
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Collision prevention using group communication

for asynchronous cooperative mobile robots

Author(s) Yared, Rami; Defago, Xavier; Wiesmann, Matthias

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2007-002: 1-21

Issue Date 2007-02-22

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/4796

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Collision prevention using group communication
for asynchronous cooperative mobile robots

Rami Yared, Xavier Defago, and Matthias Wiesmann

School ofInformation Science,

lapan Advanced Institute ofScience and Technology (IAIST)

February 22, 2007

IS-RR-2007-002

Japan Advanced Institute of Science and Technology (JAIST)

School of Information Science

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

http://www.jaist.ac.jp/

ISSN 0918-7553

Collision prevention using group
communication for asynchronous cooperative

mobile robots *

Rami Yared, Xavier D6fago, Matthias Wiesmannt

JAIST, School of Information Science

Japan Advanced Institute of Science and Technology

Email: {r-yared.defago.wiesmann}@jaist.ac.jp

Abstract

The paper presents a fail-safe mobility management and a collision pre­
vention platform for a group of asynchronous cooperative mobile robots.
The fail-safe platform consists of a time-free collision prevention protocol,
which guarantees that no collision can occur between robots, independently
of timeliness properties of the system, and even in the presence of timing
errors in the environment. The collision prevention protocol is based on
a distributed path reservation system. Each robot in the system knows the
composition ofthe group, and can communicate with all robots of the group.

A performance analysis of the protocol provides insights for a proper di­
mensioning of system parameters in order to maximize the average effective
speed of the robots.

1 Introduction

Many interesting applications of mobile robotics envision groups or swarms of
robots cooperating toward a common goal. Consider a distributed system com­
posed of cooperative autonomous mobile robots cultivating a garden. Cultivating
a garden requires that mobile robots move in all directions in the garden sharing

*Work supported by MEXT Grant-in-Aid for Young Scientists (A) (Nr. 18680007).

tSwiss National Science Foundation Fellowship PA 002-104979

1

the same geographical space. A robot has no prior knowledge about neither the
.paths of other robots, nor their speeds.

A robot uses its local sensing system to detect unknown fixed obstacles in the
garden, and a robot is based on its local motion planning facility to compute a
path between the current location and the goal. This path avoids the collisions
with fixed known obstacles. 1

In cooperative autonomous mobile robots environments, where robots move
with unpredictable speeds, the motion planning approaches cannot guarantee a
safe motion as mobile robots may collide with each other, because of the unpre­
dictable speeds of robots and the uncertainty of the sensory information.

Specification. The robots are not provided with a vision capability. In the con­
sidered system, there is no centralized control nor global synchronization.

Problem. The robots are moving in different directions sharing the physical
space, thus collisions between mobile robots can possibly occur. It is very im­
portant to focus on the problem of preventing collisions between mobile robots.
Collision prevention leads to a dependable system and prevents the occurrence of
serious damages to the robots which causes failures in the system.

Requirements. It is essential to provide a fail-safe platform on which mobile
robots can rely for their motion. This platform guarantees that no collision be­
tween robots can occur.

A robot knows neither the positions of other robots nor their destinations. Ad­
ditionally, the speed of a robot is unknown by robots and there is no known upper
bound on robot's speed, so a robot cannot estimate the position of another robot
in the system. Therefore, robots need to cooperate in order to achieve a fail-safe
motion. Cooperation is however difficult to obtain under the weak communication
guarantees offered by wireless networks, because retransmission of messages is
needed to ensure messages delivery in wireless environments. The communica­
tion delays to deliver messages are difficult to anticipate. The previous arguments
ensure that a time-free collision prevention protocol is indispensable.

Contribution. In this paper, we present a fail-safe platform on which cooper­
ative mobile robots rely for their motion. Our fail-safe platform consists of a
time-free collision prevention protocol for an asynchronous system of coopera­
tive mobile robots. The collision prevention protocol is based on a distributed
path reservation system.

1The robots are the only moving entities in the considered applications.

2

The paper also presents proofs of correctness of the protocol and also proves
the deadlock freedom, and the liveness properties of the protocol.

A performance analysis of the protocol provides insights for a proper dimen­
sioning of system parameters in order to maximize the average effective speed of
the robots.

Related work. Martins et al. [3, 4] demonstrated a scenario of three cooper­
ating cars, elaborated in the CORTEX project, which relies on the existence of
Timely Computing Base (TCB) wormholes. The TCB concept was introduced
by Verissimo and Casimiro in [8, 9]. Martins et al. in [4] use an application's
fail-safety and time-elasticity to overcome the uncertainty of the environment.

The fundamental difference between our fail-safe platform and the approach
of Matins et al. [4], is that the approach in [4] is time-elastic, while our approach
is time-free.

Nett et al. [5, 6] presented a system architecture for cooperative mobile sys­
tems in real-time applications. They considered a traffic control application in
which a group of mobile robots share a specified predetem1ined space. The ap­
proach of Nett et al. [5, 6] aims at real-time cooperative mobile systems. The
communications are synchronous, assuming the existence of a known constant
upper bound on the communication delays, the infrastructure is based on wireless
LAN, and the protocols use the access point as a central router, which ensures full
connectivity.

Our approach fundamentally differs in several aspects, our approach is asyn­
chronous, and the mobile robots in our system form naturally a mobile ad hoc
network on which they rely for their communication. MANETs have no central­
ized control nor global synchronization, also they do not guarantee the real-time
constraints to deliver messages.

Structure of the paper. The rest of the paper is organized as follows. Section. 2
describes the system model, definitions, and terminology. Section. 3 defines the
collision prevention problem and its specification. In Section. 4, we present our
collision prevention protocol. Section. 5 presents an illustrative example of the
protocol. Section. 6 presents a performance analysis of the protocol. Section. 7
concludes the paper.

3

2 System model and terminology

2.1 System model

We consider a system of n mobile robots S = {TIl"" Tn}, moving in a two
dimensional plane. Each robot has a unique identifier. The total composition of
the system is known to each robot.

Robots have access to a global positioning device that, when queried by a
robot Ti, returns T/S position with a bounded error Cgps'

The robots communicate using wireless communication such that a robot Ti
can communicate with all robots of the system. Communications assume retrans­
missions mechanisms such that communication channels are reliable.

The system is asynchronous in the sense that there is no bound on communi­
cation delays, processing speed and on robots speed movement.

2.2 Definitions and terminology

Paths. We denote by chunk a line segment along which a robot moves. A path
ofa robot is a continuous route composed ofa series of contiguous chunks. A path
can take an arbitrary geometric shape, but we consider only line segment based
paths for simplicity.

Errors. The are three sources of geometrical incertitude concerning the position
and the motion of a robot. Error related to the position information provided by
the positioning system denoted Cgps' In addition, the motion ofa robot creates two
additional sources of errors, the first error is related to the translational movement,
denoted: Ctr' The second error is related to the rotational movement, denoted: ceo

Zones. We call a zone a finite, convex area of the plane. A zone is defined as
the area needed by a robot to move safely along a chunk. This includes provisions
for the shape of the robot, positioning error and imprecisions in the moving of
the robot. The zone must contain the chunk the robot is following. Figure 1
shows the zone Zi for a robot Ti located in point A and desires to move along
the segment AB, where d represents the radius of the geometrical shape of Ti.

The zone Zi is composed of the following three parts, illustrated in Figure 1: the
first part named pre-motion zone and denoted pTe(Zi), is the zone that robot Ti
possibly occupies while waiting (before moving). The second part named motion
zone and denoted motion(Zi), is the zone that robot Ti possibly occupies while
moving. The third part named post-motion zone and denoted post(Zi)' is the zone
that robot Ti possibly reaches after the motion.

4

3

post-zone

pre-zone

Figure I: Reservation Zone.

Problem definition and specification

Before entering a zone Z, robot r executes reserve(r, Z). After leaving a zone Z,
robot r executes releaseer, Z).

A robot ri releases the zone Zi that it has owned and keeps only a part of
post(Zi) under its reservation. The part of the zone that has been released by ri is
denoted: RelZi.

Operations We say that two reservation operations reserve(Ti, Zi), reserve(rj,
Zj) conflict if ri =I- rj and Zi n Zj =I- 0, we denote this 01 1><1 02. If a robot r
executed reserve(r, Z) but did not execute yet releaseer, Z), we say that r owns
zone Z.

Schedules We call a schedule an ordered sequence ofoperations S = {01, ... Om}
where every operation is either reserve(ri' z{) or release(ri' Z{).

The notion of schedule is closely related to the notion of histories used to
s

model database operations [2]. The notation 01 >- 02 is used to mark that operation
02 happens after 01 in schedule S. We say that a schedule is correct, if it enforces
the following constraints.

•	 if a robot r executes releaseer, Z), then it executed reserve(r, Z) before.

•	 if robot r owns zone Z then there is no robot r' that owns a zone Z' such
that Z n z' =I- 0

5

If in a given schedule all robots own at most k zones, we say that this is
a k-schedule. As robots need to be able to reserve at least two zones (the one
currently occupied and the next one) k 2: 2. We say that two schedules Sa and Sb
are compatible if:

S
• All operations of a given robot are in the same order, i.e. \lr I oi ;. oj I-----t

Sb
r '- r

0i ,- OJ'

S
•	 All conflicting operations are in the same order i.e. \loi , OJ I 0i IX] OJ 0i ;.

Sb
OJ I-----t 0i >-- OJ

We say that two schedules are equivalent if they are compatible and contain the
same set of operations:

• They contain the same set of operations, i.e. \10 I 0 E Sa I-----t 0 E Sb

The locale schedule Sr ofrobot r is the ordered subset ofa schedule that only con­
tains operations that either initiated by robot r or conflict with operations initiated
by robot r.

3.1 Deadlock situation

There are pathological situations of intersection between Zi and Zj, such that nei­
ther ri nor rj can move. We say that ri and rj are in a deadlock situation when
none of them can move. For example, a deadlock situation between two robots,
occurs when each robot requests a zone that intersects with the pre-motion zone
of the other, so none of the robots can be granted its requested zone, since each
of them requests a resource owned by the other robot. Figure 2 illustrates this
situation.

A deadlock situation can be expressed as follows.
[Zi n pre(Zj) =1= 0] and [Zj n pre(Zi) =1= 0]

There are other pathological intersection situations between Zi and Zj, such
that if one of the robots has granted its zone then, the other robot may never be
able to own its requested zone (starvation situation).

Scheduler A scheduler is an algorithm that takes as input a sequence ofzone re­
quests and builds as output for every robot r ERa local schedule Sr. A scheduler
is correct if all local schedules Sr are compatibles with correct schedule S. As
the possibility of deadlock exists, the scheduler can reject some zone requests to
avoid deadlock situations. The routing algorithm of the robot needs to be able to

6

,,
'
'

I
I,

' I
' I
' I
' I
\ "I

\
\",------ --- ----------'/

,f

' '' z.,,'
\-------I---fr----------­

' , , ,@ 1
\ / " "

j Q ! 7<. !
r '-, \ @/ iJ "

.. "1\..... 0: " " , , , ,
' , ,

' ,
.... ' l ,,\ "

ri ""'"", --/

Figure 2: Deadlock situation: Zi intersects with pre(Zj) and Zj intersects with
pre(Zi)'

handle those rejections, either by retrying at a later time, or by planning a different
route.

We distinguish two types of deadlocks, the first type of deadlocks is due to a
cyclic happens after relation, and the second type of deadlocks is due to patho­
logical situation of intersection between two requested zones.

We say that a scheduling algorithm is deadlock free if it avoids deadlocks. In
the rest of the paper, we concentrate on algorithms that are correct and deadlock
free.

4 State Machine Scheduler

The state machine scheduler uses the state machine replication approach [7].

4.1 Total Order Broadcast

TOTAL ORDER BROADCAST also called ATOMIC BROADCAST, is a fundamen­
tal problem in distributed systems. The TOTAL ORDER BROADCAST primitive
ensures that messages sent to a set of processes are, in tum, delivered by all those
processes in the same total order. Informally, the problem is defined as a broadcast
primitive whereby all processes deliver the same sequence of messages.

There exists a vast amount of literature about total order broadcast presented
(see DMago et al. [1] for a survey).

7

The problem is defined in terms of two primitives, which are called TO­
broadcast(m) and TO-deliver(m), where m is some message. When a process
p executes TO-broadcast(m) (respectively TO-deliver(m)), we say that p TO­
broadcasts m (respectively TO-deliver m). We assume that every message m can
be uniquely identified, and carries the identity of its sender, denoted by sender(m).
In addition, we assume that, for any given message m, and any run, TO-broadcast(m)
is executed at most once [I].

Idea of the scheduler. The algorithm consists of a distributed path reservation
system, such that a robot must reserve a zone before it moves. When a robot
reserves a zone, it can move safely inside the zone. The path reservation is per­
formed in a consistent manner. All robots run the same protocol. When a robot
wants to move along a given chunk, it must reserve the zone that surrounds this
chunk. When this zone is reserved, the robot moves along the chunk. Once the
robot reaches the end ofthe chunk, it releases the zone except for the area that the
robot occupies. When moving along a path, the robot repeats this procedure for
each chunk along the path.

All robots run the same distributed algorithm. When a robot ri requests a
zone Zi, ri broadcasts a message indicating a request of a zone REQuEsT(Zi)and
a release of the previous owned zone. RELEASE(PREvIOus(RelZi)) using a total
order broadcast primitive.

A wait-for graph is generated according to the delivered requests and releases.
The wait-for graph represents the wait-for relations between robots. If zone Zi of
a robot Ti intersects with zone Zj of robot rj, then a wait-for relation between ri
and rj is established. When a robot Ti reaches the post-motion zone post(Zi), ri
releases the previous zone, and requests a new zone.

All the robots in the system deliver requests and releases in the same order,
thus consistent reservations and releases of zones take place.

Variables We present the variables used in the protocol.

•	 Zi is the zone currently requested or owned by robot rio

•	 Dagwait is a directed acyclic graph represents the wait-for relations between
robots, such that the vertices represent the robots, and a directed edge from
vertex(ri) to vertex(rj) indicates that Ti waits for rj.

4.2 Scheduler description

We explain briefly the phases of the scheduler with respect to a robot rio The robot
ri is located in the pre-motion zone pre (Zi)' When robot ri requests a new zone

8

Zi, it proceeds as follows.

1.	 TO-Broadcast:

ri performs a total order broadcast of a message that consists of two parts.
The first part is a REQUEST with the parameters of the requested zone Zi,
and the second part is a RELEASE with the parameters of the released zone
PREvIOus(RelZi). The robot ri releases the previous reserved zone and
requests a new zone Zi.

2. Append-Vertex

When the robot ri TO-delivers a new message, a new vertex is added to the
wait-for graph Dagwait and an existing vertex is removed from the graph.
The new added vertex corresponds to the REQUEST part of the message and
the removed vertex corresponds to the RELEASE part of the message.

When a robot releases the previous zone, the corresponding vertex and its
incoming edges are removed from the wait-for graph. When a robot re­
quests a new zone, a new vertex is added to Dagwait with outgoing edges
from the added vertex to all the vertices of the graph whose zone intersects
with the requested zone Zi.

When the vertex that represents the robot ri in Dagwait becomes a sink:
vertex (has no outgoing edges), the requested zone Zi is reserved to rio

3.	 Request-Rejection

If the requested zone Zi intersects with the post-motion zone post (Zj) of a
vertex in the wait-for graph Dagwait then, the request (ri' Zi) is rejected.

If the requested zone Zi intersects with the pre-motion zone pre (Zj) of any
robot rj of the system, then the request (ri' Zi) is rejected.

4. Rejection-Handler

If the request (ri' Zi) is rejected due to a situation that belongs to the above
mentioned (Request-Rejection) situations then, the routing algorithm ofrobot
ri handles the rejected request either by retrying at a later time, or by plan­
ning a different route (alternative path). If there is no available alternative
path and the request is rejected after a certain number of trials then, an ex­
ception is raised.

5.	 Release

When ri reaches the post-motion zone post(Zi), it computes its new position
and thus it computes the zone to be released which is Zi except the place
that ri may possibly occupy (footprint in addition to the positioning system

9

error Cgps). Initially, the released zone is set to -.1. All the robots build the
same wait-for graph Dagwait .

Algorithm 1 State machine scheduler (Code for robot Ti)

1: Initialisation:
2: PREVIOUs(ReIZi) := .1; Dagwait :=.1;

3: procedure Request(Zi)
4: TO-broadcast [REQUEST, Zi, RELEASE, PREVIOus(RelZi)] {Ti TO-broadcasts a request

ofa new zone Zi and a release of PREvIOus(RelZi)}
{Zi is set to .1 ifTi does not acquire to move any more}

5: when TO-Deliver [REQUEST, Zj, RELEASE, PREVIOus(ReIZj)]
6:	 Dagwait := Dagwait \ vertex(Tj, PREVIOus(ReIZ j) {remove the vertex representing Tj

and its incoming edges}
7:	 if Zj intersects.with the pre-motion zone pTe(Z) of any robot of the system then
8: Rejection Handler(Tj, Zj)
9:	 end if

10: for all Tk E Dagwait do
11: if Zj intersects with Zk then
12: if Zj intersects with post(Zk) then
13:	 Rejection Handler(Tj, Zj)
14: else

"15: Dagwait := Dagwait U vertex(Tj, Zj)
16:	 Dagwait := Dagwait U DirectedEdge(vertex(Tj), verteX(Tk)) {add a new vertex

with outgoing edges to the vertices whose zone intersects with Zj}
17: end if
18: end if
19: end for

20: when the vertex of Ti in Dagwait becomes a sink vertex (has no outgoing edges)
21: return	 {all robots Tj that Ti waits for, has released their zones}
22: end when
23: end when
24: end Request(Zi)

4.3 Properties

In this subsection, we present the liveness properties of the scheduler.

Property 1 (Liveness) Ifa robot Ti requests Zi then eventually (Ti owns Zi or an
exception is raised).

Ti requests Zi =? 0 (Ti owns Zi or Exception)

10

Algorithm 2 Rejection Handler (Code for robot ri)
1: Initialisation:
2: number oftrials (ri' Zi) := 0;

3: procedure Rejection Handler (ri' Zi)

4: number of trials (ri' Zi) := number oftrials (ri' Z;) + I {wait a certain delay then retly the
request (ri' Zi)}

5: if (number of trials (ri' Z;) > MaxAllowedNumber) then
6: if no possible alternative path then
7: throw Exception
8: end if
9: Zi := Zialternative {tlyan alternative path}

10: end if
11: end Rejection Handler

Property 2 (Non triviality) Exception is raised only if there is no available al­
ternative path and the request is rejected after a certain number oftrials.

4.4 Proof of correctness

In this subsection, we prove the correctness, the deadlock freedom, and the live­
ness properties of the scheduler.

Lemma 1 The state machine scheduler is correct.

PROOF.

•	 According to Algorithm 1, if a robot ri executes release(ri' Zi) then, ri exe­
cuted reserve(ri, Zi) before.

•	 If zone Zi of robot ri intersects with zone Zj ofrobot rj then, either ri waits
for rj or rj waits for rio The wait-for relation is determined according to the
order that the requests are delivered by the primitive TO-deliver of the total
order broadcast.

Let us assume that ri waits for rj, so rj releases RelZj, after that ri owns
Zi. When the robot ri becomes the owner of Zi, the robot rj is deprived
from the ownership of zone Zj. The robot rj just keeps a part of post(Zj)
under its reservation. Zi does not intersect with the part of post(Zj) that still
reserved by rj, because:

1.	 pre(Zi) n post(Zj) = 0 (Proof by contradiction).

If pre(Zi) n post(Zj) i- 0 then, the request (rj, Zj) is rejected (Algo­
rithm 1, line 8), which leads to a contradiction.

11

2.	 Zi n post(Zj) = 0 (Proofby contradiction).

If zone Zi of ri intersects with the post-motion zone of rj then, the
request (ri' Zi) is rejected (Algorithm 1, line 13), which leads to a
contradiction.

All robots of the system deliver the same set of requests and releases in the
same order due to the total order broadcast primitive. (The schedules of all
the robots of the system are equivalent, see Section 3).

Consequently, all robots generate the same wait-for graph Dagwait , and the
ownership of intersecting zones satisfies the mutual exclusion. So, if robot
ri owns zone Zi then, there is no robot rj that owns a zone Zj such that Zi

nZj =1= 0.

Therefore, the state machine scheduler is correct.
DLemma 1

Lemma 2 The wait-for graph Dagwait generated by a robot r has no cycles.

PROOF.

If ri requests a zone Zi then, ri must release the previous reserved zone. (Al­
gorithm 1, line 4). So, if robot ri waits for robot rj then, it is impossible that rj

waits for rio We proceed the proof by contradiction. Let us assume that rj waits
for rio The vertex that represents rj must be removed from Dagwait before adding
the new vertex of rj to Dagwait . Thus, ri does not wait for rj, which leads to a
contradiction, since the assumption is that robot ri waits for rj.

Therefore, the wait-for graph Dagwait generated by a robot r has no cycles.
DLemma2

Lemma 3 The state machine scheduler is deadlockfree.

PROOF.

1.	 The total order broadcast ensures that the local schedules of all robots of the
system are equivalent, since all the robots deliver the same set of requests
and releases in the same order. Consequently all robots generates the same
wait-for graph Dagwait .

2. Lemma 2 proves that the wait-for graph Dagwait generated by a robot r has
no cycles.

12

3.	 Ifzone Zi intersects with the pre-motion zone pTe(Zj) of any robot Tj of the
system then, the request (Ti' Zi) is rejected. (Algorithm 1, line 8).

4.	 Ifzone Zi of Ti intersects with the post-motion zone post(Zj) of Tj such that
vertex(Tj) belongs to Dagwait then, the request (Ti' Zi) is rejected. (Algo­
rithm 1, line 13).

Therefore, the state machine scheduler is deadlock free.
DLemma3

Lemma 4 The state machine scheduler is correct and deadlock free.

PROOF.

Lemma 1 and Lemma 3 prove that the state machine scheduler is correct and
deadlock free.

DLemma4

Lemma 5 Ifa robot Ti requests Zi then eventually (Ti owns Zi or an exception is
raised).

PROOF.

If robot Ti requests zone Zi then:

1.	 If Zi does not intersect with a zone Zj, then Ti owns Zi.

2.	 If Zi intersects with a zone Zj, then a directed edge is created between
vertex(Ti) and vertex(Tj) in the wait-for graph Dagwait . According to Lemma. 2
the graph Dagwait has no cycles. Therefore, Ti eventually owns Zi.

3.	 If request (Ti' Zi) is rejected, then the Rejection Handler is called. If the
Rejection Handler algorithm does not find a solution then, an exception is
raised (Algorithm 2, line 7).

Therefore, Ti requests Zi ::::} 0 (Ti owns Zi or Exception).
DLemma5

Lemma 6 Exception is raised only if there is no available alternative path and
the request is rejected after a certain number oftrials.

PROOF.

Exception is raised only by the Rejection Handler algorithm, and only if there
is no available alternative path after rejecting the request a determined number of
times. (Algorithm 2, line 7). DLemma 6

13

5

·/::,'~~'~~~:i
r &::::>­
p

Figure 3: A group composed of six robots.

Example.

Consider an application composed of the following six robots (ri' rj, rk, rp , r q ,

rs)'

First batch The different intersections between the requested zones are repre­
sented in Figure. 3.

Zi intersects with (Zk, Zs), Zj intersects with Zs, Zk intersects with (Zi, Zs),
and Zp does not intersect with any other requested zone.

• Each robot TO-casts a message carrying the parameters of the requested

r--­

,,, J· ,,,, o~ ,,, dJ
, ~-:~ Pending, \.f.r,, s ,,

i__~ ~anted ~ c:v
Figure 4: The wait-fof graph in the first batch.

14

'tS
(D

... = =­
~ =

(,"'r-"',p:, ,
'--"

Figure 5: The wait-for graph in the second batch.

zones. The delivered messages are: [(rk, Zk), (rq, Zq), (rs' Zs), (ri' Zi), (rp,
Zp), (rj, Zj)].

•	 We assume in this example that there is no pathological situations between
the requested zones. Figure 4 represents the generated wait-for graph.

•	 In the wait-for graph Dagwait the vertices (rk, rq, rp) are sink vertices (has
no outgoing edges), so they do not wait for any robot. Therefore, they
reserve the corresponding zones, and become the owners of (Zk, Zq, Zp)
respectively.

Second batch Let us consider that (rk, rq, rp) have reached the post-motion
zones (post(Zk), post(Zq), post(Zp)) respectively. Each of the robots rk, rq and
rp broadcasts a message carrying a request for a next zone Zk and a release of the
zone PREvIOus(RelZk)' The intersections of the requested zones are as follows.
Zp intersects with both (Zk, Zq) but Zk does not intersect with Zq. The second
batch proceeds as follows.

•	 Update the wait-for graph by removing the following vertices: vertex(rp) ,

vertex(rq), and vertex(rk) in addition to their incoming edges.

We assume that each of the following zones (Zp, Zq, Zk) do not intersect

with apost-motion zone (post(Zs), post(Zi), post(Zj))'

15

Figure 5 represents the resulting wait-for graph Dagwait in the second batch.

6 Performance analysis

We study the performance of our protocol in terms of the time needed by a robot
ri to reach a given destination when robots are active (robots do not sleep). We
compute the average effective speed of robots executing our collision prevention
protocol. We provide insights for a proper dimensioning of system parameters in
order to maximize the average effective speed of the robots. For simplicity, we
assume in this section that the physical dimensions of robots are too small such
that a robot can be considered as a point in the plane. The geometrical incerti­
tude related to the positioning system, translational and rotational movement are
neglected.

6.1 Time needed to reserve and move along a chunk

The average physical speed of a robot is denoted by: Vmot . We calculate the
average time required for a robot ri to reserve and move along a chunk of length
Deh with a physical speed Vmot .

When a robot requests a zone, it releases the previously owned zone thus, a
robot waits at most for (n - 1) robots where n is the number of robots of the
system. So, the average number of robots that ri waits on is: navg = nzI

Communication delays. In order to evaluate the performance of the protocol,
we need to consider an average communication delays in the system, although the
protocol is time-free. The average communication delays in the system is denoted:
Team. When all the robots are active running the protocol (robots do not sleep),
then the time needed to reserve and move along a chunk denoted Teh is computed
as the sum of the time needed by each of the following steps:

1.	 The delay of the total order broadcast algorithm denoted by: TAB. We
assume that the delay of the total order broadcast algorithm is: T n

2. The time needed for local computations by robots (to build the	 wait-for
graph) is neglected.

3. The time to receive the release messages from navg robots each of which
d . ~.!2m... . .. (T .!2m...)has owne Its zone lor IT c. tIme umts IS: navg com + IT C •

Vmot	 Vmot

4.	 The time needed by ri to move along a chunk is: ,rIch .
Vmot

16

Therefore, the time needed to reserve and move along a chunk Teh is:

Deh Deh
Teh = Tn+ navg(Teom + V-) + V- (1)

mat mat

So,

= Tn + n - 1 T + (n + 1) DehTeh 2 cam ---- (2)
2 Vmat

6.2 Average effective speed

In this subsection, we compute the average effective speed V of a robot T'i as a
function of the chunk length Deh and of the number of robots n in the system. A
robot T'i makes on average DDtriP steps to move along a path of length Dtrip . The

ch

time to progress a distance Dtrip is:

Dtrip [n - 1 n + 1) Deh]
Ttrip = -D Tn + -2- Team + (-2-~ (3)

eh Vmat

The speed V is ~:~::. Thus, the average effective speed V is:

DehV = (4)
Tn + n 21 Team + (2~~~t)Deh

The previous relation shows that the effective speed is a function of the chunk
length and the number of robots n , also the effective speed depends on some
system-based fixed parameters such as the communication delays Team and the
physical speed of robots Vmat . The effective speed depends also on the perfor­
mance of the Total Order Broadcast algorithm.

6.3 Average effective speed vs chunk length

In this Subsection, we focus on the relation between the average effective speed
and the chunk length for a given number of robots n.

The first derivative of the function effective speed with respect to the chunk
length is:

dV Tn+ ~Team
(5)

dDeh [Tn + n 21 Team + (2~~~JDehJ2

The derivative ofthe effective speed with respect to the chunk length is always
positive. So, the effective speed increases as the chunk length increases.

The explanation is that a robot T'i waits at most for n - 1 robots (in a group
of n robots) to move along each chunk of its path. T'i needs to do a certain num­
ber of steps to reach a destination, and the number of steps is a function of the

17

n=1 [robot]

Team = 10 [ms]w
.§.

Tnd = 1 [s]

vmot = 1 [m/sJ
n=2 [robot]

n=3 [robot

Chunk length [m]

Figure 6: Average effective speed vs chunk length.

chunk length. When the chunk length increases, the number of steps decreases.
Therefore, the average effective speed V increases with the chunk length Deh .

Equation. 4 implies that the average effective speed approaches toward the
value 2~+~t as the chunk length tends to infinity.

. 2
hm V = --Vmot (6)

Dch-too n + 1

Figure 6 represents the relationship between the speed and the chunk length for
different values of number of robots. The average effective speed of robots in­
creases as the chunk length increases for a given number of robots, and there is
an optimal value of the chunk length that maximize the average effective speed
for a given number of robots. That optimal value of the average effective speed,
remains constant as the chunk length getting larger than the optimal value of the
chunk length. The average effective speed has a horizontal asymptote at 2~+r

Numerical values. The values of the fixed system parameters are: Teom

lO[ms], the physical speed Vmot = l[mjs]. We consider that the time required
by the Total Order Broadcast algorithm is: Tn where T = 50[ms]. The values of
the number of robots from one robot until 60 robots, and the chunk length varies
from zero to 3 meters. The effective speed increases as the chunk length increases
until it reaches a maximal value. Figure 6 shows that, in a case of a system com­
posed of 3 robots for example, the maximal average effective speed is 0.48[mjs]
which corresponds to optimal chunk length ~ 2[m].

18

~
.s
"0

310
D..

Cf)

~
is
OJ

:t::
W
OJ
Ol
o:l

!

"""7 Ihe "" of cu"'"'

D~=1 [em]

Number of robots [robot]

Figure 7: Average effective speed vs number of robots.

6.4 Average effective speed vs number of robots

In this Subsection, we focus on the relation between the average effective speed
V with respect to the total number of robots n in the system for a given value
of the chunk length. The relation average effective speed vs number of robots is
presented in Equation. 4. The effective speed decreases as the number of robots
increases for a given chunk length, because a robot ri must wait for more robots.

The derivative of the effective speed with respect to the number of robots is:

-D (T + Team. + Deh)dV eh 2 2Vm.ot (7)
dn [Tn + n~l Team + (2~~~JDehJ2

Figure 7 shows the variation of the average effective speed with respect to the
number of robots for different values of the chunk length.

Numerical values. The values of the fixed system parameters are: Team =
lO[ms], the physical speed Vmat = l[m/s], T = 50[ms]. The values of the num­
ber of robots varies starting from a system with a single robot to a system with 10
robots, for different values of chunk length from 1[em] to 10 meters. (Figure 7).

The set of curves in Figure 7 have an envelop curve, given by the following
equation: V = 2~:;lt

•	 The envelop curve corresponds to the average effective speed for very high
values of the chunk length (tends to infinity), since the average effective

19

7

speed approaches to a constant value for a given number of robots in the
system.

•	 All curves in Figure 7 approaches to zero, when the number of robots tends
to infinity. (horizontal asymptote at effective speed = 0).

Conclusion

In this paper, we presented a fail-safe mobility management and achieved a colli­
sion prevention platform for a group of asynchronous cooperative mobile robots.

Our fail-safe platform consists of a time-free collision prevention protocol,
which guarantees that no collision can occur between robots, independently of
timeliness properties of the system, and even in the presence of timing errors in
the environment. The collision prevention protocol is based on a distributed path
reservation system. Each robot in the system knows the composition of the group,
and can communicate with all robots of the group. We proved the correctness, the
deadlock freedom, and the liveness properties of the protocol.

We have analyzed the performance of the protocol in terms of average effec­
tive speed of robots as a function of the chunk length and the number of robots.
The effective speed depends also on some system parameters such as the average
communication delays and the physical speed of robots. The performance analy­
sis show that the average effective speed of robots increases with the chunk length
for a given number of robots, and there is an optimal value ofthe chunk length that
maximizes the average effective speed for a given number of robots. The perfor­
mance analysis show also that the maximal value of the effective speed, remains
constant while the chunk length is getting larger than the optimal value. The aver­
age effective speed decreases as the number of robots increases for a given chunk
length. The effective speed of robots approaches to zero as the number of robots
becomes very large.

We implemented our collision prevention protocol on Pioneer 3dx robots, us­
ing Java and the library ARIA2

.

Acknowledgments

We are grateful to Nak-Young Chong, Nikolaos Galatos, Maria Gradinariu, Yoshi­
aki Kakuda, Takuya Katayama, Richard D. Schlichting, Yasuo Tan, Tatsuhiro
Tsuchiya, and the anonymous reviewers for their insightful comments.

2ARIA: Advanced Robotics Interface for Applications. (http://www.activrobots.comf).

20

References
[1]	 X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast algorithms: Taxon­

omy and survey. ACM Computing Surveys, 36(4):372-421, December 2004.

[2]	 1. Gray and A. Reuter. Transaction processing: concepts and techniques. Data Management
Systems. Morgan Kaufmann Publishers, Inc., San Mateo(CA), USA, 1993.

[3]	 P. Martins, P. Sousa, A. Casimiro, and P. Verissimo. Dependable adaptive real-time appli­
cations in wonnhole-based systems. In Proc. IEEE Inti. Con! on Dependable Systems and
Networks (DSN'04), Florence, Italy, June 2004.

[4]	 P. Martins, P. Sousa, A. Casimiro, and P. Verissimo. A new programming model for depend­
able adaptive real-time applications. IEEE Distributed Systems Online, 6(5), May 2005.

[5]	 E. Nett and S. Schemmer. Reliable real-time communication in cooperative mobile applica­
tions. IEEE Trans. Computers, 52(2):166-180, 2003.

[6]	 E. Nett and S. Schemmer. An architecture to support cooperating mobile embedded systems.
In ACMInti. Con! on Computing Frontiers (CF'04), pages 40-50, Ischia, Italy, April 2004.

[7]	 F. Schneider. Implementing fault-tolerant services using the state machine approach: A tuto­
rial. ACMComputingSurveys., 22(4):299-319,1990.

[8]	 P. Verissimo. Uncertainty and predictability: Can they be reconciled? In Future Directions in
Distributed Computing, pages 108-113, 2003.

[9]	 P. Verissimo and A. Casimiro. The Timely Computing Base model and architecture. IEEE
Trans. Computers, 51(8):916-930,2002.

21

