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Abstract 

This paper considers a system of asynchronous autonomous mobile robots that can move freely in a two­
dimensional plane with no agreement on a common coordinate system. Startingfrom any initial configuration, the 
robots are required to eventually gather at a single point, notfixed in advance (gathering problem). 

Prior work has shown that gathering oblivious (i.e., stateless) robots cannot be achieved deterministically 
without additional assumptions. In particular, if robots can detect multiplicity (i.e., count robots that share the 
same location) gathering is possible for three or more robots. Similarly, gathering of any number of robots is 
possible if the robots share a common direction, as given by compasses, with no errors. 

Our work is motivated by the pragmatic standpoint that (1) compasses are error-prone devices in reality, and 
(2) multiplicity detection, while being easy to achieve, allow gathering for situations with more than two robots. 
Consequently, this paper focusses on gathering two asynchronous robots equipped with inaccurate compasses. 
In particular, we provide a self-stabilizing algorithm to gathel; in a finite number ofsteps, two oblivious robots 
equipped with compasses that can differ by as much as 7r / 4. 

Keywords: Mobile cooperative computing, distributed algorithms, autonomous robots, gathering, inaccurate 
compasses, oblivious computations, self-stabilization. 

mailto:mak@csce.kyushu-u
mailto:defago}@jaist.ac


1 

Win 

NB (Relative 

north ofB)
A. Ii' ~:;:~t~A) NA 

Lose 

(a) Robot A and B share an accurate compass, (b) Robot A and B are equipped with inaccurate compasses, i.e. 
i.e. a global north. Thus, we can compare North of A is different of north of B (NA =1= NB). 
them in a consistent manner. 

Figure 1. Difficulty of gathering two robots with inaccurate compasses. 

Introduction 

Background. The problem of reaching agreement among autonomous robots has attracted considerable at­
tention within the last few years. One problem of particular interest is the gathering problem, where robots are 
required to meet at a single, not predetermined location, with no agreement on a common coordinate system. This 
problem has been studied extensively in the literature, under different models and various assumptions [3,4,9, 15]. 
In fact, several factors render this problem difficult to solve. In particular, in all these studies, the problem has 
been solved only by making some additional assumptions regarding robots' capabilities. 

In this paper, we focus on solving the gathering problem in asynchronous models. In their asynchronous model 
CORDA [11], Prencipe [12] has shown that there exists no deterministic algorithm to solve the gathering problem 
in finite time with oblivious robots. Cieliebak et a1. [4] have introduced multiplicity and have shown that gathering 
is possible for three or more robots when they are able to detect multiple robots at a single point. 

Afterward, Flocchini et a1. [9] have solved the gathering for any number of robots when they share a common 
direction as provided by a compass. However, their result hold apply when compasses are perfectly consistent 
(i.e., with no errors). However, in practice, sensors are error-prone and sensitive to magnetic interferences. Conse­
quently, in this paper, we concentrate on the gathering of two asynchronous mobile robots when their compasses 
are subject to errors. 

This work is motivated by the fact that: (1) in practice, compasses are sensors that are sensitive to errors. For 
example, for low-cost sensors, accuracy of typical sensors may vary from 1 to more than 10 degrees, depending 
on sensor quality (cost) and environment conditions. (2) with multiplicity detection, the gathering is solvable only 
for more tl1an two robots. Therefore, our aim is to fill this gap, and to provide effective answers to the following 
two questions. First, is it possible to gather two asynchronous mobile robots when their compasses are inaccurate 
by some unknown angle? Second, what is the bound of that angle? 

In particular, we address the problem when robots are oblivious (or memoryless), meaning that, they can not 
remember their previous states, their previous actions or the previous positions of the other robots. While this is 
somewhat over-restrictive assumption, developing algorithms in this model is interesting because any algorithm 
that works correctly for oblivious robots is intrinsically self-stabilizing, 1 i.e., it withstands transient failures. We 
thus, provide an algorithm that gatl1ers, in a finite number of steps, two asynchronous oblivious mobile robots 
equipped with compasses that can differ by as much as 7f / 4. 

I Self-stabilization is the property ofa system which, starting in an arbitrary state, always converges toward a desired behavior [7,13]. 
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In the asynchronous model CORDA, where robots are equipped with inaccurate compasses, it is difficult to 
gather two robots or compare them in a consistent manner. This is mainly due to the issue ofbreaking the symmetry 
between these robots. Let us illustrate this point using a simple example. Assume that there exists a naive algorithm 
for comparing two asynchronous robots A and B in a consistent manner when their compasses are inaccurate. 
First, consider that A and B are equipped with accurate compasses and place them at the two endpoints of a 
horizontal diameter of a unit circle. Then, a naive algorithm can be based on the comparison of the angles that 
A and B form respectively with some global North N (i.e., they share the same north) and the segment AB in 
clockwise direction. For instance, the robot with an angle less than or equal to 1r/2 wins, otherwise loses. Then, 
a robot, say A wins. Then, we rotate the diameter to exchange the positions of A and B. Now B wins. We thus, 
color the perimeter of the circle by Win and Lose, where at any point which is colored Win or Lose, A wins or 
loses (refer to Figure lea)). Then, there is a point p that is a boundary between a Win and a Lose segment. By 
introducing error to their compasses, at p, we can derive a contradiction. That is, we can not decide which robot 
wins, and which one loses (see Figure l(b)). 2. 

Contribution. The main contribution of this paper is to study the solvability of the gathering of two asyn­
chronous oblivious mobile robots in the face of compass inaccuracies. In particular, we show that with inaccurate 
compasses, we can gather two asynchronous oblivious mobile robots in a finite number of steps. This result holds 
for an angle inaccuracy of at most 1r/ 4 of their compasses. 

Related work. In their SYm model [15], referred to a semi-synchronous model, Suzuki and Yamashita pro­
posed an algorithm to solve the gathering problem deterministically in the case where robots have unlimited 
visibility. For a system with two robots, they have proven that it is impossible to achieve the gathering of two 
oblivious mobile robots that have no common orientation under their semi-synchronous model, in a finite time. 
The difficulty of the problem is inherent in breaking the symmetry between the two robots. 

Using the same model, Ando et al. [2] proposed an algorithm to address the gathering problem in systems 
wherein robots have limited visibility. Their algorithm converges toward a solution to the problem, but it does not 
solve it deterministically. 

Cielibak et al. [4] proposed in the asynchronous model CORDA [11] a deterministic algorithm that gathers 
the robots at a point, in systems where they have unlimited visibility. Among other things, in order to solve this 
problem, robots must have the ability to detect a multiplicity of robots at a single point. 

Later on, Flocchini et al. [9] proposed an algorithm for solving the gathering problem in finite tinIe, in the 
oblivious and limited visibility settings. However, the proposed algorithm requires robots to share a compass that 
provides perfectly accurate information on direction. 

The gathering problem also has been studied in the presence of faulty robots by Agmon and Peleg [1] in 
synchronous and asynchronous settings. In particular, they proposed an algorithm that tolerates one crash-faulty 
robot in a system of three or more robots. They also showed that in an asynchronous environment, it is impossible 
to perform a successful gathering in a 3-robot system with one Byzantine3 failure. Later on, Defago et al [6] 
strengthen the impossibility ofgathering in systems with Byzantine robots, by showing that it still holds in stronger 
models. They also show the existence of randomized solutions for systems with Byzantine-prone robots. 

In some of our recent work [14], we introduced the notion of unreliable compasses for robots, and we studied 
the solvability of the gathering problem in the face of compass instabilities. In particular, we proposed a gather­
ing algorithm that solves the problem in the semi-synchronous model SYm, with compasses that are eventually 
stabilizing. 

2The argument is similar to the bi-valent argument in the impossibility result of the consensus problem [8]
 
3A robot is said to be Byzantine if it executes arbitrary steps that are not in accordance with its local algorithm [16].
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Recently, Cohen and Peleg [5] addressed the issue of analyzing the effect of errors in solving the gathering and 
convergence problem. In particular, they studied imperfections in robot measurements, calculations and move­
ments. They showed that gathering cannot be guaranteed in environments with errors, and illustrated how certain 
existing geometric algorithms, including ones designed for fault-tolerance, fail to guarantee even convergence in 
the presence of small errors. One of their main positive results is an algorithm for convergence under bounded 
measurement, movement and calculation errors. However, their algorithm is based on error measurement in gen­
eral, and does not consider errors of the compasses. 

Structure. The remainder of this paper is organized as follows. In Section 2, we describe the system model 
and the basic terminology. Section 3 describes the algorithm to gather two.asynchronous oblivious mobile robots 
under compasses inaccuracies, and Section 4 proves its correctness. Finally, Section 5 concludes the paper. 

2 System model and definitions 

2.1 System model 

In this paper, we consider the CORDA model [10, 11] of Prencipe, which is defined as follows. The system 
consists of a set of autonomous mobile robots R = {rt, ... ,rn} that are modelled as units having computational 
capabilities, and are able to move freely in the two-dimensional plane. In addition, robots are equipped with 
sensorial capabilities to observe the positions of other robots, and form a local view of the world. The robots are 
modelled and viewed as points in the Euclidean plane.4 The local view of each robot includes a unit of length, an 
origin and the directions and orientations of the two x and y coordinate axes as given by a compass. 

The robots are completely autonomous. Moreover, they are anonymous, in the sense that they are a priori 
indistinguishable by their appearances, and they do not have any kind of identifiers that can be used during their 
computation. Furthermore, there is no direct means of communication among them. 

We further assume that the robots are oblivious, meaning that they don't remember any previous observations 
nor computations performed in the previous steps. 

The cycle of a robot consists of four states: Wait-Look-Compute-Move. 

•	 Wait. In this state, robot is idle. A robot cannot stay permanently idle (see Assumption 2) below. At the 
beginning all the robots are in Wait state. 

•	 Look. Here, a robot observes the world by activating its sensors, which will return a snapshot of the positions 
of all other robots with respect to its local coordinate system. Since each robot is viewed as a point, the 
positions in the plane are just the set of robots' coordinate. 

•	 Compute. In this state, a robot performs a local computation according to its deterministic, oblivious algo­
rithm. The algorithm is the same for all robots, and the result of the compute state is a destination point. 

•	 Move. The robot moves toward its computed destination. If the destination is its current location, then the 
robot is said to perform a null movement; otherwise, it is said to execute a real movement. The robot moves 
toward the computed destination, but the distance it moves is unmeasured; neither infinite, nor infinites­
imally small (see Assumption 1). Hence, the robot can only go towards its goal, but the move can end 
anywhere before the destination. 

4We assume that there are no obstacles that can obstruct vision. Moreover, robots do not obstruct the view of other robots and can "see 
through" other robots. 

4 



The (global) time that passes between two successive states of the same robot is finite, but unpredictable. In 
addition, no time assumption within a state is made. This implies that the time that passes after the robot starts 
observing the positions of all others and before it starts moving is arbitrary, but finite. That is, the actual movement 
of a robot may be based on a situation that was observed arbitrarily far in the past, and therefore it may be totally 
different from the current situation. 

In the model, there are two limiting assumptions related to the cycle of a robot. 

Assumption 1 It is assumed that the distance travelled by a robot r in a move is not infinite. Furthermore, it 
is not infinitesimally small: there exists a constant 6r > 0, such that, if the target point is closer than 6r , r will 
reach it; otherwise, r will move towards it by at least 6r . 

Assumption 2 The time required by a robot r to complete a cycle (wait-look-compute-move) is not infinite. 
Furthermore, it is not infinitesimally small; there exists a constant Er > 0, such that the cycle will require at least 
Er time. 

2.2 Definitions 

----t 
Definition 1 (Absolute north) An absolute north N is a vector that indicates a fixed north direction. The 

absolute north is collocated with an absolute y positive axis. 

It is important to stress that the absolute north is not known to the robots, and is used only for the sake of 
explanation. 

Definition 2 (Compass) A compass is a function of robots and time. The function outputs a relative north 
--t 

direction N r (t) for some robot r at time t. 

Definition 3 ('y*-Inaccurate compasses) Compasses are ')'* -Inaccurate iff, for every robot r, the absolute dif 
----t ----t --t 

ference between the compass ofrand N is at most ')'*. That is, Vr E n, Vt, ILNN r (t) I ::; ')'*. 

In other words, a pair of ')'* -Inaccurate compasses can differ by as much as 2')'*. The special case when ')'* = 0 
represents perfect compasses. 

2.3 Notations 

Given some robot r, r(t) is the position of r at a time t. Let A and B be two points, with AB, we will indicate 
the segment starting at A and terminating at B, and IIABII is the length of such a segment. Given three distinct 

points A, B, and C, we denote by L(A, B, C), the triangle having them as comers, and by BAG, the angle 
formed by A, Band C, and centered at A. Finally, given a region X(t) at time t, we denote by IX(t) I, the number 
of robots in that region at time t. The parameter t is omitted whenever clear from the context. 

3 Gathering with Inaccurate compasses 

The basic intuition behind the algorithm is to forbid symmetric configurations of two robots. More precisely, 
with a perfect compass, it is easy to break the symmetry between two robots by making one move and the other 
stay still. However, by introducing errors in their compasses, it is difficult to break the symmetry between the two, 
as they can be in a situation where both of them can move or both stay still. To do so, a robot needs to partition 
the plane into three different zones, so as two similar zones for two different robots should not overlap, and then 
it decides its movement. The partition of the plane, and the movements are designed so as to avoid deadlock 
situations and infinite executions by the robots due to compasses's inaccuracies. 

Before we describe the algorithm in more details, we first explain how robots divide the plane. 
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Figure 2. The four sectors North/South/East! West for robot r. 

3.1 Partitions 

Let us first assume that there exits a constant "/ ;::: 0, that represents the maximum angle inaccuracy between 
----7 ----t 

the relative north N r of some robot r, and the absolute north N. 
In order to avoid symmetric configurations between robots r and r' due to their compasses inaccuracies, a robot 

needs to partition the plane into four sectors or zones that do not overlap; we call them North, South, East and 
West sectors. Let CY.N, CY.S, CY.E and CY.w be the angular measurement of these sectors, respectively. Then, the 
following conditions must be satisfied: 

CY.N ~ 7r - 2,* (1) 

CY.s ~ 7r - 2,* (2) 

CY.E ~ 7r - 2,* (3) 

CY.w ~ 7r - 2,* (4) 

The above conditions are essential in order to avoid that both robots see each other on the same sector, for 
instance the North/North or South/South, or East/East or West/ West due to compasses inconsistencies. 
From Equation 2 and Equation 3, we derive the condition on the East sector: 

CY.E ;::: 4,* (5) 

We further set the following conditions on the sectors. These conditions will help to avoid the occurrence of 
infinite executions, i.e., having robots looping on the same configuration. 

CY.E + CY.s ~ 7r (6) 

CY.N + CY.w ~ 7r (7) 

By summation of Equation 2 and Equation 6, we get: 

CY.N + CY.E + CY.S ~ 27r - 2,* then, 

CY.N + CY.E + CY.s + CY.w ~ 27r - 2,* + CY.w 

27r ~ 27r - 2,* + CY.w 

2,* ~ CY.w 
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Table 1. Different configurations and movements of robot rand r' (r* = n /8). 

Robot r/Robot r' North 
(no movement) 

South 
(direct move) 

East 
(side move up) 

West 
(side move down) 

North 
(no movement) 

no 0 0 0 

South 
(direct move) 

0 no 0 no 

East 
(side move up) 

0 0 no 0 

West 
(side move down) 

0 no 0 no 

We take the minimum value of ow. That is: ow = 2,*. 
From Equation 6, and Equation 5, we obtain: as :::; 4,*. We choose, aE = as = 4,* = n /2. This means that 

,* = n /8. Then, aw = 2,* = n / 4. Also, from Equation 2, and the fact that the sum of the four sectors is equal 
to 2n, we get, aN = n - 2,* = 3n/4. 

We have derived the condition that,* :::; n /8. Thus, in the remainder of the paper, we consider the largest 
inaccuracy, and take,* = n/8. 

Now, we will describe how robots divide the plane, and the features ofeach sector. Depending on the orientation 
---+ 

of its East, E r , robot r divides the plane into four sectors namely, the North, South, East and West sectors (refer 
to Figure 2). 

By AN(r), As(r), AE(r) and Aw(r), we denote respectively, the rays delimiting the North, South, East and 
West sectors for robot r, as depicted in Figure 2. Each sector is described as follows: 

---+ 
•	 East(r) sector: it is centered at r, has the East direction E r as its bisector, and its angular sector aE is equal 

to 4,* which is n /2. Note that East(r) is delimited by AN(r) and AE(r). However, it is important to point 
out that only AE(r) is a part of East(r). 

•	 South(r) sector: it is adjacent to East(r) in clockwise direction, and its angular sector as is equal to aE, 
which is equal to 4,* (i.e., n/2). Note that South(r) is delimited by AE(r) and As(r). However, it is 
important to mention that only As (r) is included in South (r). 

•	 West(r) sector: it is adjacent to South(r) in clockwise direction and its angular sector aw is equal to 2,* 
that is n/4. Note that West(r) is delimited by Aw(r) and AN(r). However, it is important to stress that 
only Aw(r) is part of West(r) sector. 

•	 North(r) sector: it is the remaining sector, and its angular sector aN is equal to 6,*, that is 3n/ 4. Note that 
North(r) is delimited by AN(r) and Aw(r). However, it is important to stress that only AN(r) is included 
in North(r) sector. 

In the following, we will describe the possible configurations of the two robots, given the above partitions. 

3.2 Valid configurations 

Under our algorithm, a valid configuration is a configuration that does not cause deadlock situations or infinite 
executions of the algorithm by the robots. We consider two robots r and r' that are equipped with compasses that 
can diverge by as much as 2,* that is n / 4. Let rand r' divide the plane as described in Section 3.1. Then, rand 
r' can only be in one of the following valid configurations or their symmetric ones: 
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1.	 Configuration North/ South: r/ E South(r) (i.e., robot r sees r/ on its South sector) and r E North(r'), 
or VIce versa. 

2.	 Configuration North/East: r/ E East(r) and r E North(r'), or vice versa. 

3. Configuration North/ West: r/ E West(r) and r E North(r'), or vice versa. 

4.	 Configuration East/ West: r/ E West(r) and r E East(r'), or vice versa. 

5.	 Configuration East/South: r/ E South(r) and r E East(r'), or vice versa. 

Based on the partitions described in Section 3.1, Table 1 summarizes the possible and incompatible configura­
tions when robots's compasses are inaccurate by "/ = n /8. 

By design, the partitions prevent the occurrence of some undesirable configurations, such as North / North, that 
could lead to deadlock situations (see Section 3.3). 5 

Algorithm 1 Gathering two robots with n/8-Inaccurate compasses 

Algorithm: 
---+ 

1:	 N r = compassr(t).queryO; 
2:	 Robot l' divides the plane into three sectors: North, South and East. (see Section 3.1); 
3:	 8:= the set of robots visible to l' at time t; 
4:	 if (181 = 1) then {Gathering terminated} 
5: Do_nothingO; 
6:	 else 
7: 1" := {r E 8} 
8: if (I South(1') I > 0) then	 {Other robot is to the South: Direct move} 
9: Move(r'); 

10: else if (I East (1') I > 0) then	 {Other robot is to the East: Side move up} 
II: iii E (1') := the parallel axis to AE (1') passing through 1"; 

12: H := AN(r) n lIt E(r) (see Figure 3(a)); 
13: Goal := first point on AN (1') above H; 
14: Move ( Goal); 
15: else if (I West (1')I > 0) then	 {Other robot is to the West: Side move down} 
16: IItw (1') := the parallel axis to Aw(1') passing through 1"; 

17: H' := As(r) n ili w (1') (see Figure 3(b)); 
18: Goal := first point on As (1') below H'; 
19: Move (Goal); 
20: else	 {Other robot is to the North: No movement.} 
21: Do_nothingO; 
22: end if 
23:	 end if 

3.3 Movements 

The algorithm is given in Algorithm 1, and Table 1 summarizes the different movements of robot r and r/ (the 
table is symmetrical). Let us consider the movement of robot r, first robot r creates the four sectors, and then it 
decides its movement based on which sector it locates robot r/ . 

•	 No movement (Algorithml:1ine 21): Ifr' E North(r), then r does not move. That is ifr sees r/ on its North 
sector, it remains stationary. 

SIt is important to mention that when ,* is equal to zero, that is when the compasses of l' and 1" are consistent or correct, the configu­
rations East / South and North/ West are impossible. 
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AN(r') 

~\'fJ"	 ~(J-) 

AE(r)AS(r)	 AS(r') 

~fJ"	 ~(I") 

(a) Side move up on AN(r): r' E East(r), then r per­ (b) Side move down on As(r): r' E West(r), then r 
forms a side move up to Goal. Goal is the first point on perfonns a side move down to Goal. Goal is the first point 
AN (r) that is above lJJ E ( r). on As(r) that is below lJJ w (r). 

Figure 3. Principle of the algorithm. 

• Direct move (Algorithml:line 8): Ifr' E South(r), then r moves directly on a a linear movement to r'. 

•	 Side move up (Algorithml:line 10): Ifr' E East(r), then r performs a side move up. The need for such a 
move is explained as follows:
 

Given the valid configurations described in Section 3.2, if r' E East(r), then r E South(r') or r E
 

North(r'), or r E West(r'). Since, robot r can not figure out in which configuration they are (also r'); i.e.,
 
EastlSouth or NorthlEast configuration for instance, then, if we let robot r make a direct move toward
 
r', then, if both robots are in the configuration EastlSouth, then, they will swap their positions endlessly.
 
Also, if we make robot r stay still, then, if both robots are in the configuration NorthI East, none of the
 
robots will ever move, and they will always remain in a deadlock situation. Therefore, the aim of this side
 
move up is to bring both robots eventually into the configuration North I South, where one robot can move,
 
and the other remains stationary, which can lead to the gathering by our algorithm.
 

A side move up is computed by robot r as follows: let H be the intersection of the two axes AN(r) and 
wE(r), with wE(r) is the parallel to AE(r) passing through robot r' (refer to Figure 3(a)). Then, the 
destination point Goal of robot r is the first point above H that belongs to AN (r ). 

•	 Side move down (Algorithml:line 15): Ifr' E West(r), then r performs aside move down. 

The aim of this move is similar to the side move up, and it is computed by robot r as follows: let H' be the 
intersection of the two axes As(r) and Ww(r), with ww(r) is the parallel to Aw(r) passing through robot 
r' (refer to Figure 3(b)). Then, the destination point Goal of robot r is the first point below H' that belongs 
to As(r). 

Correctness 

In this section, we will prove that our algorithm solves the problem of gathering two robots in a finite time 
assuming 7f18-lnaccurate compasses. We first state some lemmas to illustrate that some incompatible config­
urations are ruled out by the algorithm. Second, we show how any valid configuration under the algorithm is 
transfonned into the gathering in a finite time. Figure 4 summarizes the different possible configurations and their 
transformation to tlle gathering. 

9 



~ :possible 
transition.1ii 

·x·~ :impossible 
trausitions 

,, 
·························x·__ ····_··1 

Figure 4. Different configurations allowed by Algorithm 1 and their transformation to the gathering. 

Trivially, under the partitions described in Section 3.1 and by considering ,* = 7r/8, we derive the following 
two lemmas: 

Lemma 1 Under the partitions, and assuming 7r /8-Inaccurate compasses, the system can not be in the config­
uration North/North or East/East or South/South or West/ West at any time t. 

Lemma 2 Under the partitions, and assuming 7r / 8-Inaccurate compasses, the system can not be in the config­
uration West / South at any time t. 

From the above lemmas, we derive the following theorem: 

Theorem 1 By the algorithm, the possible configurations are North/ South, North/East, North/ West, East/ West 
and East/South, and their symmetric ones (i,e. South/North, East/North, West/North, West/East and 
South/ East). 

Lemma 3 Given a robot r, and its target point H, with r -=1= H, r reaches its target in afinite number ofsteps. 

PROOF. The proof derives from Assumption 1. In one cycle, r travels at least 61' > O. Besides, by Assumption 2, 
the cycle of a robot is finite. Thus, the number of steps required for robot r to reach its destination H is at most 

IlrHII/61' , which is finite. DLemma3 

Lemma 4 Given two robots rand r/ at some time to, where rand r/ are in the configuration North/East or 
East/ West or East/ South, with r/ E East(r) and either r E North(r') or r E West(r/) or r E South(r'). 
Then, the destination Goal computed by robot r (resultingfrom its side move up) belongs to North(r'). 

PROOF. 

We will make the prooffor the North/ East configuration only. For the East/ West and East/ South configu­
rations, they can be proved in a similar way. 

Assume that r/ E East(r) and r E North(r') at time to. Let H = WE(r) n AN(r) (refer to Figure 5). 
By Algorithm 1, Goal is the first point on AN(r) above H. We will prove that Goal E North(r'). 
First, observe that if ,* = 0, then AN(r) is parallel to AN(r/). Then, since r E North(r') by hypothesis. In 

addition, r E AN(r) and Goal E AN(r). Consequently, Goal E North(r'). 
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Figure 5. Transformation of North/ East configuration. 

Assume now that ,* i- 0, and AN(r) n AN(r') = M (see Figure 5). To show that Goal E North(r'), we will 
show that always Goal E .6(r, r', M). In other words, we need to show that always H E .6(r, r', M), and the 

distance IIHMil i- o. 
Consider the triangle .6(r, r', M). Let a, (3, and J-L denote the angles at r, r' and M that are within the triangle 

.6 (r, r' , M), respectively. 
First, if all the three angles n, /3, and J-L are acute. Then, obviously, the foot H of the perpendicular starting 

form r' is inside .6(r, r', M), and IIHMil i- O. Second, if the angle (3 at r' is obtuse, then again the foot H of 
the perpendicular starting form r' is inside .6(r, r', M), and IIHMil i- O. Now consider the angle a at r. By 
hypothesis nE is at most 7r/2. This means that a can not be an obtuse angle, and a is at most 7r/2. In this later 
case, we have the foot H of the perpendicular starting form r' is equal to r (in this case AE(r) passes by r'), and 
the triangle .6(r', r, M) is angular at r. Consequently, IlrM11 = IIHMil i- 0, and Goal E .6(r, r', M). 

Now, we will prove that the angle J-L at M can not be an obtuse angle (because if J-L is an obtuse angle, His 
outside .6(r, r', M)). 

Let K = AE(r) n Aw(r') and K, be the angle at K. We also denote by (3', the angle at r' formed by wE(r) 
and Aw(r'). Consider, the quadrilateral formed by r, H, r' and K. Then, we have: (1) K, + (3' = 7r, since the 
respective angle at rand H is equal to 7r/2. Consider now the quadrilateral formed by r, K, r' and 1\1. Then, we 
have: (2) K, + J-L = 37r/ 4, since the angle at r (aE) is equal to 7r/2, and the angle at r' (aN = 37r/ 4) by hypothesis. 

By subtraction of (1) from (2), we get: (3) (3' - J-L = 7r/4. By assumption, (3' < 37r/4 because wE(r) can 
not be equal to AN(r') (AN(r') can not be perpendicular to AN(r) by the partitions described in Section 3.1). 
Consequently, the angle J-L at M is less than 7r /2. Thus, J-L can not be an obtuse angle. As a result, in all cases, the 
foot H ofthe perpendicular starting from r' is inside the triangle .6(r, r', M), and IIHMil i- O. This proves that 
always Goal E .6 (r, r', M), and thus Goal E N orth(r'). This completes the proof. DLemma 4 

In tlle following, for each configuration, we will show to what configuration it leads in a finite time. That is, we 
show the possible transitions that each configuration can take in order to reach the gathering configuration. For 
the impossible transitions, they can be derived implicitly, thus, we don't prove them explicitly. 
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4.1 Transition of North/ South configuration to gathering 

Lemma 5 Let rand r/ be two robots that are in the configuration North/ South at some time to. Then, there is 
a time t > to when rand r/ gather at the same point. Moreover, rand r/ can not slide to any other configuration 
except the gathering. 

PROOF. 

The proof of this lemma is trivial. Let r/ E South (r) and r E North (r/) at time to. Assume that r/ performs a 
look operation at time t/ ;::: to. Then, r/ will stay still, since r E North(r'). Let r also perform a look operation 
at time t ;::: to. Then, by the algorithm, r will perform a direct move toward r/. Let til > t, be the time when 
r completes its move toward r/. By Lemma 3, r reaches r/ in a finite time. Also, between t and til, r/ is unable 
to move. Thus, at til, r = r/. Consequently, from the configuration North/South, rand r/ can only shift to the 
gathering configuration, which is done in a finite time. This completes the proof. DLemma 5 

4.2 Transition of North/ East configuration to gathering 

Lemma 6 Let rand r/ be two robots that are in the configuration North/East with r/ E East(r), and 
r E North(r') at some time to. Then, there is a finite time t in which this configuration is transformed into 
North/ South configuration with r/ E South(r). Moreover, rand r/ can not slide to any other configuration 
except the North/ South configuration. 

PROOF. 

The proof is a direct consequence from Lemma 4. Assume that r/ E East(r) and r E North(r') at some time 
to (refer to Figure 5). Let r perform a look operation at time t ;::: to, and let Goal be its destination. 

Let also t be the time when r reaches its destination Goal. By hypothesis, r E North(r') at time to. By 
Lemma 4, Goal E North(r'). This means that between to and t, r/ is unable to move because Vp E rH, 
p E North(r'). At t, r reaches its destination Goal, and AE(r) is above r/. Thus, at t, r/ E Souther). Conse­
quently, at t, r and r/ become in the configuration North/ South in a finite time, and the proof holds. DLemma 6 

From Lemma 5 and Lemma 6, we conclude that: 

Theorem 2 Any North/East configuration of two robots equipped with 7r/8-lnaccurate compasses is trans­
formed after afinite time to the gathering. 

4.3 Transition of East / West configuration to gathering 

Lemma 7 Given two robots rand r/ at some time to, where rand r/ are in the configuration East/ West, with 
r E West(r/) and r/ E East(r). Then, the destination Goal' computed by robot r/ (resulting from its side move 
down) belongs to East(r) or Souther). 

PROOF. The idea of this proofis as follows. There are two cases to consider. First, Aw(r') is parallel to AE(r). 
Then, AE(r) = \Ifw (r/). Since, the destination Goal' of r/ is the first point on As (r/) below Ww (r/). Then, Goal' 
is below AE(r). Consequently, in this case, Goal' E Souther). Second, Aw(r') is not parallel to AE(r). Then, 
\lfw(r/) is above AE(r). Thus, Goal' is between \lfw(r/) and AE(r). Consequently, Goal' E East(r) in this case. 

Assume that r E West(r/) and r/ E East(r) at some time to. Let H' = ww(r/) n As(r') (refer to Figure 6). 
We denote by 13, the angle at H' that is inside the triangle 6(r, r/, H'). 
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Figure 6. Transformation of East / West configuration. 

By Algorithm 1, Goal' is the first point on As(r') below H'. We will prove that Goal' E East(r) or Goal' E 

South(r). 

Let M = AE(r) n As(r'). Let also Q = Aw(r') n AN(r). We have, c;;;M = aw = n/4 by hypothesis. 

Then, (3 = 3n/4 because Aw(r') is parallel to ww(r'). We thus, derive that;:M;, + jVj;jj, = 3n/4. Thus, two 
cases follow: 

If;:M;, = O. Then, AE(r) = ww(r'). Since, the destination Goal' ofr' is the first point on As(r') below 
ww(r'). Then, Goal' is below AE(r). Consequently, in this case, Goal' E South(r). 

If;:M;, > 0, this means that Ww(r') is above AE(r). Then, Goal' is between Ww(r') and AE(r). Conse­
quently, Goal' E East (r). This completes the proof. 

DLemma 7 

Lemma 8 Let rand r' be two robots that are in the configuration East/ West with r' E East(r), and r E 
West(r') at some time to. Then, there is afinite time Ein which this configuration is transformed into North/ East 
or North/ South configuration. Moreover, rand r' can not enter any other configuration except the North/East 
or North/ South configuration. 

PROOF. 

Assume that r' E East(r) andr E West(r') at time to. 
By the algorithm, r will make a side move up, and r' will make a side move down. We distinguish the following 

cases depending on the movement of each robot, and where it ends its move: 

1. r moves/ r' does not move: 

Let r perfonn a look operation at time t ::::: to, and let Goal be its destination. Let also Ebe the time 
when r finishes its move. Assume that between to and E, r' does not perfonn any look operation. Let 
Q = Aw(r') n AN(r) and H = wE(r) n AN(r) (refer to Figure 6). Thus, three cases follow depending 
where r ends its move: 

• r stops at q E rQ, and q i= r. 
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At time t, r' E East(r) still, since r does not reach Goal. r' remains stationary by hypothesis. Thus, 
rand r' remain in the configuration East/West. By assumption, robot r can be activated infinitely 
often, and by Lemma 3, it can reach its target in a finite time, thus robot r can change the current 
configuration East/ West into a different configuration in a finite time. 

•	 rstopsatq E QH, andq i= Q. 

At time t, r' E East(r) still, since r did not reach Goal. However, at time t, r becomes above Aw(r'). 
Thus, at t, r E North(r'). Consequently, r and r' become in the configuration North/East with 
r E North(r') . 

•	 r stops at Goal (Goal is thefirst point above WE(r)). 

At t, we have r' E South(r) (since at t, r' becomes below AE(r)). In addition, by Lemma 4, 
Goal E North(r'). Then, at t, r E North(r'). Consequently, r and r' become in the configura­
tion North/ South in a finite time. 

2.	 r' moves/ r does not move: 

Let r' perform a look operation at time t' 2: to, and let Goal' be its destination. Let also P be the time 
when r' finishes its move. AsslUlle that between to and P, r does not perform any look operation. Let
 
H' = ww(r') n As(r') (refer to Figure 6).
 

Assume first that r' stops at Goal', then at time P, r is above Aw(r'), thus r E North(r'). In addition, at P,
 
by Lemma 7, r' E East(r) or r' E South(r) . Consequently, r and r'leave the configuration East/ West
 
in a finite number of steps, and become in the configuration East/North or North/ South.
 

Assume now that r' stops before Goal', then at time P, r and r' remain in the configuration East/ West. By 
assumption, robot r' can be activated infinitely often, and by Lemma 3, it can reach its target in a finite time, 
thus robot r' can reach its target Goal' in a finite time. Consequently, r and r' can leave the configuration 
East/ West in a finite time. 

3.	 both rand r' move: 

Let r perform a look operation at time t 2: to, and let Goal be its destination. Let also r' perform a look 
operation at time t' 2: to, and let Goal' be its destination. We denote by t and P, the time when rand r' end 
their moves, respectively. 

In this case, we assume that both r and r' reach their respective destinations Goal and Goal'. All other 
cases, where r or r' end their moves before destination are covered and proved in the previous cases. 

At t, r reaches its destination Goal. Hence, Vp that is below AE(r(t)), and to the right of AE(rt), p E 

South(r). At t, r' E r'Goal'. By Lemma 7, Goal' E East(r(to)) or Goal' E South(r(to)). Since, at t, 
AE(r) is above Goal'. Thus, at t, r' E South(r). Now, at P, r' reaches Goal'. At P, r is above Aw(r'). 
Consequently, at ii, r E North (r'). Since, r and r' reach their respective target in a finite time, we hence 
conclude that rand r' become in the configuration North/ South in a finite time. 

DLemma 8 

From Lemma 8, Lemma 5 and Theorem 2, we conclude: 

Theorem 3 Any East/ West configuration of two robots equipped with 7r/8-Inaccurate compasses is trans­
formed after afinite time to the gathering. 
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Figure 7. Transformation of North/ West configuration. 

4.4 Transition of North/ West configuration to gathering 

Lemma 9 Given two robots rand r' at some time to, where rand r' are in the configuration North/ West, 
with r E West(r') and r' E North(r). Then, the destination Goal' computed by robot r' (resulting from its side 
move down) always belong to East(r). 

PROOF. The idea of this proof is as follows. There are two cases to consider. First, if Aw(r') is parallel to 
AN(r). Then, AN(r) = Ww(r'). Since, the destination Goal' of r' is the first point on As(r') below ww(r'). 
Then, Goal' is below AN(r). Consequently, Goal' E East(r). Second, Aw(r') is not parallel to AN(r), then we 
show that ww(r') is below AN(r) and above AE(r). Consequently, Goal' E East(r). 

Assume that r E West(r') and r' E North(r) at some time to. Let H' = ww(r') n As(r') (refer to Figure 7). 
We denote by {3, the angle at H' that is inside the triangle .6.(r, r', H'). By Algorithm 1, Goal' is the first point on 
As(r') below H'. We will prove that Goal' E East(r) always. 

First, if Aw(r') is parallel to AN(r). Then, AN(r) = ww(r'). Since, the destination Goal' ofr' is the first 
point on As(r') below ww(r'). Then, Goal' is below AN(r). Consequently, Goal' E East(r). 

Now consider the case when Aw(r') is not parallel to AN(r). Let M = AN(r) n As(r'). 
We have, ow = 7r/ 4 by hypothesis. Then, {3 = 37r/ 4 because Aw(r') is parallel to ww(r'). 

Consider the triangle .6.(r, M, r'). We have, ;:Ai? > -;Jii? Thus, H' is below M. Then, H' E East(r), since 

o< M;jf, < 7r/2. Then, Goal' is between Ww (r') and AE(r). Consequently, Goal' E East(r). This completes' 
the proof. DLemma 9 

Lemma 10 Let rand r' be two robots that are in the configuration North/ West with r E West(r'), and r' E 

North(r) at some time to. Then, there is afinite time fin which this configuration is transformed into North/ East 
or East/ West or North/ South configuration. Moreover, rand r' can not enter any other configuration except 
the North/East or East/ West or North/ South configuration. 

PROOF. 

Let r' perform a look operation at time t' ~ to, and let Goal' be its destination. We denote by f the time when 
r' finishes its move. Let also H' = ww(r') n As(r') (refer to Figure 7) 
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First, assume that between to and t, r does not perform any look operation, this means that r remains stationary. 
Thus, when r' reaches Goal', r is above Aw(r'). Consequently r E North(r'). In addition, by Lemma 9, at t, 
r' E East(r). Also, by Lemma 3, r' reaches Goal' in a finite time, tllen rand r' become in the configuration 
East I North in a finite time. 

Now assume that between to and t, r performs some look operation. Let M = AN(r) n As(r'). Then, two 
cases follow: 

•	 r sees r' at position q E r'M. 

In this case, r' still belongs to North(r). Thus, r stays still. By hypothesis, r' can be activated infinitely 
often, and thus, it can pass M in a finite time. When r' passes the point M, r' E East(r). Consequently, r 
and r' can leave the configuration Northl West in a finite time. 

•	 r sees r' at position q E M Goal', with q i=- {M, Goal'}. 

In this case, r' E East(r) because r' is below AN(r), and r E West(r'), since r' did not reach its target 
Goal'. Consequently, rand r' become in the configuration Eastl West, which is done in a finite time. 

Let also Goal be the target of r, and til be the time when it reaches its target, then if r reaches its destination 
before r' (i.e., til < t), then at til, r' E South(r), and r E North(r'). Consequently, rand r' become in the 
configuration Northl South in a finite time. 

DLemma 10 

From Lemma 10, Theorem 2 and Theorem 3, we conclude: 

Theorem 4 Any North I West configuration of two robots equipped with 7rIS-Inaccurate compasses is trans­
formed after a finite time to the gathering. 

4.5 Transition of EastlSouth configuration to gathering 

Lemma 11 Let rand r' be two robots that are in the configuration EastlSouth at some time to with r' E 
East(r) andr E South(r') Then, there is afinite time in which this configuration is transformed into Northl South 
or North I East or Eastl West or the gathering configuration. 

PROOF. 

Let r' E East(r) and r E South(r') at time to (refer to Figure 8). Let also Q = AN(r) n As(r'), H = 
AN(r) n wE(r) and G = AN(r) n Aw(r'). 

By the algorithm, r' will make a direct move toward r, and r will make a side move up. Then, we distinguish 
several cases, depending where each robot sees the other one, and where it ends its move. 

1.	 r does not move/ r' moves. 

Assume that r' performs a look operation at time t' ~ to. Then, r' will make a direct move toward r. By 
Lemma 3, r' reaches r ill a finite time, let it be such time. Assume that r does not perform any look operation 
between to and it, then r' will gather with r at time it, and the lemma holds for this case. 

2.	 r moves/ r' does not move. 

Assume that r performs a look operation at time t ~ to. Then, r will make a side move up. Let Goal be its 
destination and tbe the time when r finish its move. 

Assume that between t and t, r' does not make any look operation, thus r' remains stationary. Three cases 
follow depending where robot r stops: 
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Figure 8. Transformation of the East/South configuration. 

• Robot r stops at Goal. 
By Lemma 3, r reaches Goal in finite time. By the algorithm, at time t, r' is below AE(r), thus, 
r' E South(r) at t. Moreover, By Lemma 4, at time t, r E North(r'). Thus, r and r' become in the 
configuration North/ South with r' E South(r) at t. This completes the prooffor this case. 

•	 Robot r stops at q E GH, and q f= G. 
This case is similar to the previous one, except that robot r will end its move before reaching its 
destination Goal. Assume that at time t, r finishes its move at any point that is between Hand G. At 
time t, r' is still above or on AE(r), thus, r' E East(r). Moreover, attime t, r E North(r') since r(t) 
is above Aw(r'). Thus, rand r' enter the configuration East/North with r E North(r') in a finite 
time. 

• Robot r stops at q E GQ /\ q f= Q. 

In this case, at time t, r' E East(r) still. In addition, r E West(r'), since r is above As(r'). By 
Lemma 3, r' ends its move in a finite time. Consequently, r and r' become in tlle configuration 
East/ West in a finite time. 

•	 Robot r stops at p E rQ /\ p f= {r, Q}. 
In this case, assume that at time t, r finishes its move at any point tllat is between rand Q. At time 
t, r' E East(r) still, since r' does not reach its destination Goal. In addition, r E South(r') because 
r stops at p, which is below As(r'), and r' stays still by hypothesis. As a result, both robots remain 
in the sanle configuration East/ South at time t. By assumption, robot r can be activated infinitely 
often, and by Lemma 3, it can reach its target in a finite time, thus robots rand r' can leave the current 
configuration East / South in a finite time. 

3.	 both rand r' move: cases of "seen while moving". 
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Let r perfonn a look operation at time t ~ to, and start to move toward its destination Goal. Let also r' 
perfonn a look operation at time t' ~ t, and see r while it is moving. Then, three cases follow: 

•	 r' sees r at position q E rQ: 

In this case, r' will perfonn a direct move to q. Let l and it be the times when r and r' respectively, 
finish their moves. Assume also, robot r will reach its destination Goal (robot r' may stop before q). 
Thus, \fp E .6.(r(to), r'(to), Q), p E South(r). Also, att', r E North(r') because r is above Aw(r'). 
Consequently, rand r' enter the configuration Northl South with r' E South(r) in a finite time. 

•	 r' sees r at position q E QG and q i- Q: 

At time t', where r' perfonns its look operation, we have r E West(r') because r is between As(r') 
and Aw(r'). Also, at time t', r still did not reach its target, thus, r' E East(r) still. As a result, rand r' 
enter the configuration East I West in a finite time, which is in tum can be transfonned by Theorem 3 
to the gathering in a finite time. 

•	 r' sees r at position q E GH and q i- G: 

At time t', where r' perfonns its look operation, we have r E North(r') because r is above Aw(r'). 
Also, at time t', r still did not reach its target, thus, r' E East(r) still. As a result, rand r' enter the 
configuration North I East in a finite time, which is in tum can be transfonned by Theorem 2 to the 
gathering in a finite time. 

•	 r' sees r at Goal: 
At time t', where r' perfonns its look operation, r already reaches Goal. Thus, by Lemma 4, r E 
North(r'). Also, at time t', r' E South(r), since r' becomes below AE(r) at t'. As a result, T and r' 
enter the configuration North I South in a finite time, which is in tum can be transformed by Lemma 5 
to the gathering in a finite time. 

In all cases, rand r' can only shift to the No rth I South or NorthlEast or Eastl West or the gathering config­
uration in a finite time. This completes the proof. DLemma 11 

From Lemma 5, Lemma 11, Theorem 2 and Theorem 3, we conclude that: 

Theorem 5 Any EastlSouth configuration of two robots equipped with 1rIS-Inaccurate compasses is trans­
formed in afinite time to the gathering. 

Theorem 6 In a system, with 2 anonymous, oblivious mobile robots relying on inaccurate compasses, the 
gathering problem is solvable in afinite time for 1rIS-Inaccurate compasses. 

PROOF. 

Theorem 1 states the different valid configurations by the algorithm. Besides, from Lemma 5, Theorem 2, The­
orem 3, Theorem 4 and Theorem 5, any valid configuration is transfonned into the gathering in a finite time (see 
Figure 4) , thus the theorem holds. DTheorem 6 

Conclusion 

In this paper, we have studied the solvability of the gathering problem of asynchronous mobile robots relying 
on oblivious computations. While previous work [3] has shown that gathering can be achieved for three or more 
robots if robots are able to detect multiplicity (i,e. multiple robots at a single point), the case of two robots is 
left as an open question. Later on, Flocchini et a1. [9] proposed a gathering algorithm for any number of robots 
when they share a common direction as provided by compasses with no errors. In this paper, we concentrate on 
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the gathering of two robots when compasses are subject to errors. In particular, we have presented an algorithm 
that gathers two asynchronous mobile robots in a finite time when their compasses differ by an angle of at most 
7r/ 4. The benefit of our algorithm is that we solve the problem with inexact compasses. Moreover, our algorithm 
is self-stabilizing and tolerates any number of transient errors. We can also argue that even with a weaker compass 
that fluctuate for some arbitrary periods, and then it stabilizes eventually to an error of 7r/ 8 with respect to a global 
north, our algorithm is still valid and solves the problem in a finite time. 
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