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Abstract 

We consider a system ofautonomous mobile robots that can move in the two dimensional space. These robots 

must gather, infinite time, at a single point in the plane, not predetermined (gathering problem). We consider 

that the robots are equipped with compasses, although these compasses can be inconsistent. In our previous 

work, we proposed an algorithm that gathers two oblivious mobile robots in finite time when the compasses 

diverge by at most 45°. In this paper, we extend this work byproving a tight bound on the degree ofdivergence of 

robots' compasses for solving the gathering problem. More specifically, we present a self-stabilizing algorithm 

to gather, in a finite time, two oblivious robots equipped with compasses that can differ by an angle strictly 

smaller than 180°, and we show that it is a tight bound. 

Keywords: Distributed Mobile Computing, Autonomous Robots, Cooperation and Control, Gathering, 

Tight Bound, Asynchrony, Inaccurate Compasses, Oblivious Computations. 

1 Introduction 

Background. Over the past few years, using a large number of simple and low-cost robots to accomplish 

some cooperative tasks in a distributed fashion has received a lot of attention. This approach is interesting for 

a number of reasons, including decreased costs, faster computation, fault tolerance capabilities, the possibility 

of extendability of the system and the reusability of the robots in different applications. Subsequently, part of 

the focus on the research community has been on how to coordinate such simple mobile robots so that they can 

'Work supported by MEXT Grant-in-Aid for Young Scientists (A) (Nr. 18680007). 



cooperate. Studies can be found in different disciplines, from artificial intelligence to engineering [19,20,22, 

24] (see [23] for a survey). 

Recently, various aspects of this problem have been studied from the point of view of distributed comput­

ing [1, 10, 11, 16] aiming to identify the algorithmic limitations of what autonomous mobile robots can do. 

Conversely, as the common models of multiple robot systems assume simple and relatively weak robots, the 

issue of resilience to failure becomes prominent. 

In our work, in particular, we focus on systems without any prior infrastructure (e.g, no Global Positioning 

System), where robots are deployed in adverse environment, for instance robots working on Mars, and they are 

required to cooperate and self-organize to build such infrastructure in spite of the unreliability of their sensors. 

More specifically, we focus on a very fundamental coordination problem, which is the gathering problem, where 

robots are required to gather at some arbitrary location which is not determined in advance and without agree­

ment on a common coordinate system. Besides, robots are equipped with compasses that are inaccurate. While 

being very simple to express, this problem has the advantage of retaining the inherent difficulty of agreement, 

namely the question of breaking symmetry between robots. Among other things, gathering at a point means tha,t 

the robots are spontaneously able to reach an agreement on an origin. 

Prendpe [12] has shown that gathering oblivious robots cannot be achieved deterministically without addi­

tional assumptions. In particular, if robots can detect multiplicity (i.e., count robots that share the same location) 

gathering is possible for three or more robots. Similarly, gathering of any number of robots is possible if they 

share a common direction, as given by compasses, with no errors. Our work is motivated by the pragmatic stand­

point that (l) compasses are error-prone devices in reality, and (2) multiplicity detection allows for gathering in 

situations with more than two robots. 

In some of our recent work, we have studied gathering with inaccurate compasses [14], and we provided 

a self-stabilizing algorithm to gather, in a finite time, two oblivious robots equipped with compasses that can 

differ by as much as 'Jr / 4. A similar result has been also presented by Imasu et al. [9] at a domestic workshop in 

Japan. However, the question that remains open is what is the tight bound on the degree of divergence of robots , 

compasses in solving the gathering problem? 

Therefore, this paper presents a tight bound on the degree of compasses inaccuracies under which asyn­

chronous mobile robots can gather relying on oblivious computations. In particular, we provide a self-stabilizing 

I algorithm whereby two asynchronous mobile robots can gather in finite time even if their compasses diverge 

by an angle strictly smaller than 'Jr, and we show that it is a tight bound. 

180

Contribution. In this paper, we further study the solvability of the gathering of mobile robots in the face 

of compass inaccuracies. The main result is an tight bound on the degree of divergence of compasses in solving 

the gathering of two asynchronous oblivious mobile robots. In particular, we present an algorithm that solves 

the problem in a finite time when robots' compasses are inconsistent by an angle which is strictly smaller than 
0 

, and we show that this bound is a tight bound. Besides, our algorithm is self-stabilizing. 

Related Work. The gathering problem has been studied extensively in the literature, under different models 

and various assumptions [3,4, 8, 16]. In particular, in all these studies, the problem has been solved only by 

making some additional assumptions regarding robots' capabilities. 

I Self-stabilization is the property of a system which, starting in an arbitrary state, always converges toward a desired behavior [7, 13]. 
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In their SYm model [16], referred to as semi-synchronous model, Suzuki and Yamashita proposed an algo­

rithm to solve the gathering problem deterministically in the case where robots have unlimited visibility. For a 

system with two robots, they have proven that it is impossible to achieve the gathering of two oblivious mobile 

robots that have no common orientation in a finite time. The difficulty of the problem is inherent in breaking 

the symmetry between the two robots. Using the same model, Ando et al. [2] proposed an algorithm to address 

the gathering problem in systems wherein robots have limited visibility. Their algorithm converges toward a 

solution to the problem, but it does not solve it deterministically. 

In his CORDA model [11], referred to as an asynchronous model, Prencipe [12] has shown that there exists 

no deterministic algorithm to solve the gathering problem in finite time with oblivious robots. Cieliebak et al. [4] 

have introduced multiplicity, and have shown that gathering is possible for three or more robots, when they are 

able to detect multiple robots at a single point. Finally, Flocchini et al. [8] have solved the gathering problem 

for any number of robots when they share a common direction, as provided by a compass2 . 

In some of our recent work [14], we studied the solvability of gathering oblivious mobile robots with limited 

visibility in the face of compass instabilities. In particular, we proposed an algorithm that solves the problem in 

a finite time, in the SYm model, where compasses are unstable for some arbitrary long periods, provided that 

they stabilize eventually. 

Recently, Cohen and Peleg [5] also addressed the issue of analyzing the effect of errors in solving gathering 

and convergence problems. In particular, they studied imperfections in robot measurements, calculations and 

movements. They showed that gathering cannot be guaranteed in environments with errors, and illustrated how 

certain existing geometric algorithms, including ones designed for fault-tolerance, fail to guarantee even conver­

gence in the presence of small errors. One of their main positive results is an algorithm for convergence under 

bounded measurement, movement and calculation errors. However, their work does not relate to compasses. 

The gathering problem also has been studied in the presence of faulty robots by Agmon and Peleg [1] in 

synchronous and asynchronous settings. In particular, they proposed an algorithm that tolerates one crash­

faulty robot in a system of three or more robots. They also showed that in an asynchronous environment, it 

is impossible to perform a successful gathering in a 3-robot system with one Byzantine3 failure. Later on, 

Defago et al. [6] confirm the impossibility of gathering in systems with Byzantine robots by showing that the 

impossibility persists in stronger models. They also show the existence of randomized solutions for systems 

with Byzantine-prone robots. 

Finally, a recent study on the gathering of fat robots was done by Czyzowicz et al. [18], in which they 

represented robots by unit discs, and they proposed an algorithm to gather at most four robots in the plane under 

the CORDA model. 

Structure. The remainder of this paper is organized as follows. Sect. 2 describes the system model and 

the basic terminology. In Sect. 3, we describe our gathering algorithm based on compass inconsistencies and 

give a tight bound. In Sect. 4, we prove the correctness of our algorithm. Finally, Sect. 5 concludes the paper. 

2A compass does not only indicate the North direction, but also gives a unified clockwise orientation.
 
3A robot is said to be Byzantine if it executes arbitrary steps that are not in accordance with its local algorithm [17].
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2 System Model and Definitions 

2.1 System Model 

In this paper, we consider the CORDA model of Prencipe [I I], which is defined as follows. The system 

consists of a set of autonomous mobile robots R = {rl' ... ,rn }. A robot is modelled as a unit having compu­

tational capabilities, which can move freely in the two-dimensional plane. In addition, robots are equipped with 

sensor capabilities to observe the positions of other robots, and form a local view of the world. The robots are 

modelled and viewed as points in the Euclidean plane.4 The local view of each robot includes a unit of length, 

an origin, and the directions and orientations of the two x and y coordinate axes as given by a compass. 

The robots are completely autonomous. Moreover, they are anonymous, in the sense that they are a priori 

indistinguishable by appearance, and they do not have any kind of identifiers that can be used during their 

computations. Furthermore, there is no direct means of communication among them. 

We further assume that the robots are oblivious, meaning that they keep information neither on previous 

observations nor on past computations. 

The cycle of a robot consists of four states: Wait-Look-Compute-Move. 

•	 Wait. In this state, a robot is idle. A robot cannot stay permanently idle (see Assumption 2) below. At the 

beginning all robots are in Wait state. 

• Look.	 Here, a robot observes the world by activating its sensors, which will return a snapshot of the 

positions of all other robots with respect to its local coordinate system. Since each robot is viewed as a 

point, the positions in the plane are just the sets of robots' coordinates. 

•	 Compute. In this state, a robot performs a local computation according to its algorithm. The algorithm is 

the same for all robots, and the result of the compute state is a destination point. 

•	 Move. The robot moves toward its computed destination. If the destination is its current location, then 

the robot is said to perform a null movement; otherwise, it is said to execute a real movement. The robot 

moves toward the computed destination, but the distance it moves is unmeasured; neither infinite, nor 

infinitesimally small (see Assumption I). Hence, the robot can only go towards its goal, but the move can 

end anywhere before the destination. 

In this model, the (global) time that passes between two successive states of the same robot is finite, but 

unpredictable. In addition, no time assumption within a state is made. This implies that the time that passes 

after the robot starts observing the positions of all others and before it starts moving is arbitrary, but finite. That 

is, the actual movement of a robot can be based on a situation that was observed arbitrarily far in the past, and 

therefore it may be totally different from the current situation. 

Finally, in the model, there are two limiting assumptions related to the cycle of a robot. 

Assumption 1 It is assumed that the distance travelled by a robot r in a move is not infinite. Furthermore, it 

is not irifinitesimally small: there exists a constant Or > 0, such that, if the target point is closer than Or, r will 

reach it; otherwise, r will move towards it by at least Or' 

4We assume that there are no obstacles to obstruct vision. Moreover, robots do not obstruct the view of other robots and can "see 
through" other robots. 
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YA YBYA YB YA YB 

B 

(a) 0 < a :s Tr, then (b) Tr < a < Tr + (c) Tr + e < a :s 
A moves directly to B. e, then A moves by 2Tr, then A does not 
:Direct move distance IIABII to A': move: No move. 

Side move south. 

Figure 1. Principle of the algorithm. 

Assumption 2 The time required by a robot r to complete a cycle (Wait-Look-Compute-Move) is not infinite. 

Furthermore, it is not infinitesimally small; there exists a constant Er > 0, such that the cycle will require at 

least Er time. 

2.2 Definitions 

---+ 
Definition 1 (Relative north) A relative north N A (t) is a vector that indicates a north direction for some 

---+ 
robot A at some time t. N A is collocated with the local positive y-axis ofrobot A. 

Definition 2 (Inconsistent compasses) Informally, compasses ofa pair ofrobots A and B are inconsistent 
---+ ---+ 

by some angle e iff, the absolute difference between the north indicated by the compass ofA, N A and N B is 

at most eat any time t. In addition, the north directions ofA and B are invariant over time. The special case 

when e= 0 represents pel/ect compasses. 

Formally, compasses are inconsistent by some angle eiff, the following two properties are satisfied: 

---+ ---+ 
1. Inaccuracy: VA, BE R, Vt, ILNA (t)NB(t)1 ::; e, 

I ---+ ---+ I
2. Invariance: VA, Vt, t ,NA(t) = NA(t). 

3 Tight Bound on Gathering with Inconsistent Compasses 

In this section, we provide an algorithm for solving the gathering of two asynchronous oblivious mobile 

robots when their compasses diverge by an angle e< 7r. 

3.1 Algorithm Overview 

The algorithm is described infonnally as follows. Consider a local x-y coordinate system where, the positive 

y-axis points North and hence the positive x-axis points East. Let also the location of the robot be the origin of 

its local coordinate system. 
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Table 1. Combination of movements of robot A and B allowed by the algorithm (8 < 7r). 

Robot B 

Robot A 
O<a::;7r 

(direct move) 
7r<a<7r+8 

(side move south) 
7r + 8 < a ::; 27r 

(no move) 
O<a::;7r 
(direct move) 

0 0 0 

7r<a<7r+8 
(side move south) 

0 0 0 

7r + 8 < a ::; 27r 
(no move) 

0 0 not applicable 

Let A be some robot, and let B be the position at which the other robot is located. We denote by a the angle 

between the y-axis of robot A, namely YA and the segment AB. That is, a = 0 when B is on the positive YA 

axis and a = 7r/2 when B is on the positive x-axis of robot A. Finally, let 8 be the difference in north direction 

indicated by the two local coordinate systems of robot A and B. In our algorithm, we assume that 0 ::; 8 < 7r. 

Then, robot A decides its movement as follows: 

•	 If the angle a between YA and AB in clockwise direction is strictly greater than 0 and smaller than or 

equal to 7r, then robot A moves directly on the segment AB to B. We refer to this move as direct move. 

•	 If the angle a is strictly greater than 7r and smaller than 7r + 8, then robot A moves towards its south by 

the distance IIABII. We will refer to this move as side move south. 

•	 If the angle a is strictly greater than 7r + 8 and smaller than or equal to 27r, then robot A does not move. 

We refer to this move as no move. 

The algorithm is given in Algorithm 1, and Table 1 summarizes the different movements of robot A and B 

(the table is symmetrical). 

Algorithm 1 Gathering two of asynchronous robots, when compass divergence 8 < 7r. 
1:	 if (r sees only itself) then {gathering terminated} 
2: Do_nothingO; 
3:	 else 
4: B := position of the other robot B; 
5: YA := y-axis of robot A; 
6: a := angle between YA and AB in clockwise direction; 
7: if (0 < a ::; 7r) then {direct move} 
8: robot A moves to robot B; 
9: else if (7r < a < 7r + 8) then {side move south} 

10: robot A moves toward its south by distance IIABII; 
11: else if (7r + 8 < a ::; 27r) then {no move} 
12: Do_nothingO; 
13: end if 
14: end if 
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YA YB YA YB 

A A 

B B 

(a) Situation (1). (b) Situation (2). 

Figure 2. Situations of A and B where e= o.
 

YA YB YA YB YA YB YA YB
 

B
 

(a) Situation (3). (b) Situation (4). (c) Situation (5). (d) Situation (6). 

Figure 3. Situations of A and B where e# 0 and both A and B are not at I. 

3.2 Description of Situations 

In this section, we define the different possible situations of robot A and B, when their compasses are incon­

sistent by 0 ::; e< 11'. Without loss of generality, we consider that the north ofrobot B, denoted by YB is always 

on the right hand side of the north of robot A, denoted by YA. Thus, we define the following 10 situations5 : 

1.	 Situation (1): the YA axis of robot A and YB of robot B are equal (YA = YB), and A and B are located 

on the same y-axis (refer to Fig. 2(a». 

2.	 Situation (2): the YA axis of robot A and YB of robot B are parallel. That is, A and B are not located on 

the same y-axis (refer to Fig. 2(b». 

Situations (l) and (2) refer to cases when eis equal to zero. In the following cases, we consider that e is 

other than zero. Let I be the intersection of YA and YB. Then, four cases arise when both A and B are not 

at!. 

3.	 Situation (3): in this situation, A is below I, and B is above I (see Fig. 3(a». 

4.	 Situation (4): in this situation, both A and B are above I (see Fig. 3(b». 

5Ifthe north of robot B is on the left hand side of the north of robot A, then by symmetry we will have the same 10 situations. 
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4 

YA YB YA YB YA YB YB 

(a) Situation (7). (b) Situation (8). (c) Situation (9). (d) Situation (10). 

Figure 4. Situations of A and B where () f= 0 and either A or B is at I. 

5. Situation (5): in this situation, A is above I, and B is below I (see Fig. 3(c)). 

6. Situation (6): in this situation, both A and B are below I (see Fig. 3(d)). 

Finally, we distinguish the following four cases (refer to Fig. 4) when either robot A or B is at I. 

7. Situation (7): in this situation, A is at I and B is above I. 

8. Situation (8): in this situation, A is above I and B is at I. 

9. Situation (9): in this situation, A is at I, and B is below I. 

10. Situation (10): in this situation, A is below I, and B is at I. 

Correctness 

In this section, we will prove that our algorithm solves the problem of gathering two robots in a finite time, 

when their compasses diverge by an angle that is strictly smaller than 7r. To do so, we show how any possible 

situation is transfonned into gathering in a finite time. Fig. 6 shows a diagram of all possible transitions between 

situations. 

Assume without loss of generality that YB is to the right of YA, and 0 ::; () < 7r, then trivially, we derive the 

following lemmas: 

Lemma 1 The situations 1 - 10 (Section 3.2) form a list ofall possible positions ofrobot A and B. 

Lemma 2 Under Algorithm 1, there exists no situation where both robots A and B perform no move. 

In the remainder of this paper, we denote by QA the angle from YA to robot B in clockwise direction with 

respect to the local coordinate system of A, and by QB the angle from YB to robot A in clockwise direction with 

respect to the local coordinate system of B. We also denote by I, the intersection of YA and YB. 

Lemma 3 In afinite number ofcycles, Situation (1) and Situation (10) are transformed into gathering. 
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(a) Initially, f3 is equal to 1l" /2. (b) Initially, f3 is an obtuse angle. 

Figure 5. Robot B stops (forever) at Bn in finite number of steps. 

PROOF. Let two robots A and B be in Situation (1). Without loss of generality, let A be above B. According 

to the algorithm, as long as A is above B, B perfonns no move because aB = 27r. Consider now the movement 

of robot A. We have aA = 7r. Then, A perfonns a direct move to B. By Assumption 1, in one cycle, A travels 

at least I5r . Consequently, A reaches B in a finite number of steps. 

The proof of transfonnation of Situation (10) to gathering is similar to the proof of Situation (1), and thus 

omitted here. DLemma 3 

Lemma 4 In afinite number ofcycles, Situation (2) is transformed into Situation (1) or to gathering. 

PROOF. By the algorithm, B moves on YB by the distance IIABII toward its south, and A perfonns a direct 

move to B. First, it is easy to see that if A moves to the position of B, and B has already left its position (by 

moving on YB toward its south), then, since the cycle of A and B is finite, they will reach Situation (1) in finite 

time. 

Assume now tlle worst case, where B is activated infinitely many times, however A is not. Since, by the 

algorithm B moves on YB toward its south by IIABII, then, we need to show that there will be a time after which 

Bstops (forever) moving toward its soutll, and this happens in finite time. 

Let f3 be the angle between the segment AB and YB in clockwise direction. The proof consists of showing 

tllat: (l) f3 is monotonically decreasing when B moves, and (2) f3 becomes less than 7r - ein finite number of 

steps. 

Consider first the situation in Figure 5(a), where AB is perpendicular to YB. 
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Assume that B is activated at time t, while A is not. By Assumption 1, in the worst case, B moves toward 

its destination on YB by 6r > O. Let Bl be the new destination of B. Consider the triangle L'1(A, B, Bd, then 

it is easy to see that the angle at B l is less than the angle at B. Let B2 be a new destination of B, which is at 

distance 6r from Bl . Then, it is also easy to observe that the angle at B2 is less than the angle at Bl . We thus, 

conclude that j3 is is monotonically decreasing when B moves on YB toward south. 

Now we will show that j3 becomes less than 7r - B in finite number of steps. Let n be the maximal number of 

steps that robot B takes in order for j3 to become less than 7r - B. 

We assume the worst case where in every step (cycle), B moves on YB by 6r . Let Bn be the position at which 

robot B stops after n cycles. This means that, at B n , j3 < 7r - B. Then, we get: 

tan(7r - B) AB/BBn 

AB/n.5r 

Thus, n = AB/ tan(7r - B) .6r . We have, AB > 0 by hypothesis, and it is a constant. Also, 6r is a constant. 

By definition, 7r - B is a strictly positive value. Consequently, tan(7r - B) > 0, and thus n is finite. 

Now consider the situation in Figure 5(b), where the angle formed by AB and YB is an obtuse angle (7r/2 < 
j3 < 7r). Let Bl be the perpendicular to YB starting at A. 

In this case, from above, we can conclude that from B l to Bn , j3 is monotonically decreasing, and j3 takes 

n finite steps to become smaller than 7r - B. Besides, by considering the triangle L'1(A, B, B l ), it is easy to 

show that j3 is monotonically decreasing while B is moving toward Bl. In addition, robot B takes finite number 

of steps to reach Bl because IIBBll1 is less than IIABII, which is finite, and B travels at least 6r in one cycle. 

Consequently, from B to Bn , j3 is monotonically decreasing and, j3 becomes less than 7r - Bin finite number of 

steps. 

Now since B has stopped moving in finite number of steps at B n , eventually A will do a direct move to B. 

Since the distance IIABII is finite, and by Assumption I, A travels at least 6r > 0 in one cycle, thus, A reaches 

B in a finite number of cycles. DLernrna 4 

Lemma 5 In afinite number ofcycles, Situation (6) is transformed into Situation (10) or to gathering. 

The proof of this lemma is similar to the proof of Lemma 4, and thus omitted. 

Lemma 6 In afinite number ofcycles, Situation (3) is transformed into Situation (5) or to gathering. 

PROOF. 

Let A and B be in Situation (3). By the algorithm, A performs a direct move to B, and B performs a direct 

move to A. Assume first that A performs a look operation at time t, while B does not. Subsequently, if B does 

not perform any look operation while A is moving toward it, then, A will gather with B at position B in finite 

time. Similarly, both robots gather at A in finite time if B is activated while A is not. 

Now we will show how Situation (3) can be transformed to Situation (5). The proof consists of showing that 

there will be a finite time, where A is to the left of YB, and B is to the left of YA. 

Let y~ be the parallel to YA passing through B. Let also y~ be the parallel to YB passing through A. 

10 



Assume that A perfonns a look operation at time t, and B also perfonns a look operation at time t' 2: t. 

Then, by the algorithm, A moves to B(t), and B moves to A(t'). By Assmnption 2, the cycle ofarobotis finite, 

and the distance IIABII is finite. Then, in a finite nmnber of steps, A and B exchange positions on the segment 

AB. Let til be the time when this happens. Then, at time til, B is to the left of YA' and also A is to the left of 

Y~. Let also I' = YA(t") n YE(t"), thus at time til, A is above I', and B is below I'. This tenninates the proof. 

DLemma 6 

Lemma 7 In a finite number ofcycles, Situation (4) is transformed into Situation (5) or Situation (8) or 

Situation (9) or to gathering. 

PROOF. 

By the algorithm, A executes a direct move to B, and B perfonns a side move to south. We distinguish the 

following cases depending on the activation of A and B: 

•	 Transformation to Situation (5) or (8): Let B perfonn a look operation at time t, while A remains inactive. 

Assume also that IIABII > IIIBII, where I = YA n YE. Then, first, if B stops at I, then A and Benter 

Situation (8), where B is at I and A above I. Trivially, this transfonnation is done in finite time by 

Assumption 2. Now, if B stops after the point I, then B is below I. Subsequently, A and Benter 

Situation (5), where A is above I, and B is below I. This transfonnation is also done in finite time by the 

same argument. 

•	 Transformation to Situation (9): Let B perfonns a look operation at time t. Then, B executes a side move 

south. Let t' be the time when robot B passes by I. Suppose that A also perfonns a look operation at 

time t' and sees B at position I. Then, A perfonns a direct move to I (since at t', QA = n). Let til be the 

time when A finishes its move to I. Consequently, at time til, A and B enter Situation (9), where A is at 

I, and B is below I. 

•	 Transformation to gathering: This case is trivial. A and B gather in finite time at B by Assumption 1 if A 

perfonns a look operation before B, and during the movement of A to B, robot B does not perfonn any 

look operation. 

DLemma 7 

Lemma 8 In afinite number ofcycles, Situation (8) is transformed into Situation (5) or Situation (9) or to 

gathering. 

The proof of this lemma is similar to the proof of Lemma 7, and thus omitted here. 

Lemma 9 In afinite number ofcycles, Situation (5) is transformed into Situation (6) or Situation (9). 

PROOF. Let A and B be in Situation (5). Then, by the algorithm, both A and B execute side move south. The 

proofis straightforward. If A stops at I, then we get A and B in Situation (9) because B remains below I. This 

transfonnation is done in finite nmnber of steps by Assmnption 1. If A stops after I, then A is below I. Since 

B is also below I, then A and B reach Situation (6) in a finite number of steps by similar arguments. DLemma 9 
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Lemma 10 In afinite number ofcycles, Situation (7) is transformed into Situation (9) or to gathering. 

PROOF. 

Let A and B be in Situation (7), where B is to the right of YA, and A is on YE. By the algorithm, A performs 

a direct move to B, and B performs a direct move to A. Trivially, if one robot, say A, is activated and moves to 

the position of B, while B does not perform any look operation during the movement of A toward it, then both 

A and B gather at B in finite time by Assumption 2. 

Now consider that both A and B are activated simultaneously. We will show that they will reach Situation 

(9) in finite time. The proof consists of showing that there will be a finite time, where B arrives at the left of YA. 

Assume that A performs a look operation at time t, and B also performs a look operation at time t ' 2: t. 

Then, by the algorithm, A moves to B(t), and B moves to A(t/). By Assumption 2, the cycle of a robot is finite, 

and the distance IIABII is finite. Then, in a finite number of steps, A and B exchange positions on the segment 

AB. Let t" be the time when this happens, and let I' = YA(t") n YE(t"). Then, at time t", B is to the left of 

YA(t"). Since A EYE, then A(t") = I(t"). Thus, at time t", B is below I', and A is at I', which represents 

Situation (9). This terminates the proof. DLemma]O 

Lemma 11 In afinite number ofcycles, Situation (9) is transformed into Situation (6) or Situation (10). 

PROOF. Let A perform a look operation at time t. Then, A performs a side move south. Let t ' be the time when 

A finishes its move. At time t', A is below I because A must move at least by Or toward its target, according to 

Assumption 1. Then, if B does not perform any look operation between t and t', A and B enter Situation (6) 

(both below I). 

Now, assume that B performs a look operation at time t" > t, and that at t", A already has left I. Then, by 

the algorithm B executes a direct move to A(t"). Let tf be the time when B finishes its move. Consequently, 

at time tf' B is at I, and A is below I, which represents Situation (10). Since this transition is done in a finite 

number of steps, the lemma holds. DLemma ]] 

Theorem 1 Algorithm 1 correctly solves the gathering of two asynchronous mobile robots in finite time as 

long as their compasses diverge by e< 7r. 

PROOF. Lemma 1 states the different situations of robot A and B when 0 ~ e < 7r. From Lemma 3 to 

Lemma 11, we show that every situation is transformed to gathering in finite time. Also, the diagram of all 

possible transitions between situations depicted in Fig. 6 shows no cycles. Thus, the theorem holds. DTheorem] 

Now, we can directly derive the following corollary from Theorem 1, and the fact that the problem is impos­

sible when eis equal to 7r because it is as if robots do not have compasses. 

Corollary 1 e< 7r is a tight bound on solving the gathering oftwo oblivious mobile robots with inconsistent 

compasses. 
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Lemma 4Lemma 5 Lemma 3 

Figure 6. Diagram of possible transitions between situations. 

Conclusion 

In this paper, we presented a tight bound on the degree of divergence of robots' compasses for solving the 

gathering of two asynchronous memory-less mobile robots. In particular, we gave an algorithm that solves the 

problem in finite time when compasses can be inconsistent by an angle strictly smaller than 1800 
, and we show 

that this bound is a tight bound. Also, our algorithm is self-stabilizing. 

. The natural problem of generalizing our algorithm to an arbitrary finite number of robots remains open. We 

conjecture that a smaller bound on the degree of divergence of the compasses is required. Another interesting 

issue to investigate is to consider the variance in the north directions indicated by compasses over time, and how 

it affects the solvability of the gathering problem. This also remains an open question. 
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