as a virtual medium to commu-
nicate to its peer layers at other sites, offering itself, in turn,
as an enhanced virtual medium to the layers above.

Newer research frameworks, called microproto-
col frameworks in this paper, extend this model by having
more flexible interfaces, arrangements and communica-
tion patterns, thus permitting the use of finer grained com-
ponents, called microprotocols. The basic promise that
modular microprotocol frameworks make is a full sep-
aration of concerns between programming microproto-
cols and composing them, to the extent that these two tasks
can be carried out by different people with a minimal inter-
action.

Multiprocessor machines are commonly used as servers,
and are increasingly present on the desktop, as well. The
dominant programming model that can fully take advan-
tage of multiple processors is called multi-threaded pro-
gramming.1 This programming model is extensively used
in microprotocol frameworks.

Contribution. Multi-threaded programming is signifi-
cantly harder than single-threaded programming. Hence it
is worthwhile investigating what support is available for
programmers of distributed applications. This paper con-
centrates on what support microprotocol frameworks pro-

1 Specialized languages, compilers, and software and hardware environ-
ments may provide concurrency that, unlike multi-threading, is trans-
parent to the programmer. This is not the case with the most popu-
lar languages like Java and C, their software environments, and com-
mon desktop, server and embedded hardware.



vide to programmers. We survey the features of existing
frameworks for multi-threaded programming, and exten-
sively discuss the usefulness of each of the features. We
then propose a set of features that can be offered with-
out significant changes in programs, and that have a negli-
gible performance hit. Among other things, we propose the
following features: (1) sets of single-threaded microproto-
cols that can coexist with multi-threaded microprotocols,
thus taking the best of two worlds; (2) non-overlapping ex-
ecution of microprotocols involved in a chain of asyn-
chronous communication, to avoid inconsistencies; and (3)
providing ordering guarantees for asynchronous commu-
nication among microprotocols, including first-in-first-out
(FIFO) and causal order, and an extension to causal or-
der. To our knowledge, our definition for this particular
extension of causal order is the simplest so far.

Structure. The paper is structured as follows. Section 3 lists
the microprotocol frameworks we investigated, as well as
other related work. Section 2 introduces our terminology
for frameworks and their main features. Section 4 presents
models of concurrency. Section 5 compares the models and
proposes a combination. Section 6 is concerned with over-
lapping executions of microprotocol code. Section 7 defines
and discusses ordering guarantees for the communication
between microprotocols and their implementation. Finally,
Section 8 concludes the paper.

2. Terminology and features of microprotocol
frameworks

The terminology used for describing microproto-
col frameworks varies wildly from paper to paper. Also,
the same terms often mean very different things for differ-
ent people. Hence we felt it was necessary to introduce a
uniform terminology, along with describing the usual fea-
tures of such frameworks. Throughout this paper, we use
the terms as defined in this section, even if the defini-
tion of the same term differs in papers describing the
frameworks.

Microprotocols. The code that implements protocols in
such frameworks is organized into units called micro-
protocols. Microprotocols are software components, i.e.,
it is clear what services they offer to other microproto-
cols, and they usually use a few standard communication
mechanisms. The basic promise that microprotocol frame-
works (and general component frameworks) make is
that people other than the programmers of microproto-
cols are able to plug microprotocols together, without hav-
ing to know or change the code of the microprotocols.
We call such people composers. The set of all micropro-
tocols and their interconnections is called the composi-
tion.

Asynchronous communication. The main form of commu-
nication between microprotocols is asynchronous (even for
communication within a process). The data transferred dur-
ing an instance of communication is called an event. Initiat-
ing the communication is called sending an event; the initia-
tor is called the sender thread that executes the sender mi-
croprotocol. Sending an event results in handling the event:
some piece of code, called handler, is executed; the han-
dler is part of the handler microprotocol.

The fact that communication is asynchronous means that
(1) handling the event may take place after sending is fin-
ished; (2) sending never blocks; (3) and sending never re-
turns data from the destination handler, such as a return
value or an exception that the sender thread is expected
to handle (but, of course, the handler microprotocol might
send another event to the sender microprotocol if such com-
munication is necessary).

In our terminology, an event only exists for the duration
of the communication. If the handler microprotocol decides
to communicate with another microprotocol, we consider
the associated event a new event that is different from the
original one. Of course, the new event might carry the same
information as the original event.

Let us put asynchronous communication into con-
text. Asynchronous communication between micropro-
tocols is widespread because it maps to the message
passing model of communication over networks. It of-
ten allows for a greater decoupling of microprotocols than
synchronous communication, just like message passing al-
lows for greater decoupling than remote procedure calls.
The focus on asynchronous communication is an impor-
tant feature that distinguishes microprotocol frameworks
from general component frameworks.

Communication over the network. Protocols and dis-
tributed applications usually have code in distinct address
spaces. We call these address spaces processes. The com-
munication mechanisms for microprotocols do not work be-
tween processes: a networking technology, such as IP net-
working, must be used. In this paper, we focus on commu-
nication within a given process: in particular, concurrency
issues that arise within a process. Communication be-
tween processes is much slower and often unreliable, and
thus concurrency issues require different solutions. Com-
munication between processes appears in our model as
special microprotocols that do communication over the net-
work.

3. Related work

Microprotocol frameworks. We first list the microprotocol
frameworks we investigated for their features related to con-
currency. We concentrated on frameworks that are still in
use.
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• Neko 0.9 [15, 16]. The Neko framework is capable
of both simulating and executing protocols, using the
same source code. It comes with an extensive set of
protocols.

• Cactus/C 2.2 (C version), Cactus/J 2.0 (Java version)
and a later, non-public Java version (received 2004/04)
[6, 13]. We consider the Cactus framework because of
its maturity (incorporates 10 years of experience) and
elegant, minimal design.

Cactus has a two-level hierarchy of components,
and the components interact very differently within
each level. For this reason, we often present Cactus
as two frameworks: Cactus/µp and Cactus/cp refer to
how things work at the lower and the higher level, re-
spectively (µp stands for microprotocol and cp stands
for composite protocol, the Cactus terms for compo-
nents at the two levels). Cactus/cp is rather similar to
an influential early framework, the x-kernel [7].

The concurrency features of the C and Java version
of Cactus/µp are rather different. We will refer to them
as Cactus/µp/C and Cactus/µp/J whenever the distinc-
tion is necessary.

• Samoa [17]. The Samoa framework is unique in its ad-
vanced support for handling concurrency in a way that
is transparent to microprotocols.

• Eva (the version used in the Eden group communi-
cation toolkit, received 2004/04) [3]. This framework
handles events and hierarchies of microprotocols in an
elegant manner.

• Appia (full distribution, versions kernel-1.9-2 and
protos-0.11-2) [11]. The Appia framework exten-
sively uses object-oriented features, such as class
hierarchies. It is distributed with a lot of proto-
cols.

• Fortika (received 2005/11) [10, 14]. Fortika is a group
communication toolkit whose microprotocols can be
composed using various frameworks (currently Cac-
tus/J, Appia, and Samoa). This is possible thanks to
a set of conventions and interfaces to write framework
independent code. It is interesting for us because the
conventions it follows are a synthesis of the features
of three frameworks. In the sequel, when we cite For-
tika, we refer to these conventions.

• JGroup 2.0 [12]. The JGroup framework is included
because it is most similar to generic Java component
frameworks: components usually hold references to
other components and use method calls to communi-
cate.

• JGroups 2.2.7 [1]. This framework is included because
it is a successor of the influential Horus and Ensem-
ble frameworks, and because it is rather visible in

the broader Java developer community. In this paper,
JGroups appears by its former name, JavaGroups, to
avoid confusion with JGroup.2

Other related work. In [14], the authors define four sets of
criteria, called models, to compare the Appia and Cactus
frameworks.

The concurrency model defines whether and how con-
currency is allowed in the framework. The interface to the
environment defines how the application interacts with the
outside world (network, application, etc.). The present pa-
per focuses on the concurrency model and some implica-
tions of the concurrency model to the interface to the en-
vironment, in much more detail and involving more frame-
works than [14].

The other two models describe how microprotocols com-
pose and interact. We only summarized this in Section 2; a
detailed discussion is out of scope for this paper.

4. Concurrency models

As the consequences of multiple threads running concur-
rently are difficult to foresee, one needs to coordinate how
threads access shared resources, such as the internal state
of microprotocols, or the shared state of multiple micropro-
tocols. Frameworks differ in how they solve this problem.
Some allow only a single thread for running microproto-
cols, and others are more permissive. In this section, we de-
scribe the characteristics of each group of frameworks.

Multi-threaded model. A lot of frameworks (Neko, Java-
Groups, Cactus/µp, Cactus/cp, Eva, and JGroup) permit the
use of multiple threads. These frameworks provide special
operations, microprotocol skeletons, or microprotocols that
launch new threads, or allow the microprotocol program-
mer to use standard features of the programming language
(Thread class in Java, POSIX threads in C, etc.) to launch
new threads. These frameworks do not offer extensive sup-
port for restricting multi-threaded behavior; microprotocol
programmers and composers have to manage concurrency
on their own.

Cactus/µp is unique among the frameworks surveyed in
that the microprotocol programmer must choose the concur-
rency of handling an event at the moment of sending that
event: the event can be handled by the sending thread, by a
new thread, or by a thread from a thread pool.

Cactus/µp/C provides mechanisms to guarantee that the
execution of a handler is not interrupted by the execu-
tion of another handler in the same higher-level micro-
protocol, even in the presence of concurrency. In contrast,
Cactus/µp/J does not restrict concurrency at all. We will re-
turn to Cactus/µp/C in Section 5.3.

2 JavaGroups provides both a gateway to the Ensemble toolkit and a
Java re-implementation of Ensemble protocols. We analyze the latter.
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Single-threaded model. Two frameworks, Appia and For-
tika (when used with Appia), have a dedicated thread that
executes microprotocols. No other thread is allowed to ex-
ecute microprotocols. Hence no concurrency is possible in-
side the composition. The underlying philosophy is that
multi-threading introduces a lot of complexity, and the pos-
sible gains in performance and readability are not worth this
additional complexity.

The single-threaded model requires that microprotocols
follow a set of strict rules:

no new thread launched Microprotocols cannot start new
threads and owning private threads.

non-blocking handlers Handling an event should not take
a long time, and should never block the dedicated
thread waiting for some condition. Otherwise, the han-
dling of subsequent events may be blocked indefi-
nitely, and the whole composition may have problems
of liveness.

no external interaction Microprotocols should not inter-
act with the outside world. This includes using the net-
work, or peripherals. The reason is that such interac-
tions may block, or may call the code of the micropro-
tocol asynchronously, thus introducing concurrency.

The rules can be summarized the following way: (1) re-
active microprotocols only send events while handling an
event; (2) handling an event always finishes within a short
time. Microprotocols that follow these rules are called reac-
tive microprotocols (they only react to their environment),
and other microprotocols are called active microprotocols
(e.g., they can launch new threads). The single-threaded
model thus requires that all microprotocols be reactive. In
contrast, both active and reactive microprotocols are al-
lowed in the multi-threaded model.

Of course, frameworks that follow the single-threaded
model also need functionality that involves external inter-
actions. As reactive microprotocols cannot implement such
functionality, it is implemented by code that is not part of
microprotocols, and is therefore outside the composition.
The thread that executes microprotocols may communicate
with code outside the composition by queues, for instance.

Finally, note that using a dedicated thread to execute
the composition is not the only possibility to implement
the single-threaded model. Another possibility is embed-
ding the composition in a monitor that guarantees that only
one thread can access microprotocols at any given time (this
thread is not necessarily the same thread all the time). For-
tika (when used with Cactus) uses this solution.

Model with transparent concurrency. The Samoa frame-
work is unique in its approach to concurrency issues. It
features a scheduler capable of allowing multiple threads
to execute handlers concurrently, but, unlike in the multi-

threaded model, this concurrency is transparent to the mi-
croprotocols: all microprotocols are reactive, just like mi-
croprotocols in the single-threaded model.

We have just seen that frameworks implementing the
single-threaded model do not allow concurrency inside the
composition. Therefore, if the environment sends several
events into the composition at the same time (e.g., several
messages from the network), such frameworks handle these
events one after the other. In contrast, Samoa’s scheduler
allows such events to progress into the composition unless
they conflict (see [17] for the exact definition of conflicts).
In the best case, the events produced by external interactions
can be handled concurrently, and otherwise, some events
are blocked while other events are handled. The scheduler
enforces an isolation property similar to the isolation prop-
erty of transactions in databases. The kind of scheduler used
is called a pessimistic (i.e., rollback-free) scheduler in that
context.

To support the detection of conflicts, the composer has
to provide additional information about the microprotocols
that may and may not be executed for each type of external
interaction. Such information is not necessary in either the
single- or multi-threaded model.

Overall, this new approach is promising, but there re-
main open questions. One is how much concurrency can be
introduced into the composition. For example, given com-
positions where most of external interactions execute most
of microprotocols, the scheduler will hardly allow more
than one event to progress concurrently. Other compositions
probably fare better. Further research, involving measure-
ments, is needed to answer this question.

5. Comparing the concurrency models

In this section, we investigate the tradeoffs between
single- and multi-threaded frameworks, and propose a com-
bination. We then contrast this combination with the model
with transparent concurrency, which can also be seen as a
combination of the single- and multi-threaded models.

5.1. The single-threaded model is too restrictive

Multi-threading is useful in a variety of scenarios. In par-
ticular, multi-threading may simplify the protocol code; it
is necessary for certain tasks, e.g., interfacing to system li-
braries that are multi-threaded; and it is useful to improve
the performance of a service with slow operations. We first
present examples for these scenarios. We then investigate
how the scenarios are implemented in the single-threaded
model, and highlight the drawbacks of these implementa-
tions.

Scenarios. There are numerous examples of multi-
threading simplifying the protocol code; in fact, many pro-
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tocols in the literature (see, e.g., [5]) are described as a set
of interacting tasks, and the simplest implementation of-
ten uses a thread to implement each task.

There are activities that are only conveniently imple-
mented with multi-threaded code. Protocols nearly always
interact with the network, and networking libraries (such
as the Java standard library) are often multi-threaded them-
selves. Scheduling activities for execution at some future
time is another example.

Even tasks that do not involve external interaction may
take a long time. An example is cryptographic computa-
tions in security protocols. An optimization that may im-
prove the throughput of this task significantly is paralleliz-
ing the computations. Another, more common example is a
web server. Web servers typically handle requests in a new
thread because the pages should be available to requests ar-
riving concurrently.

Implementing the scenarios. We have shown scenarios in
which multi-threading is beneficial. As the single-threaded
model does not allow multi-threading within the composi-
tion, part of the code for these scenarios must be imple-
mented outside the composition, as some kind of compo-
nents used by microprotocols. One problem is that one part
of the code will be inside microprotocols, and another part
in components that are not microprotocols. There is a dan-
ger that such components will offer a different interface than
ordinary microprotocols, especially if the components pro-
vided by the framework are not enough, and the micropro-
tocol programmer must implement ad-hoc components. An-
other problem is that such a decomposition exposes imple-
mentation details: if, for instance, the cryptographic com-
putations mentioned above are not used by other proto-
cols, there is no reason for exposing their interface to the
framework. These problems ultimately limit the flexibility
of frameworks that follow the single-threaded model, as mi-
croprotocols and components different from microprotocols
cannot be interchanged easily, and there are interfaces that
programmers must adhere to that are really only implemen-
tation details. In other words, the composer is exposed to
concerns that should be concerns of the microprotocol pro-
grammer.

Conclusion. Our conclusion is that the single-threaded
model limits microprotocols too much: programmers are
forced to solve important problems or implement parts of
solutions outside the composition. The reason is that all mi-
croprotocols are required to be reactive.

5.2. The multi-threaded model is too permissive

The multi-threaded model, in contrast to the single-
threaded model, does not restrict the concurrency of micro-
protocols. This means that frameworks following this model
provide few or no facilities for microprotocol programmers

and composers to solve problems of concurrency, beyond
the generic facilities offered by the programming language
and its libraries.

Difficulties for microprotocol programmers. The problem
here is that single-threaded programming is genuinely eas-
ier. The issue is not just the convenience of the micropro-
tocol programmer: sometimes, simpler code can be writ-
ten if the composition, or a part of the composition, is ex-
ecuted by a single thread. In the multi-threaded model, the
programmer is confronted to non-determinism in the proto-
col execution. This non-determinism can even be a concern
when performing usual tasks, such as preserving FIFO or-
der of events from the sender to the handler microprotocol
in a given composition. While such tasks are easy to imple-
ment in the absence of concurrency (the sender micropro-
tocol can just send the events and the framework ensures
that they are handled in FIFO order), they require compli-
cated solutions if multiple threads are involved (the order
of two events might be reversed, and thus the microproto-
cols need to be modified to keep FIFO order, e.g., by using
sequence numbers).

In the subsequent sections, we will provide more exam-
ples of facilities that allow microprotocol programmers to
write simpler code. These facilities have a small overhead,
but only if some microprotocols are executed by a single
thread.

Difficulties for composers. Concurrency issues, such as
protecting the states of microprotocols against concur-
rent changes and avoiding deadlocks, cannot always be
solved by the microprotocol programmers on their own: the
composer must be involved. In order to do this, the com-
poser needs to have deep knowledge of the composed
microprotocols that includes details such as the cumu-
lative state of the microprotocols to protect, or the han-
dlers in which new threads are launched. Having to account
for all these details greatly complicates the task of the com-
poser. In contrast, the composer can ignore concurrency
issues in the single-threaded model.

Conclusion. Our conclusion is that frameworks should pro-
vide facilities to make microprotocol programming and pro-
tocol composition easier, by restricting concurrency. Frame-
works following the multi-threaded model provide few such
facilities.

5.3. Islands of reactive microprotocols: the best of
two worlds

One can combine the advantages of the single- and
multi-threaded models in the following way: let the pro-
grammer and the composer define sets of microprotocols
that will be executed by a single thread at a time. We call
such sets islands. Within islands, microprotocol program-

5



Concurrency model single-threaded multi-threaded with reactive islands multi-threaded
Microprotocols reactive, simple code reactive or active, complex code
Active code outside the composition inside the composition
Composition simple complicated

Table 1. Comparing the single- and multi-threaded models of concurrency and their combination.

mers can write simpler code by taking advantage of the
kind of guarantees offered in the single-threaded model: if
all its microprotocols are reactive, the island itself is reac-
tive as well. However, outside the islands, programmers are
free to use multi-threading without restrictions, just as in
the multi-threaded model, and thus implement any required
functionality as microprotocols, within the composition. Ta-
ble 1 summarizes the main characteristics of the single- and
multi-threaded concurrency models (left and right columns,
respectively) and points out how the multi-threaded model
with reactive islands (center column) combines the advan-
tages of both: microprotocol code and the task of composi-
tion is usually simpler, yet multi-threaded code can reside
inside the composition.

Out of all the frameworks, only Cactus/µp/C follows a
model similar to the multi-threaded model with reactive is-
lands. This means that the framework allows active micro-
protocols, but its event scheduler provides guarantees for
certain sets of microprotocols if they consist of reactive mi-
croprotocols only. The sets are the higher-level micropro-
tocols of Cactus. The difference is that the boundaries of
these sets cannot be chosen arbitrarily, as microprotocols
and higher-level microprotocols work very differently in
Cactus. Moreover, microprotocol programmers should not
use certain features, e.g., sending events in a new thread, in
reactive islands.

Reactive islands and their execution. We next elaborate on
what we mean by reactive islands, and how they interface
to other microprotocols.

The key property of islands is the following: if each of
the microprotocols of an island is reactive, then the whole
island behaves like a reactive microprotocol, as well, and
we speak of a reactive island. This means that reactive is-
lands never send events if they are not handling any event;
and if handling an event starts, it always finishes, and does
so within a short time (with suitable and straightforward
definitions for sets of microprotocols sending and handling
events). Note that the single-threaded model uses exactly
one reactive island that includes all microprotocols, whereas
the multi-threaded model uses no reactive islands, or at
least, the framework is not aware of reactive islands.

There are at least two solutions for executing an island
that consists of reactive protocols only, such that it will be
reactive.

• One solution uses a dedicated thread. It is similar to

how single-threaded frameworks handle events. There
are two queues. Incoming events are put in the first
queue, called inbound queue. A dedicated thread then
repeats the following: it reads an event from the in-
bound queue, handles the event and any events sent to a
microprotocol in the island while handling the event, in
a recursive manner. Outgoing events are put in the sec-
ond queue, called outbound queue, from which other
threads will read the events and handle them.

• The other solution is that the island forms a monitor.
Any thread can enter to handle an event, but in mutual
exclusion with other threads. Inside the monitor, the
thread should handle the event and any events sent to
a microprotocol within the island, in a recursive man-
ner, but not any outgoing event. It may handle outgo-
ing events only after exiting the monitor.

Using islands of microprotocols. The question remains
what parts of the protocol stack or distributed appli-
cation can and should be implemented as an island of
reactive microprotocols, and which ones should be ac-
tive (i.e., multi-threaded).

Previous work with protocol composition (e.g. [9, 14])
reveals that, in usual compositions, most of processor time
is spent on the serialization and deserialization of events for
transmission over the network. Moreover, if the framework
implements a single-threaded model, (de)serialization be-
comes a prominent performance bottleneck.

In multiprocessor platforms, serialization workload pro-
duced in a typical protocol composition is big enough
to fully utilize all processors available at each node. Be-
sides, parallelizing serialization is extremely easy since the
(de)serialization of two different events is completely inde-
pendent.

This leads us to the conclusion that most of the code of
the distributed application can be implemented as a sin-
gle reactive island of microprotocols, whereas serialization-
related microprotocols should be executed by multiple
threads so that the high workload they generate is dis-
tributed over all processors of the execution platform. Note
that if the application has different performance charac-
teristics (e.g., serialization is no more the bottleneck), it is
often straightforward to shrink the reactive island’s bound-
ary to introduce concurrency, by adding active micropro-
tocols or replacing some of the reactive microprotocols by
active versions.
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Concurrency model single-threaded transparent multi-threaded
Microprotocols reactive, simpler code reactive or active, complex code
Active code outside the composition outside the composition

but concurrency in the composition
inside the composition

Composition simple complicated

Table 2. Comparing the single-threaded, multi-threaded and transparent models of concurrency.

5.4. Comparing with transparent concurrency

Just like the multi-threaded model with reactive islands,
the model with transparent concurrency can be considered
as a combination of the single- and multi-threaded concur-
rency models. Table 2—whose structure parallels that of Ta-
ble 1—points out how the model with transparent concur-
rency (center column) combines aspects of the single- and
multi-threaded concurrency models (left and right columns,
respectively): concurrency is possible within the composi-
tion, just like in the multi-threaded model, and the price is
that the composer’s task becomes difficult, as the composer
has to provide rather detailed information about possible ex-
ecutions. Other aspects are similar to the single-threaded
model.

Let us now contrast the multi-threaded model with re-
active islands and the model with transparent concur-
rency. With both models, (most) microprotocols are reac-
tive. However, concurrency is introduced in a different way.
The model with reactive islands allows active micropro-
tocols, and the composer can compose these with reactive
microprotocols. In contrast, the model with transparent con-
currency puts all the burden of introducing concurrency on
the composer, and the composer’s task is much more diffi-
cult.

Note that the model with transparent concurrency still re-
quires that external interactions are performed outside the
composition. In other words, this model only aims at solv-
ing one problem that active code is used for: that of increas-
ing performance on multiprocessor platforms. For this rea-
son, we view the two approaches as complementary, and in
fact, they could be combined. The combination is a multi-
threaded model with reactive and active microprotocols, in
which some reactive microprotocols form reactive islands
as presented above, and some others form islands that are
executed by a scheduler offering transparent concurrency.
The latter islands are like the entire composition in the
model with transparent concurrency.

6. Overlapping executions of handlers

Consider an execution that involves handlers h1, h2, and
h3. Handler h1 sends an event that is handled by handler h2,
and h2 sends another event handled by h3. Finally, let h1

handler h3: handles ev3
   msg ← "bye!"
   print(msg)
end handler

state:  string msghandler h1: handles ev1
   msg ← "hi!"
   send(ev2)
   print(msg)
end handler

handler h2: handles ev2
   do_something()
   send(ev3)
end handler

ev
2 ev3

µprotocol1

µprotocol2

Figure 1. Example of possibly overlapping
executions of handlers. What are the con-
tents of msg when handler h1 prints it?

and h3 be handlers of the same microprotocol µprotocol1.
Figure 1 depicts this execution.

Similar chains of events, ones that start and end at the
same microprotocol, may give rise to consistency problems.
In the example, h1 and h3 are part of the same microproto-
col (µprotocol1), and thus they both modify the state of this
microprotocol (the string msg). The consistency problem is
that the output depends on how the statements of h1 and h3

are executed: if the first line of h3 executes before the last
line of h1, h1 will print the wrong message (“bye!”).

Note that the root of the problem is that the executions
of handlers h1 and h3 may overlap in time. Note also that
the microprotocol programmer cannot use standard mech-
anisms (synchronized keyword in Java, mutex variables in
C) to guard against the consistency problems. The reason is
that such mechanisms only protect against modifications by
different threads, and h1 and h3 might be executed by the
same thread.

This section describes and discusses possible solutions
to the problems caused by overlapping executions of han-
dlers.
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6.1. Anticipating consistency problems.

The first possible solution is requiring that the micro-
protocol programmer anticipates how consistency problems
may occur: at least, how consistency problems may occur
when a single thread executes several handlers of the mi-
croprotocol such that they overlap. In order to do this, the
programmer would have to know the details of the composi-
tion (e.g., µprotocol1 and µprotocol2 in Fig. 1). This goes
against the main property of microprotocol frameworks: mi-
croprotocols should be written in (relative) isolation and
composed in a (relatively) unrestricted manner. Hence we
do not discuss this solution any further.

6.2. Introducing concurrency.

The second possible solution is to avoid that the same
thread executes handlers of the same microprotocol whose
execution overlaps. This means that at least one of the han-
dlers involved (e.g., h2 in Fig. 1) should be executed by a
different thread. There are different ways of achieving this,
depending on who introduces concurrency:

• Both the microprotocol programmer and the composer
might introduce concurrency in an ad-hoc manner.
This is possible in all frameworks that follow the multi-
threaded model.

• The default composition might introduce concurrency.
Neko uses this solution.

• The runtime system may use a different thread for ex-
ecuting each handler. Cactus/cp uses this solution.

6.3. Non-overlapping handler executions.

The third possible solution is to disallow overlapping
handler execution, by requiring that a handler h finishes be-
fore the handling of any event sent by h. If overlapping han-
dler executions are not allowed, the consistency problem de-
scribed above cannot occur: the execution of handlers h1

and h3 in Fig. 1 will never overlap.
We next present two possible implementations of non-

overlapping execution.

Scheduler with an event queue. Non-overlapping execution
of handlers can be implemented by putting sent events into
a queue, and handling the events in this queue only after the
sending handler finishes. Appia and Cactus/µp/C use this
implementation. The advantage of this implementation is
that it is implemented in the runtime system; microproto-
col programmers do not have to worry about ensuring non-
overlapping executions.

Conventions for writing handlers. Non-overlapping execu-
tion of handlers can also be implemented by convention.
Sending an event triggers handling the event immediately:
the method implementing the handler is called directly from
the sending handler. Normally, this would result in overlap-
ping handler executions. This can be avoided if micropro-
tocol programmers follow rules that ensure that the result-
ing execution is equivalent to a non-overlapping execution.
Fortika microprotocols and most of the Neko microproto-
cols follow such rules.

We now present two examples of such rules. The first
rule requires that sending events be the last actions of a han-
dler: if events are generated before the end of the handler,
they must be stored in local variables and sent at the end
of the handler. The second rule states that handlers copy all
the data necessary for their execution into local variables
before any events are sent. If this rule is followed, the exe-
cution of a handler is not affected if any of the sent events
causes the execution of a handler of the same microproto-
col.

The example in Fig. 1 clearly does not follow either of
these rules. To make the microprotocols follow the rules,
one needs to move send(ev2) in h1 to the end of the han-
dler.

6.4. Discussion

Introducing concurrency vs. non-overlapping handler exe-
cutions. Of the two classes of solutions, non-overlapping
executions and introducing concurrency, we argue that non-
overlapping executions are preferable.

One reason is that we would like to provide reactive is-
lands of microprotocols, and such islands are executed by
a single thread at any time (see the extensive discussion of
advantages and possible implementations in Section 5). The
solution that introduces concurrency would limit the size of
reactive islands, whereas non-overlapping executions do not
have such an effect.

The other reason is performance: introducing concur-
rency is costly, as it involves launching and synchronizing
threads. In contrast, non-overlapping executions do not re-
quire the use of multiple threads. Moreover, when introduc-
ing concurrency, the number of threads and/or the memory
used for buffering events that wait for a handling thread be-
comes difficult to control.

Nevertheless, non-overlapping executions have a small
impact on performance. They require that the execution
of handlers or parts of handlers is delayed, as handling
some events may only start once the sender handler fin-
ishes. However, the majority of handlers (those in reactive
islands of microprotocols) will execute quickly in any case,
and thus this delay will not be significant.3
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Conventions for writing microprotocols vs. scheduler with
an event queue. We next contrast the two implementa-
tions of non-overlapping handler executions: conventions
for writing microprotocols, and the scheduler with an event
queue.

Conventions for writing microprotocols restrict mi-
croprotocol programmers. However, the advantage is that
a single Java method call (or C function call) imple-
ments sending and handling an event. This yields good per-
formance, as synchronous calls are the primary means of
interaction between different parts of the code in all pop-
ular programming languages and are thus significantly
faster than any other communication mechanism. More-
over, method/function calls allow the compiler to check
the types of the data transmitted in an event, whereas other
communication mechanisms are not as type-safe.

To summarize, conventions for writing microproto-
cols offer better performance and type-safety, but they
are slightly inconvenient for microprotocol program-
mers. Our conclusion is that none of the implementation
is conclusively better than the other, and thus we con-
sider that either implementation yields good microprotocol
frameworks.

7. Ordering events

A microprotocol’s effect on other microprotocols and
the environment is not just determined by the set of out-
going events that the microprotocol sends. Often, the order
in which the outgoing events are sent is important as well.
An everyday example is requiring first-in-first-out (FIFO)
guarantees from a communication channel, such as a TCP
connection. Implementing protocols such as HTTP on top
of TCP is much easier than it would be to implement it
on top of a reliable datagram service without FIFO guaran-
tees. Note that providing FIFO guarantees between the two
communicating processes is not enough. FIFO ordering is
needed within each process, between the code that imple-
ments HTTP and the code that implements TCP, as well.

3 Note also that the designers of Java were confronted to an analo-
gous problem, and they also chose the solution that corresponds to
non-overlapping executions. Consider a thread t1 that calls the notify
method on an object o, in order to wake up another thread t2, blocked
in a call to the wait method on o. Both the call to notify and the call
to wait are in a synchronized block (synchronized on o). The analogy
is the following. Both synchronized blocks in Java and handlers in our
problem are blocks of code. The call to notify corresponds to send-
ing an event in our problem, as both triggers the asynchronous execu-
tion of another block of code. The exact execution of blocks of code is
out of the control of the programmers of the blocks of code, because
it involves other blocks of code, people composing blocks of code,
and the non-deterministic Java scheduler. For these reasons, the solu-
tion is also analogous: according to the Java specification, t2 may re-
sume executing only after t1 has finished executing the synchronized
block surrounding the call to notify.

Systems message passing
distributed systems

microprotocol
frameworks

Comm. entities processes microprotocols
Unit of comm. messages events
Start of comm. sending sending
End of comm. receiving start of handling
Comm. steps events actions

Table 3. Conceptual mapping between com-
munication in message passing distributed
systems and microprotocol frameworks.

A variety of ordering guarantees have been introduced
in the field of message passing distributed systems, starting
with early papers [8]. Events are an asynchronous form of
communication, just like messages in distributed systems,
and microprotocols communicate by events and may be ex-
ecuted in parallel, by different threads; they are like pro-
cesses in distributed systems that communicate by messages
and execute in parallel. The two kinds of systems are con-
trasted in Table 3. For this reason, some of the ordering
guarantees for distributed systems might be useful in mi-
croprotocol frameworks. This section investigates ordering
guarantees and the feasibility of providing them in micro-
protocol frameworks.

7.1. Feasibility of ordering

A kind of ordering, already mentioned, is FIFO order. In-
formally, FIFO order means the following: if two events are
sent from the same microprotocol to the same handling mi-
croprotocol, then the order of handling is the order of send-
ing. We also consider extensions of FIFO order, such as
causal order, well-known in distributed systems [2, 8], as
well as an extension to causal order.

These kinds of ordering are motivated, defined and dis-
cussed later, in Section 7.2. We first investigate how mi-
croprotocol frameworks should support ordering events.
Knowing only about FIFO order suffices for understanding
this discussion.

Ordering events between all microprotocols. We argue that
the framework should not guarantee order between events
in the general case, if active microprotocols are involved.
The reason is that the framework must observe the order
of actions of microprotocols, i.e., the order in which micro-
protocols send and handle events, in order to provide order-
ing. Observing the order of these actions requires that the
threads involved are synchronized frequently. However, a
major motivation for using active microprotocols is to fully
exploit multiprocessor systems, and this is only achieved if
threads are synchronized infrequently. In other words, or-
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dering events if active microprotocols are involved defeats
the reason for using active microprotocols.

Note that ordering can be implemented in the general
case if the need arises: the microprotocol programmer can
implement ordering within microprotocols, or the composer
can add microprotocols to the composition that help order-
ing events. We have only argued against the framework or-
dering all events. Microprotocols can implement ordering
by using algorithms from distributed systems. For exam-
ple, microprotocols can keep FIFO order by using sequence
numbers in events, and handling incoming events in the or-
der of their sequence numbers. Keeping other kinds of or-
dering requires more complex algorithms; e.g., see [2] for
an algorithm that provides causal order.

Ordering events within a reactive island of microprotocols.
We argue that the framework should offer a limited support
for keeping order: events within a reactive island of micro-
protocols should be subject to ordering.

The reason is that keeping even the most complicated
kind of ordering (discussed and motivated in Section 7.2)
is cheap in this context: no thread synchronization is in-
volved, as all events sent or handled in a reactive island are
processed by a single thread at any time. We present algo-
rithms for ordering within reactive islands in Section 7.3.

7.2. Definitions of ordering

In this section, we review the kinds of ordering we con-
sider, provide formal definitions, and present related re-
search results, also from other contexts.

We introduce the following notation: send(e) denotes
the action of sending some event e, handle(e) the action
of starting the handling of event e, and handler(e) the mi-
croprotocol that handles e.

We also introduce precedence relations on actions. Ac-
tions are either the sending or the handling of an event. The
first precedence relation orders actions that take place on
the same microprotocol.

Definition 1 (Local precedence) Consider two actions A
and B that take place on the same microprotocol. A lo-
cally precedes B (A →l B) if (1) A and B are executed
by the same thread and A is executed first, or (2) A and B
are ordered by a synchronization primitive of the program-
ming language and A is executed first. Local precedence is
the transitive closure of these relations.

For example, A and B are ordered by a synchronization
primitive of the programming language if A and B are part
of synchronized blocks of a Java program that synchronizes
on the same object, even if they are executed by different
threads. Note that not all actions of a microprotocol are or-
dered by local precedence. For example, actions executed

by different threads on a microprotocol that does not use
synchronization facilities are not ordered.

The following order is defined in terms of local prece-
dence:

Definition 2 (FIFO order) Let e and e′ be two events such
that handler(e) = handler(e′). If send(e) →l send(e′)
then handle(e) →l handle(e′).

Informally, FIFO order means the following: if two
events are sent by the same microprotocol to the same mi-
croprotocol, then the order of handling is the order of
sending.

Other kinds of ordering involve a different kind of prece-
dence.

Definition 3 (Causal precedence) Consider two actions A
and B. A causally precedes B (A → B) if A = send(e)
and B = handle(e) for the same event e. Causal prece-
dence is the transitive closure of this relation and local
precedence.

Causal precedence is used to define the following order:

Definition 4 (Causal order) Let e and e′ be two
events such that handler(e) = handler(e′). If
send(e) → send(e′) then handle(e) →l handle(e′).

Causal order is a generalization of FIFO order. FIFO or-
der concerns sending events from a single microprotocol;
in contrast, causal order concerns sending events from a
computation that spans causally ordered actions on multi-
ple microprotocols. It ensures that if events are sent by such
a computation, then the order of sending is the order of han-
dling.

We now propose a different extension to FIFO order.
This extension reflects that communication may involve
multiple events. In contrast, causal order reflects that com-
putations may involve multiple microprotocols. The exten-
sion implies causal order, not just FIFO order.

Definition 5 (Extended causal order) Let es, e′
s, eh

and e′
h be events such that send(es) → handle(eh),

send(e′
s) → handle(e′

h), send(e′
s) 6→ handle(eh), and

handler(eh) = handler(e′
h). If send(es) →l send(e′

s)
then handle(eh) →l handle(e′

h).

Causal order involves sending events, and handling the
same events. In contrast, extended causal order involves
the sending of events that causally precede the handling of
some other events.

Example to illustrate extended causal order. We next
present an example that highlights why extended causal or-
der is useful in microprotocol frameworks.

Consider the two microprotocols illustrated in Fig. 2(a).
The application microprotocol sends a message with both
image data and text. The order is important: the image is
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sent before the text, hence a FIFO communication channel,
implemented by the other microprotocol, is used. The com-
munication between the two microprotocols must be FIFO.

Now consider a variant of this scenario, shown in
Fig. 2(b). Again, the application microprotocol sends the
image event before the text event. The difference is that
the image data is now compressed by a third micropro-
tocol. In this variant, one needs causal order. With FIFO
order, it is possible that the communication channel han-
dles the compressed image after the text. If this happens,
the message would be garbled.

Finally, consider another variant of the scenario, shown
in Fig. 2(c). The difference is that the text is compressed by
a fourth microprotocol (the third microprotocol cannot be
reused, as image data and text are usually compressed with
different algorithms). In this variant, FIFO and causal order
cannot guarantee that the communication channel handles
the compressed image first and the compressed text second.
One needs extended causal order to avoid garbled messages.

Application

Channel

im
ag

e text

(a) no compression

Application

Channel

im
ag

e

text(jpeg) image
compress

com
pr.

im
age

(b) image compressed

Application

Channel

im
ag

e

text

(zlib) text
compress

co
m

pr
.

te
xt

(jpeg) image
compress

com
pr.

im
age

(c) both image and text
compressed

Figure 2. Example to illustrate FIFO, causal
and extended causal order.

Related work. Causal precedence corresponds to Lamport’s
precedence relation in message passing distributed sys-
tems [8]. The difference is that in [8], all events on a pro-
cess are ordered, whereas our local precedence is a partial
order.

Local and causal precedence are similar to relations
introduced in the context of distributed object environ-
ments [4]. The main difference is that our model is sim-
pler: besides asynchronous communication, [4] considers
synchronous communication and read/write operations on
shared variables, as well.

Our definition for causal order is analogous to causal
order in message passing distributed systems [2] and dis-
tributed object environments [4].

[18] defines extended causal order. Our definition is a
greatly simplified version of that definition.

Real-time order. Besides the order of events, the time of
sending and handling events may also be important, e.g.,
for real-time applications. We do not expect that the major-
ity of applications of a protocol framework would be real-
time, hence we do not think that the cost of automatic times-
tamping can be justified. Moreover, timestamping is a rela-
tively expensive operation, as it often involves a system call.

Nevertheless, if microprotocols need timestamps they
can be provided easily. Either microprotocols can explic-
itly put a timestamp into the events they send, or the com-
poser can add timestamping microprotocols to the compo-
sition.4

7.3. Implementations of ordering

The conclusion of Section 7.1 was that microprotocol
frameworks should offer ordering within reactive islands of
microprotocols, and Section 7.2 defined useful kinds of or-
dering. This section discusses how the most general kind
of ordering, extended causal order, could be implemented,
and how (and whether) it is implemented in existing frame-
works.

In Section 6.3, we presented two scheduler implemen-
tations: one with direct method calls and another with
event queues. The implementation with direct method
calls keeps extended causal order. The implementa-
tion with event queues also keeps extended causal or-
der if all newly sent events are inserted at the front of the
event queue in the order in which they were sent.

All frameworks but Appia and Cactus/µp/C use a sched-
uler with method calls and thus keep extended causal order,
in executions that involve a single thread.

Cactus/µp/C uses event queues. Recall that Cactus has
one kind of send operation that has the event handled in
the sending thread, and other kinds that have the event
handled in a different thread. If all send operations are of
the first kind (i.e., the execution involves a single thread),
Cactus/µp/C provides extended causal order. Otherwise, it
provides only casual order. The reason is that newly sent
events are inserted at the end (rather than the front) of the
event queue. No guarantees are provided beyond the bound-
ary of the higher-level microprotocol, though.

Appia, the other framework that sends event queues,
does not keep causal order or extended causal order
within reactive islands.5 We next explain how their sched-
uler works. Appia organizes microprotocols in stacks, and

4 Real-time scheduling of handler executions, if needed, is a more com-
plex problem.

5 To be more precise: Appia uses one reactive island that includes all
microprotocols.
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events are associated with a direction: up or down, de-
pending on the position of the handler microprotocol in
the stack with respect to the position of the sender mi-
croprotocol. When an event going up is handled, events
sent by the handler are placed at the front of the event
queue if they go up, and at the end of the event queue
if they go down. This breaks causal order for the sce-
nario shown in Fig. 2(b) if the scenario is triggered by an
event going down (not shown in the figure), and the im-
age compress microprotocol is on the top, the application
microprotocol in the middle and the channel microproto-
col on the bottom.

It is unclear why the Appia team made this design de-
cision, and changing Appia so that it keeps causal and ex-
tended causal order would be rather easy. The same goes
for Cactus/µp/C keeping extended causal order. In any case,
the example of Appia and Cactus/µp/C illustrates that the
idea that frameworks should provide extended causal order
is non-trivial.

8. Conclusion

In this paper, we focused on microprotocol frameworks,
frameworks that are specialized for implementing protocols
and more complex distributed applications. Multi-threading
is often useful in this context. We investigated what support
for multi-threaded programming such frameworks provided
and should provide for programmers.

Along with a survey and detailed discussions of the fea-
tures of existing frameworks, we proposed a set of features
that can be offered without significant changes in programs,
and that have a negligible performance hit. This includes the
following: (1) islands of microprotocols with reactive be-
havior that can coexist with active microprotocols, thus tak-
ing the best of two worlds; (2) non-overlapping execution
of microprotocols involved in a chain of events, to avoid
inconsistencies; and (3) providing ordering guarantees for
events sent among microprotocols, including first-in-first-
out (FIFO), causal order, and extended causal order. To the
best of our knowledge, our definition of extended causal or-
der is the simplest so far.

A preliminary implementation of these ideas has been
carried out in the Neko microprotocol framework [16], with
promising results.
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