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Abstract 

Failure detection is a fundamental issue for supporting dependability in 
distributed systems, and often is an important performance bottleneck in pro­
viding generic service (similar to IP address lookup) in the event of node 
failure. It is very necessary to find an acceptable, optimized failure detector 
(FD) before the FD is actually implemented. Ensuring acceptable quality of 
service (QoS) is made difficult by the relative unpredictability of the network 
environment. This paper compares QoS of several parametric and adaptive 
failure detection schemes. Also, we introduce an optimization over the exist­
ing methods, called exponential distribution failure detector (ED FD), which 
significantly improves QoS, especially in the design of real-time mission­
critical systems. Extensive experiments have been carried out over several 
kinds of networks (a cluster group, a wired LAN, a wireless LAN, and a 
WAN). The experimental results have shown the properties of the adaptive 
FDs, and demonstrated that the proposed ED FD outperforms the existing 
FDs in terms of short detection time, low mistake rate and high query accu­
racy probability. 

keywords: Application requirements, Distributed computing, Failure detector, 
Fault tolerance, Quality of Service 

Introduction 

Fault-tolerant systems are designed to provide reliable and continuous services for 
distributed systems despite the failures of some of their components [1-5]. As an 
essential building block for fault-tolerant systems, failure detector (FD) plays a 
central role in the engineering of such dependable systems. It is very necessary to 
compare the existing FDs and find an optimized FD that can detect failures in a 
timely and correct way, before generic FD service can actually be implemented. 



The design of dependable FDs is a hard task, mainly because the statistic be­
havior of communication delays is indefinable. Furthermore, asynchronous (i.e., 
no bound on the process execution speed or message-passing delay) distributed 
systems make it impossible to determine precisely whether a remote process has 
failed or has just been very slow [6]. 

FDs can be seen as one oracle per process. An oracle provides a list of pro­
cesses that it currently suspects to have crashed. And the unreliable FD [6] can 
make mistakes by falsely suspecting correct processes or trusting crashed pro­
cesses. It is of utmost importance to ensure acceptable quality-of-service (QoS) 
of unreliable FD, whose parameters are properly tuned for the most desirable QoS 
to be provided by the upper layers, because the QoS of FD greatly influences the 
QoS that upper layers may provide. Many fault-tolerant algorithms have been pro­
posed (e.g., [7-10]) based on unreliable FDs. 

In order to quantify the QoS of an FD, a set of metrics is proposed by Chen et 
al. in [11]: how fast it detects actual failures and how well it avoids false detec­
tions. In order to improve the QoS ofFD, a lot of adaptive FDs have been proposed 
[12-15], such as Chen FD [11], Bertier FD [12, 16], and the 'P FD [13]. Chen et 
al. in [11] proposed several implementations relying on the probabilistic behavior 
of the network system. The protocol uses arrival times sampled in the recent past 
to compute an estimation of the alTival time of the next heartbeat. The timeout is 
set according to this estimation and a constant safety margin, and it is recomputed 
for each interval. This technique provides a good estimation for the next arrival 
time. Furthermore, this paper assumed that the communication history was driven 
by uncorrelated samples with ergodic stationary behavior, and message delays fol­
lowed some probabilistic distribution. However, it uses a constant safety margin, 
because the authors estimate that the model presents probabilistic behavior [12]. 
Then, Bertier FD [12, 16] provided an optimization of safety margin for Chen FD. 
It used a different estimation function, which combined Chen's estimation with 
Jacobson's estimation of the round-trip time (RTT). Bertier FD was primarily de­
signed to be used over wired local area networks (LANs), where messages are 
seldom lost [13]. The self-tuned FDs proposed in [17] and [18] use the statistics 
of the previously-observed communication delays to continuously adjust timeout. 
In other words, they assume a weak past dependence on communication history. 
These three FDs dynamically predict new timeout values based on observed com­
munication delays to improve the performance of the protocols. 

Although the above FDs have important technical breakthroughs, they have 
obtained little success so far. So far as we know, there are two main reasons [13]: 
(1) an FD provides an information list of suspects about which processes have 
crashed. This information list is not always up-to-date or correct (e.g., an FD 
may falsely suspect a process that is alive). The reason, in practice, is due to the 
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high unpredictability of message delays, the dynamic and changing topology of 
the system, and the high probability of message losses. (2) the conventional binary 
interaction (i.e., trust and suspect) makes it difficult to meet the requirements of 
several distributed applications running simultaneously. In practice, many classes 
of distributed applications require the use of different QoS of failure detection to 
trigger different reactions (e.g., [19-21]). For instance, an application can take 
precautionary measures when the confidence in a suspicion reaches a given low 
level, while it takes more drastic actions once the doubt rises above a higher level 
[3]. However, the traditional output of the FDs (Chen FD [11] and Bertier FD [12, 
16]) is of binary nature l . 

To resolve these questions, Hayashibara and Detago et al. [13] developed a tp 

FD, which assumes that the inter-arrival times follow a normal distribution, and 
computes a value tp with a scale that changes dynamically to match recent network 
conditions (i.e., this FD outputs suspicion level on a continuous scale, instead of 
traditional binary information. This is different from the other FDs). From the 
statistic analysis of the experimental results (see 4.2), we found the normal distri­
bution is not a reasonable assumption for the approximation of the heartbeat inter­
arrival time, especially in large scale distributed networks or unstable networks 2 . 

Therefore, this paper proposes a novel estimation of the distribution for the 
inter-arrival time, called the exponential distribution failure detector (ED FD), as 
an extension of tp FD [13]. Extensive experimental results have demonstrated that 
the proposed ED FD outperforms the existing adaptive failure detectors. 

Briefly speaking, the ED FD works as follows. The protocol uses a sliding 
window to maintain the most recent samples of the arrival time, similarly to con­
ventional adaptive FDs [3, 11-12]. The distribution of past samples in the sliding 
window is used as an approximation for the probabilistic distribution of future 
heartbeat messages. With this information, the suspicion level ed is computed 
using a scale that changes dynamically to match recent network conditions. By 
design, ED FD can adapt well to changing network conditions, and the require­
ments of any number of concurrently running applications. The experimental re­
sults demonstrated that ED FD provides the flexibility required for implementing 
a truly generic failure detection service. 

Therefore, the contribution of this paper is as follows. Firstly, an optimized 
accural FD, called ED FD, is proposed. Secondly, we have comparatively evaluated 
our failure detection scheme with existing schemes (Chen FD [11], Bertier FD [12, 
16], and tp FD [13]) by extensive experiments in four cases: a cluster group, LAN, 

1Bertier FD and Chen FD were aimed at other problems, which they both solved admirably well. 
2Here the unstable networks means the networks have the high unpredictability of message de­

lays, the great dynamic changing topology of system, and the high probability of message losses. 
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and wide area network (WAN), and wireless network. The experimental results 
have shown the properties of the different adaptive FDs, and demonstrated that the 
proposed ED FD outperforms the existing FDs in terms of short detection time, 
low mistake rate and high query accuracy probability. 

The remainder of the paper is organized as follows: In Section 2, the sys­
tem model and failure detection QoS metrics are introduced. Section 3 introduces 
several adaptive FDs. In Section 4, we analyze the sample data and present an op­
timization of i.p FD. Section 5 carries out a lot of experiments in different network 
conditions (cluster group, LAN, wireless, and WAN). In Section 6, we discuss 
more work related to FD. Finally, we conclude our work and discuss further work 
in Section 7. 

2 System model and basic concepts 

2.1 System model 

We consider a partially synchronous distributed system consisting of a finite set 
of processes II = {pl,p2, P3, ... ,Pn}. A process may fail by crashing, here a 
crashed process does not recover. A process behaves correctly (i.e., according to 
the specification) until it (possibly) crashes. 

We assume the existence of some global time (unbeknownst to processes) de­
noted by global stabilized time (GST), and that processes always make progress, 
furthermore, at least 6 > 0 time units elapse between consecutive steps (the pur­
pose of the latter is to exclude the case where processes take an infinite number of 
steps in finite time) [14]. 

For simplicity and without loss of generality, [13-14] consider a simple system 
model that consists of only two processes called P and q, which are arbitrarily taken 
from the large system II, where process q monitors process P (see Figure 1). P may 
periodically send a message to q, or is subject to crash. Here the sending period is 
called the heartbeat interval !:it. Process q suspects process P if it does not receive 
any heartbeat message from P for a period of time determined by the freshpoint. In 
the sequel, we consider the same system model. 

In Figure 1, di is the transmission delay of heartbeat ffii from P to q. For 
the incoming heartbeat ffij (1 ::; j ::; i), q dynamically gives a response based 
on the new freshpoint F Pj, which is according to network conditions (e.g., the 
transmission delay dj ). This model describes three cases that may occur. The first 
one is that heartbeat message ffil from the sending time CTI of process P arrives 
at q before q's freshpoint FPI, then q trusts P from the ffil arrival time (here we 
assume that P is suspected in the initial case). The second case is that heartbeat ffi2 

from P arrives at q after q's freshpoint FP2, then q suspects P from FP2 until the 
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Figure I: Basic heartbeat failure detection model. 

m2 arrival time. In the third case, after the sending time (Ji, p crashes, then q waits 
for that heartbeat mi+l until its freshpoint F Pi+l, then q starts to suspect p. 

In a common belief, the period ~t is a factor that contributes to the detection 
time. However, Muller [22] shows that, on several different networks, ~t is little 
determined by QoS requirements, but much by the characteristics of the underlying 
system, and [13] suggests that there exists, with every network, some nominal 
range for the parameter ~t with little or no impact on the accuracy of the FD. 

In the conventional implementation of this model, the freshpoint is fixed. If the 
time between two next freshpoints is too short, the likelihood of wrong suspicions 
is high, though crashes are detected quickly. In contrast, if the time is too long, 
there is too much detection time, although there are fewer wrong suspicions. 

An alternative implementation of this model sets the freshpoints based on the 
transmission delay of the heartbeat. The advantage is that the maximal detection 
time is bounded, but the disadvantage is that it relies on physical clocks with neg­
ligible drift3 and a shared knowledge of the heartbeat interval ~t. The drawback 
is a serious problem in practice, when the regularity of the sending of heartbeats 
cannot be guaranteed, and the actual sending interval is different from the target 
one (e.g., timing inaccuracies due to irregular OS scheduling) [13]. 

The two methods have advantages and disadvantages, it is difficult to conclude 
which is better [13]. 

FDs are classified in a number of classes depending on two properties termed 

3A straightfOIward implementation of clocks requires synchronized clocks. Chen et aI. [II] 
shows the method to do it with unsynchronized clocks, but this still requires the drift between clocks 
to be negligible. 
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the completeness and accuracy properties. Completeness requires that an FD even­
tually suspects every process that eventually crashes. Accuracy restricts the mis­
takes that an FD can make. Here our ED FD has the properties of the FDs of 
class OP (eventually perfect), that is sufficient to solve the Consensus problem. 

2.2 Failure detection QoS metrics 

To evaluate the QoS of the adaptive FDs quantitatively, we use three main QoS 
metrics (i.e., detection time, mistake rate, and query accuracy probability) that 
are independent [11]. The first metric measures the impact of the model on the 
speed of the FD, and the other two metrics measure the impact on its accuracy. In 
detail, considering two processes p and q where q monitors p, the QoS of the FD 
at q (called f dq) can be determined from its transitions between the "trust" and 
"suspect" states with respect to p (see Figure 2). 

p up 

I dow, 

~ ,"'p~t I~"i nl---­I 
1 I 1 1 

: T 1 r 1 TD :I. M.~ :..: .,
1 
1 1 
1 1TMR 
~.. .: 

Figure 2: Basic Metrics for the QoS evaluation of an FD [11]. 

Detection Time (TD): This is a random variable that represents the length of a 
period from the time when p starts crashing to the time when q starts suspecting p 
permanently by f dq . 

Mistake Rate (MR) This is a random variable that represents the number of 
mistakes that failure detector makes in a unit time, i.e,. it represents how frequent 
failure detector makes mistakes. 

Query Accuracy Probability (QAP) This is a probability that, when queried 
at a random time, the FD at q indicates correctly that process p is up [11]. 

Failure Detection QoS Definition Based on [23], a particular FD performance 
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is defined in tenTIS of its completeness and accuracy properties, and the QoS pro­
vided by each of its constituent failure detection modules is a tuple [23]: 

QoS = (TD, MR, QAP). 

The QoS quantifies how fast a detector suspects a failure and how well it avoids 
false detection. 

Relationship of OP and OPac Based on [14], an Accrual FD OPac has the 
two properties: (1) If process p is faulty, then eventually, the suspicion level is 
monotonously increasing at a positive rate. (2) If process p is correct, the process 
p always make progress in finite step after some global time, that means, the q 
eventually receives the heartbeat message from p. Furthermore, Defago et al. [14] 
proved that an Accrual FD OPac and a binary one of class OP have the same 
computational power, and the two FDs can transform each other. 

3 Adaptive failure detectors 

Recently, there are many research studies focused on the adaptive FD. The goal 
of adaptive FDs is to adapt to changing network conditions and application re­
quirements [13]. In general, most adaptive FDs are based on a heartbeat strat­
egy (although nothing precludes a query-response interaction style). Several main 
adaptive FDs work as follows. 

3.1 Chen FD 

Chen et al. [II] proposed an approach based on a probabilistic analysis of network 
traffic. The protocol uses arrival times sampled in the recent past to compute an 
estimation of the arrival time of the next heartbeat. The timeout is set according to 
this estimation and a safety margin, and recomputed for each interval. 

The algorithm is described as follows: Assume process p sends heartbeat mes­
sages periodically to process q (see Figure 1). The n most recent heartbeat mes­
sages in a slide window, denoted by ml, m2, ... , m n , are considered by process q. 
AI, A 2 , ... , An are their actual receiving times according to q's local clock. When 
at least n messages have been received, the theoretical arrival time EA(k+l) can 
be estimated by: 

1 
L 

k 

(Ai - b. i * i) + (k + 1)b.i , (1)
EA(k+l) = :;:;: i=k-n-l 

where b. i is the sending interval. The next timeout delay (which expires at the next 
freshness point T(k+l)) is composed of EA(k+l) and the constant safety margin (Y. 
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One has 

T(k+l) = a + EA(k+l)· (2) 

This technique provides an estimation for the next arrival time based on a con­
stant safety margin. 

3.2 Bertier FD 

Bertier et al. [12, 16] estimated the safety margin dynamically based on Jacob­
son's estimation of the RTI [23]. Bertier FD adapts the safety margin each time 
it receives a message. Simply speaking, the adaptation of the margin a is based 
on the variable error in the last estimation. The recursive algorithm [12, 16] is as 
follows: 

errork = A k - EA(k) - delaY(k) ' (3) 

delaY(k+l) = delaY(k) + "t. errOr(k), (4) 

var(k+l) = var(k) + "t. (lerrOr(k)l- Var(k))' (5) 

a(k+l) = (3. delaY(k+l) + ¢ . var(k), (6) 

and 

T(k+l) = EA(k+l) + a(k+l), (7) 

where the parameter "t represents the importance of the new measure with respect 
to the previous ones, the variable delay represents the estimate margin, and var 

estimates the magnitude of errors. {3 and ¢ are used to adjust the variance var. 

Typical values {3, ¢ and "t are 1, 4 and 0.1, respectively. Bertier's estimation pro­
vides a short detection time. 

3.3 The c.p FD 

Different from the above schemes, the cp FD [13] outputs a suspicion level on a 
continuous scale, instead of providing information of a conventional binary nature 
(trust or suspect). The characteristic and the principal merit of this approach are 
that it favors a nearly complete decoupling between application requirements and 
the monitoring of the environment. The cp FD can not only dynamically adapt 
to current network conditions, but also satisfy different application requirements 
simultaneously based on the suspicion level expressed. 

The specific implementation is as follows: Let Tl ast denote the time when the 
most recent heartbeat was received; t now is the current time; and Plater (t) denotes 
the probability that a heartbeat will arrive more than t time units after the previous 
one. Then, the value of cp is calculated as follows: 

cp(tnow ) = -loglO(Plater(tnow - Tlasd)· (8) 
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Here, 
_ 1 _ (X_~)2 _1+00 

Plater(t) - In.:: e 2" dx - 1 - F(t), (9) 
(7V 27r t 

where F(t) is the cumulative distribution function of a normal distribution with 
mean f.1 and variance (72. Then, the value of <p at time tnow is computed by applying 
the Equation (8). 

When the value of <p is returned to the applications, every application compares 
the value of ¢ with its threshold <1>. If <p > <1>, some action is triggered. Therefore, 
for different applications with different <1>, different explanations are provided; for 
the same application, a different value of <p can trigger different actions. 

4 Exponential Distribution Failure Detector 

In this section, firstly an optimized ED FD over <p FD is presented, then we explain 
why to do such an optimization. Finally, we give a more precise description on the 
implementation of ED FD. 

The <p FD can output suspicion information on a continuous scale, and can 
adapt equally well to changing network conditions and the requirements of any 
number of concurrently running applications. But we found the normal distribution 
in <p FD (see Figure 3(a)) is not a reasonable assumption for the approximation of 
the heartbeat inter-arrival, especially, in large scale distributed networks or unstable 
networks. Thus, this paper develops the optimization over <p FD, called ED FD, to 
estimate the arrival time of the coming heartbeat. 

4.1 ED FD Algorithm 

In this subsection, We assume that inter-arrival times follow an exponential dis­
tribution (ED) (see Figure 3(b)). In the next subsection, we will explain why this 
assumption is more reasonable than <p FD. 

The ED FD implements the abstraction of an accrual FD in which the suspi­
cion level is given by a value called ed, expressed on a scale that is dynamically 
adjusted to reflect current network conditions. Then, the value of suspicion level 
ed is calculated as follows. 

def )ed (tnow ) = F(tnow - tlast , (10) 

where the F(t) is an exponential distribution function, and one has 

F(t) = 1 - e-At , (11) 
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Figure 3: Probability distribution vs. inter-arrival time: (a) 
for <t> FD [13]; (b) for ED FD, and here p. = 1/>". 

where t > 0, and>" = 1/P. (p. is the average value of the past sampled inter-arrival 
times). 

In this scheme, when TD = p., it corresponds to a higher probability (1 - l/e) 
than 0.5. And when TD > p., the sample data has larger probability than TD < 
p.. Then this scheme can catch the most sample data using a high probability, 
especially, the sample data that has the maximum probability of inter-arrival time. 
It is very reasonable and important for a good approximation. 

From the theory view, the ED FD satisfied the property of accrual failure detec­
tor [14], accruement property and upper bound property. Here our ED FD belongs 
to the class OPac, that is sufficient to solve the Consensus problem. 

Theorem 1 ED FD implements an FD of class OPac, on condition that the 
system is in accordance with the system model defined in Section 2 (see the proof 
of Theorem 1 in the Appendix). 

4.2 Why ED FD is an optimization over ep FD 

This section gives a comparative analysis of ED FD and 'P FD based on the statistics 
of real sample data in several kinds of networks (a cluster group, wired LAN, WAN, 
and wireless), and shows the probability distribution properties of arrival interval 
periods. Based on the properties, we analyze the normal distribution in 'P FD [13], 
and then present the improved exponential distribution scheme over 'P FD. 

4.2.1 Experiment setting and method 

For a wired LAN case, the sending host was located at Tsurugi, Ishikawa, Japan, 
and the receiving host was located at Japan Advanced Institute of Science and 

10 



Technology (JAIST), Nomi, Ishikawa, Japan. There were 347,940 samples re­
ceived (about I hour and 6 minutes). We find the average inter-arrival time is 
10,782 /-is (min.: 5 /-is; max.: 488,865 /-is). Then from the minimum to the maxi­
mum, every 50 /-is as a unit, we can get 9,778 sample units, and the last one only 
has 10 /-is time length. We can find the number is different in every statistic unit. 
So the total sample data divided by the different number in every time unit is a 
probability for this time unit. The other experimental setting for the wired LAN is 
shown in sub-Section 5.3. 

For the cluster, wireless, and WAN cases, we used the same method to deal 
with the sample data, except that the WAN case used 100 /-is as a statistic unit. 
Furthermore, the relevant experimental setting and sample data for cluster, wireless 
and WAN cases are shown in sub-Sections 5.1, 5.2, and 5.4, respectively. 
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Figure 4: The experimental results of probability distri­
bution vs. detection time: (a) for a cluster group, (b) for 
wireless, (c) for wired LAN, (d) for WAN. 
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4.2.2 Statistical experimental results 

Based on the above experimental setting and statistic method, we got the experi­
mental results of probability distribution vs. average detection time (see Figure 4). 
In each sub-figure of Figure 4, the circle point indicates the average value of all 
inter-arrival times. It is clear that, in general, probability values near the average 
value of all inter-arrival times are higher than those far from the average value, and 
most samples have an inter-arrival time that is near the average value. Furthermore, 
the inter-arrivaltime with the maximum probability is larger than the mean of all 
inter-arrival times, except that the inter-arrival time is similar to the mean orall 
inter-arrival times in wireless case. 

4.2.3 The statistical analysis of sample data 

There is an assumption that heartbeat inter-arrival times are influenced by a lot of 
independent unknown factors (central limit theorem) [13]. Chen el al. [II] and 
Hayashibara et al. [13] presented the estimation of the distribution for inter-arrival 
times: they follow a normal distribution. And the probability that a given heartbeat 
will arrive more than t time units later than the previous heartbeat is expressed in 
Equation (9). 

Figure 3(a) shows the probability distribution vs. inter-arrival time for 'P FD 
[13]. and /1 is the mean of all inter-arrival times. It is clear that the inter-arrival time 
is /1 with 0.5 probability. Furthermore, when inter-arrival time is larger than /1, the 
probability is less than 0.5. Thus, the sample data whose inter-arrival time is larger 
than /1 have less probability than that whose inter-arrival time is less than /1. So the 
inter-arrival time with the maximum probability in Figure 4 (inter-arrival time is 
less than /1) has a less probability in 'P FD. It is obvious that the assumption does 
not present a reasonable probability for the inter-arrival time with the maximum 
probability, and the sample data whose inter-arrival time is larger than /1 should 
have larger probability. For example, in 'P FD, t = °corresponds to a higher 
probability than t = /1, it is not reasonable. 

In contract, ED FD (see Figure 3(b» resolves above drawbacks. When 
inter-arrival time equals /1, the corresponding probability of inter-arrival time is 
(1 - lie), it is much larger than 0.5. And when t = 0, the probability is 0, it is 
reasonable. Thus, ED FD estimation has a little less estimation errors than 'P FD 
estimation. 

Furthermore, we found local sample data in a window has similar statistical 
results as shown in Figure 4, and 'P FD used the estimation Equations (8-9) to 
compute the value 'P for the upper applications. Obviously, ED FD is more reason­
able than'P FD. 
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4.3 Implementation of ED FD 

This section first describes the architecture of ED FD, then presents the specific 
implementation algorithm of ED FD. 

4.3.1 The architecture of ED FD 

Conceptually, the implementation of ED FD on the receiving side q can be decom­
posed into three basic parts: Monitoring, Interpretation, and Action [13]. 

In traditional timeout-based FDs (Chen FD [II] and Bertier FD [12, 16]), the 
monitoring and the interpretation are combined within the FD, and the output is 
binary. While ED FD, as an accrual FD, provides a lower-level abstraction that 
avoids the interpretation of monitoring information. Some value, the suspicion 
level associated with each process, is then left for the applications to interpret [13]. 

Application processes set a suspicion threshold according to their own QoS 
requirements: a low threshold generates many wrong suspicions but with a quick 
detection of an actual crash; Conversely, a high threshold is prone to generate fewer 
mistakes, but needs more time to detect actual crashes. 

4.3.2 The implementation of ED FD 

As an accrual FD, the method used in ED FD is quite silllple. After warm-up 
period, when a new heartbeat arrives, the inter-arrival time is put into a sampling 
slide window, and at the same time, the former oldest one is pushed out of the 
sampling window. Then the arrival time in the sampling window is used to compute 
the distribution of inter-arrival times, and get the average inter-arrival time I.t in 
this slide window. After that, based on Equation (10) and Equation (11), we can 
compute the current value of ed. At last, applications compare the ed value and 
its threshold, then they will carry out some actions, or start to suspect the process. 
The detail information for the implementation of ED FD is shown in Figure 5. 

5 Performance evaluation 

In this section, we evaluate and comparatively analyze the performance of ED FD, 
<p FD [13], Chen FD [II], and Bertier FD [12, 16] in a cluster, a wireless network, 
a wired local area network (wired LAN) and a wide area network (WAN). 

The experiments are carried out with two computers. One (process p) sends 
messages periodically using UDP, and the other one (process q) receives the mes­
sages from process p. In every experiment, the heartbeat sending and arrival times 
are logged into the log files. These log files are replayed for each FD scheme to 

13 



Initialization:
 
W 5: window size;
 
At: sending interval;
 
tlast = 0; /*Last arrival time of last heartbeat*/
 
W in_arr[ ] = -.1; /*empty slide window for inter­

arrival times*/
 
Process p (Sender):
 
For all i 2 1, at time (i· At): Send heartbeat HTi to
 
q;
 
Process q (Receiver):
 
Task 1: If q didn't receive message during a certain
 
time period of q's clock
 

- Increase ed; /*Suspect p*/ 

Task 2: Upon receiving heartbeat HTj from p 

- t crt = clock( ); /*Get the current time*/ 

- Win_arr[] = (tcrt - tlast); 

- .A = W 51 2:~:~-WS+l Win_arr[i]; 

- ed = 1 - e-A*(tcrt-tlast)., 

- tlast = t crt ; 

Application k: 

- Compare ed with the threshold E~ (from ap­

plication requirement);
 

( 
- Carry out some actions or start to suspect p; 

Figure 5: Implementation of ED FD. 
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ensure the fairness of comparison. That means all the FDs are compared with the 
same experimental conditions: the same network model, the same heartbeat traf­
fic, and the same experiment parameters (sending interval, slide window size, and 
communication delay, etc.). Thus, it provides an exactly fair experimental platform 
for every FD. 

Interestingly, using the traceroute and ping commands, we observed that most 
of the traffic was actually routed with no network breakdowns. And we also used 
the ping command to check the RTT between the sender and the receiver. In ad­
dition, we found that the average CPU load was nearly constant during the experi­
ments and was also below the full capacity of the two computers. 

In the experiments, each FD scheme used a slide window to save past samples 
to compute their estimations for the future. All the experiments for the four FDs 
used the same fixed window size (WS = 1,000). Furthermore, it is reasonable to 
analyze the sampled data only after the slide window is full, because the network 
is unstable during warmup period. 

The main parameters are as follows: In order to find the best QoS and compare 
with the others, here Ed E [10-4 ,10] for ED FD; For <p FD, the parameters are set 
the same as in [13]: <I> E [0.5,16]; For Chen FD, the parameters are set the same 
as in [II]: a E [0,10000]; For Bertier FD, the parameters are set the same as in 
[12, 16]: (3 = 1, ¢ = 4, 'Y = 0.1. In each experiment, the other basic experimental 
parameters of FDs are the same. 

In these experiments, we focus on the following key performance metrics: mis­
take rate, query accuracy probability and detection time. In every experiment re­
sult, different values of mistake rate, query accuracy probability and detection time 
were obtained with the respective parameters. 

5.1 Experiment in a cluster group 

This experiment was performed with two cluster nodes, the sending node (mon­
itored) and the receiving node (monitoring) were located in a Cluster Group, at 
Japan Advanced Institute of Science and Technology (JAIST), in Japan. The two 
nodes transfer messages through a normal network connection. 

. 5.1.1 Experiment setting: hardware/software/network 

The two nodes were equipped with the same hardware and software: an Intel(R) 
Pentium(R) IV (CPU 2.80 GHz) and 512 Kb of cache size. The operating system 
was Fedora-Core 4 (Linux). The network is IGb/s. The heartbeat messages were 
generated at a target rate of one heartbeat every 10 ms (the sending interval). 
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Figure 6: Mistake rate vs. detection time in a cluster. 

In order to make the experiment general, we re-did the experiments 5 times 
with the same code, the same environment, and the same parameters for each FD 
scheme, but with'different experiment times. The experiment periods were about 1 
hour 1 minute, 1 hour 4 minutes, 5 hours 3 minutes, 7 hours 5 minutes, and 9 hours 
3 minutes. 

For the 5 experiments, here we show the detailed experimental data for one 
typical example (about 1 hour 4 minutes). 

Heartbeat sampling We got 229,453 samples, and no heartbeats were lost. 
The average sending rate actually measured was of one heartbeat every 16.015 ms 
(standard deviation: 1.709 ms; min.: 0.005 ms; max.: 191.977 ms). 

Round-trip time In the experiment, we measured the RTT. The average RTT 
was 0.387 ms. The standard deviation was 0.756 ms with a minimum of 0.100 ms, 
and a maximum of 3.101 ms. 

5.1.2 Experimental results 

The experimental results for detection time, mistake rate and query accuracy prob­
ability with a 95% confidence level are shown in Figures 6-7. Figure 6 shows 
mistake rate comparison of FDs, where the vertical axis is on a logarithmic scale. 
We believe that the best values are located toward the lower left corner, for that 
means this FD provides short detection time and has a low mistake rate. Figure 7 
shows query accuracy probability comparison of FDs, where the vertical axis is on 
a linear scale. And the best values are located toward the higher left corner, which 
means that the FD provides short detection time and has a high query accuracy 
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Figure 7: Query accuracy probability vs. detection time in a cluster. 

probability. 
In Figure 6, when TD < 48 ms, the ED FD can obtain the lowest mistake rates 

among the four schemes with the same detection time; And when TD > 48 ms, 
<p FD has the fewest mistakes. In Figure 7, ED FD and <p FD both obtain higher 
query accuracy probability than Chen FD with some junctions of ED FD and <p 

FD based on the confidence interval, both of ED FD and <p FD have good query 
accuracy probability. 

Here the behavior of Bertier FD is plotted as a single point, because it has no 
tuning parameters. And obviously we found that Bertier FD doesn't perform very 
well compared with the others. 

In summary, the ED FD behaves a little better than the other three FDs in the 
more aggressive range (i.e., TD $ 48 ms). Chen FD behaves slightly better than the 
other three FDs in the more conservative range (i.e., TD ~ 327 ms). While, except 
for those two cases, the <p FD is a little better than others between the aggressive 
range and the conservative range (i.e., 48 ms < TD < 327 ms). 

5.2 Experiment in a wireless network 

These experiments involved two Mac computers and an AirMac Extreme base sta­
tion. The two Mac computers were located in our lab, in JAIST, Japan. The Air­
Mac extreme base station was used to build a private wireless LAN for two Mac 
computers. 
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Figure 8: Mistake rate vs. detection time in a wireless network. 

5.2.1 Experiment setting: hardware/software/network 

The two Mac computers were equipped with the same hardware and software: a 
PowerPC 04 (CPU 1.50Hz) and 768 MB DDR SDRAM of Memory. The op­
erating system was Mac OS X (Version 10.4.8). The heartbeat messages were 
generated at a target rate of one heartbeat every 100 ms (the sending interval). 

Heartbeat sampling We got 435,799 samples, (about 12 hours, 10 minutes 
and 34 seconds), and no heartbeats were lost. The average sending rate actually 
measured was of one heartbeat every 100.359 ms (standard deviation: 8.453 ms; 
min.: 0.0088 ms; max.: 792.418 ms). 

Round·trip time By measurement, the average RTT is 2.829 ms. The stan­
dard deviation is 12.095 ms with a minimum of 1.598 ms, and a maximum of 
231.678 ms. 

5.2.2 Experimental results 

We show results for detection time, mistake rate and query accuracy probability in 
Figures 8-9. Figure 8 describes the relationship of mistake rate and detection time 
among these four FDs on a logarithmic scale. Figure 9 shows the change of the 
query accuracy probability with different detection time on a linear scale. 

In Figure 8, with TD < 273 ms, the ED FD has the lowest mistake rate, and 
when TD > 505 ms, Chen FD has the fewest mistakes; While, when 273 ms 
< TD < 505 ms, 'P FD obtains the lowest mistake rates, except for some junctions 
of'P FD and ED FD. 
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Figure 9: Query accuracy probability vs. detection time in a wireless network. 

In Figure 9, for the same detection time, the ED FD has the highest query 
accuracy probability of all. When TD > 470 ms, Chen FD achieves higher query 
accuracy probability than <p FD. Except for that case, i.e" when TD < 470 ms, <p 

FD achieves higher query accuracy probability than Chen FD. 
In summary, in this wireless case, ED FD has slightly better performance than 

the other three FDs in the aggressive range of FD. In the more conservative range 
(for examples, TD > 505 IDS), Chen FD behaves a little better than <p FD. While 
when 360 IDS < TD < 470 ms, <p FD has a little better performance than Chen FD. 

5.3 Experiment in a LAN 

This experiment also involved two Mac computers in a wired LAN. The sending 
host (monitored, on Floor 9) and the receiving host (monitoring, on Floor 6) were 
located at different labs in the same building, in JAIST, Japan. 

5.3.1 Experiment setting: hardware/software/network 

All the settings of the Mac computers are the same as those in the above wireless 
experiment. The two computers are connected through a single 100 Mbps Ethernet 
hub, with no other systems attached. 

Heartbeat sampling There were 1,797,026 samples received (l0 hours, 15 
minutes and 43 seconds), and no heartbeats were lost. The target of heartbeat 
sending interval is 20 IDS. The average sending rate actually measured was of one 
heartbeat every 20.019 ms (standard deviation: 13.683 ms; min,: 3.099 f..lS; max,: 
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Figure 10: Mistake rate vs. detection time in a LAN. 

17,950.169 ms). 
Round-trip time The average RTT is 0.917 ms. The standard deviation is 

0.146 ms with a minimum of 0.725 ms, and a maximum of 1.678 ms. 

5.3.2 Experimental results 

The results of the experiment are depicted in Figures 10-11. Figure 10 shows 
the relationship between detection time and mistake rate for the different FDs. In 
Figure 10, when TD < 49 ms, ED FD has the lowest mistake rate, and when 
TD > 49 ms, <p FD has lower mistake rate than other FDs. Figure II describes the 
relationship between detection time and query accuracy probability for each FD. In 
Figure II, when TD < 54 ms, ED FD has the highest query accuracy probability, 
after that period, <p FD first has the highest query accuracy probability with 54 ms 
< TD < 120 ms, and when TD > 120 ms, Chen FD and <p FD have similar query 
accuracy probability, with many junctions of <p FD and Chen FD. 

In summary for LAN, in the aggressive range: ED FD has a slightly better 
performance than the other three FDs. In the conservative range, <p FD behaves a 
little better than the other three FDs. 

5.4 Experiment in a WAN 

All the above experiment environments are very stable, and there are no heartbeats 
lost. In order to further compare QoS of these four FDs, we carried out an experi­
mentin WAN. 

20 



1001r----~r_---~----~----___, 

)H(~,........ - -<>--~_. -0 .............. ~--: -=-<F----,.e----.
 
99.9 ~0
 

~ .'"
 
~ 99.8 ~r" " r , 
~ 99.7 ~? 
o 
is. I.,
i'> 99.6 , 
"' ,
:; 

J
899.5 f 

I."'>- 1<1> 
~ 99.4 Ii 
a 'i

99.3 {9
,.

99.2 LI----~----~----~-----' 

o 0.1 0.2 0.3 0.4 
Detection time [5] 

Figure 11: Query accuracy probability vs. detection time in a LAN. 

In this experiment, we use the exactly same trace files from the paper about 
'P FD [13], and these trace files are publicly available on our lab website [25]. 
Therefore, this provides a common ground for evaluating the performance of ED 
FD, Chen FD [11], Bertier FD[12, 16] and 'P FD [13]. 

5.4.1 Experiment setting: hardware/software/network 

In detail, the trace files and relevant data were gotten from the following experiment 
setting. 

This experiment involves two computers: one was located at the Swiss Federal 
Institute of Technology in Lausanne (EPFL), in Switzerland. The other one was 
located in JAIST, Japan. The two computers communicate through a normal inter­
continental Internet connection. The two computers have the same equipment and 
the same operating systems as those in [13]. By analyzing the trace files, we found 
the average CUP load for the sending host and the receiving host were 1/67 and 
1/22, respectively. So they were below the full capacity of the computers. 

Heartbeat sampling The experiment started on April 3, 2004 at 2:56 UTC, and 
finished on April 10, 2004 at 3:01 UTe. During the one week experiment period, 
the heartbeats were generated at a target rate of one heartbeat every 100 ms (the 
sending interval). The average sending rate actually measured was one heartbeat 
every 103.501 ms (standard deviation: 0.189 ms; min.: 101.674 ms; max.: 234.341 ms). 
Furthermore, 5,845,713 heartbeat messages were sent out, while only 5,822,521 
were received, so message loss rate was about 0.399 %. 

By checking the traces files more closely, one found the messages losses were 
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Figure 12: Mistake rate vs. detection time in a WAN. 

because of 814 different bursts. The majority of total bursts were short length 
bursts. While the maximum burst-length was 1,093 heartbeats (only one), it lasted 
about 2 minutes. FUl1hermore, most of the heartbeats was not directly between 
Asia and Europe, but actually, routed through the United States. 

Round-trip time The average KIT is 283.338 ms, with a standard deviation of 
27.342 ms, a minimum of 270.201 ms, and a maximum of 717.832 ms. 

5.4.2 Experimental results 

The results of the experiment are depicted in Figures 12-13. Similar to the other 
experiments, we first give the relationship between detection time and mistake rate, 
as shown in Figure 12. In Figure 12, with the same detection time, ED FD obtains 
the lowest mistake rate among the four FDs, except for several initial junctions of 
ED FD, 'P FD and Chen FD. When 148 ms < TD < 243 ms, 'P FD obtains a lower 
mistake rate than Chen FD; except for that, i.e., when TD > 243 ms, Chen FD 
has the lower mistake rate compared with 'P FD. The query accuracy probability 
comparison of FDs in a WAN is shown in Figure 13. From Figure 13, we find: 
when TD < 160 ms, ED FD and 'P FD have the similar query accuracy probability 
with the same detection time. While, when TD > 160 ms, it is clear that ED FD 
has higher query accuracy probability than 'P FD. Furthermore, Chen FD has a 
little lower query accuracy probability than ED FD and 'P FD. In summary, in the 
aggressive range of FD: ED FD behaves a little better than the other three FDs in 
terms of short detection time, low mistake rate and high query accuracy probability. 
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Figure 13: Query accuracy probability vs. detection time in a WAN. 

5.5 Comparative analysis of the four FDs 

From all the above experimental results, the following remarks can be made: The 
four kinds of experiments demonstrate that ED FD is an effective improvement 
over <p FD in terms of short detection time, low mistake rate and high query accu­
racy probability. In stable cases (no message loss and small variability of delay), 
such as in a cluster group, wireless system, and wired LAN, ED FD has slightly 
better performance in the aggressive range of FD. Especially, in unstable network 
environment (larger variability of heartbeat delay and some message loss), such as 
WAN, ED FD obviously performs better than the others in aggressive case. 

In all, for the applications that need failure detection to be timely and highly 
accurate, ED FD is an efficient choice. 

6 RELATED WORKS 

Besides the works cited in Section I and Section 3, there have been some other 
alternate failure detection mechanisms. For example, [26] described a lot of ex­
periments performed on Wide Area Network to assess and fairly compare QoS 
provided by a large family of FDs. The authors introduced choices for estimators 
and safety margins used to build several (30) FDs. Compared with [26], this paper 
considered comparing all kinds of adaptive FD schemes in different experiment 
environments. 

Nunes et al. [27] evaluated the QoS of an FD based on timeout for different 
combinations of communication delay predictors and safety margins. As the results 
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show, to improve the QoS, the authors suggested that one must consider the relation 
between the pair predictor/margin, instead of each one separately. But we think it 
is (maybe) not very easy to find such proper pairs. 

Fabio et al. [28] adapt FDs to communication network load fluctuations using 
Simple Network Management Protocol (SNMP) and artificial neural networks. The 
training patterns used to feed the neural network were obtained by using SNMP 
agents over Management Information Base variables. The output of such neural 
network is an estimation of the arrival time for the FD to receive the next heartbeat 
message from a remote process. This approach improves the QoS of the FD, while 
the training of neural network is a little more complex to achieve the same goal as 
in this paper. 

Fetzer et al. [29] presented an adaptive failure detection protocol. This proto­
col enjoys the nice property of relying as much as possible on application messages 
to perform this monitoring. Differently from previous process crash detection pro­
tocols, it uses control messages only when no application message is sent by the 
monitoring process to the observed process. These measurements show that the 
number of wrong suspicions can be reduced by requiring each process to keep 
track of the maximum round trip delay between executions. 

Conclusion 

In this paper, we first proposed an optimized ED FD based on exponential dis­
tribution over the existing 'P FD [13]. And the extensive experiments in cluster 
group, wireless, wired LAN, and WAN were carried out to compare these four FD 
schemes (Chen FD [11], Bertier FD [12, 16], 'P FD [13], and ED FD). The experi­
ment results have demonstrated that the proposed ED FD outperlorms the existing 
adaptive FDs in terms of short detection time, low mistake rate and high query 
accuracy probability. 

In future work, we would like to further explore FD properties and relation 
to software engineering applications, and then apply ED FD into an actual fault­
tolerant distributed system. 

Acknowledgments 

We are indebted to Naohiro Hayashibara, Rami Yared and Takuya Katayama for 
their friendly providing the trace files of WAN, and we also would like to thank 
many colleagues for their constructive criticism and helpful suggestions for im­
proving the overall quality of this paper. 

24 



Research supported by Japanese Government Foundation for Promoting Sci­
ence and Technology of Ministry of Education, Culture, Sports, Science and Tech­
nology (MEXT), and Japan 21st Century CaE (Strategic Development of Science 
and Technology) Foundation: Verifiable and Evolvable e-Society. 

References 

[I]	 1. Gupta, T. D. Chandra, G. S. Goldszmidt. On scalable and efficient dis­
tributed failure detectors. In Proc. 20th ACM symp. on Principles of Dis­
tributed Computing, pages 170-179, Newport, Rhode Island, United States, 
Aug. 26-29, 2001. 

[2]	 M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in 
the crash-recovery model. Distributed Computing, 13(2): 99-125, Springer­
Verlag, 2000. 

[3]	 P. Felber, X. Defago, R. Guerraoui, and P. Oser. Failure detectors as first class 
objects. In Proc. Ist Inti. Symp. on Distributed-Objects and Applications 
(DOA'99), pages 132-141, Edinburgh, Scotland, Sept. 1999. 

[4]	 C. Delporte-Gallet, H. Fauconnier, R. Guerraoui. A realistic look at failure de­
tectors. In Proc. Inti. Con! on Dependable Systems and Networks (DSN'02), 
pages 345-353, Washington DC, Jun. 2002. 

[5]	 M. J. Fischer, N. A. Lynch, and M. D. Paterson. Impossibility of distributed 
consensus with one faulty process. Journal of ACM, 32(2): 374-382, Apr. 
1985. 

[6]	 T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis­
tributed systems. Journal of the ACM, 43(2): 225-267, Mar. 1996. 

[7]	 M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat failure detec­
tor for quiescent reliable communication and consensus in partitionable net­
works. Theoretical Computer Science, 220(1): 3-30, Jun. 1999. 

[8]	 T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis­
tributed systems. Journal of the ACM, 43(2):225-267, March 1996. 

[9]	 R. Guerraoui, M. Larrea, and A. Schiper. Non-blocking atomic commitment 
with an unreliable failure detector. Symposium on Reliable Distributed Sys­
tems, pages 41-50,1995. 

25 



[10]	 M. Larrea, A. Fernandez, and S. Arevalo. Optimal implementation of the 
weakest failure detector for solving consensus. In Proceedings of the 19th 
Annual ACM Symposium on Principles of Distributed Computing (PODC­
00), pages 334-334, NY, Jul. 2000. 

[11]	 W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure 
detectors. IEEE Trans. on Computers, 51(5):561-580, May 2002. 

[12]	 M. Bertier, O. Marin, and P. Sens. Implementation and performance evalua­
tion of an adaptable failure detector. In Proc. IEEE Inti. Con! on Dependable 
Systems and Networks (DSN'02), pages 354-363, Washington, DC, USA, 
June 2002. 

[13] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. The <p accrual fail­
ure detector. In Proc. 23rd IEEE Inti. Symp. on Reliable Distributed Systems 
(SRDS'04), pages 66-78, Florianpolis, Brazil, Oct. 2004. 

[14]	 X. Defago, P. Urban, N.Hayashibara, T. Katayama. Definition and specifica­
tion of accrual failure detectors. In Proc. Inti. Con! on Dependable Systems 
and Networks (DSN'05), pages 206-215, Yokohama, Japan, Jun. 2005. 

[15]	 A. Basu, B. Charron-Bost, and S. Toueg. Simulating Reliable Links with Un­
reliable Links in the Presence of Process Crashes. In Proc. Workshop on Dis­
tributed Algorithms (WDAG 1996), pages 105-122, Bologna, Italy, 1996. 

[16]	 M. Bertier, O. Martin, P. Sens. Performance analysis of a hierarchical failure 
detector. In Proc. Dependable Systems and Networks (DSN'03), pages 635­
644, San Fra., USA, Jun. 2003. 

[17]	 R. Macedo. Implementing failure detection through the use of a self-tuned 
time connectivity indicator. TR, RT008/98, Laborattio de Sistemas Distribu­
dos - LaSiD, Salvador-Brazil, Aug. 1998. 

[18]	 P. Felber. The CORBA object group service - a service approach to object 
groups in CORBA. PhD thesis, Department D'informatique, Lausanne, EPFL, 
Swizerland, 1998. 

[19]	 B. Charron-Bost, X. Defago, and A. Schiper. Broadcasting messages in 
fault-tolerant distributed systems: the benefit of handling input-triggered and 
output-triggered suspicions differently. In Proc. 21st IEEE Inti. Symp. on 
Reliable Distributed Systems (SRDS'02), pages 244-249, Osaka, Japan, Oct. 
2002. 

26 



[20]	 X. Defago, A. Schiper, and N. Sergent. Semi-passive replication. In Proc. 
17th IEEE IntI. Symp. Reliable Distributed Systems (SRDS'98), pages 43-50, 
West Lafayette, IN, USA, Oct. 1998. 

[21]	 P. Urban, 1. Shnayderman, and A. Schiper. Comparison of failure detec­
tors and group membership: Performance study of two atomic broadcast al­
gorithms. In Proc. IEEE IntI. Con! on Dependable Systems and Networks 
(DSN'03), pages 645-654, San Francisco, CA, USA, June 2003. 

[22]	 M. Muller. Performance evaluation of a failure detector using SNMP. 
Semester project report, Ecole Polytechnique Federale de Lausanne, Lau­
sanne, Switzerland, Feb. 2004. 

[23]	 V. Jacobson. Congestion Avoidance and Control. In Proc. ACM SIGCOMM 
'88, pages 314-329, Stanford, CA, USA, Aug. 1988. 

[24]	 L. M. R. Sampaio, Francisco V. Brasileiro, Walfredo Cime, Jorge C. A. 
Figueiredo. How bad are wrong suspicions? toward adaptive distributed pro­
tocols. In Proc. IEEE IntI. Con! on Dependable Systems and Networks (DSN 
2003), pages 551-560, San Francisco, CA, USA, Jun. 2003. 

[25]	 http://ddsg.jaist.ac.jp/en/jst/data.htmI. 

[26]	 L. Falai and A. Bondavalli. Experimental evaluation of the QoS of failure 
detectors on wide area network. In Proc. of the Int. Con! on Dependable Sys­
tems and Networks (DSN'05), Yokohama, Japan, pages 624-633, Jun. 2005. 

[27]	 R. C. Nunes, 1. Jansch-Porto. QoS timeout-based self-tuned failure detectors: 
the effects of the communication delay predictor and the safety margin. In 
Proc.	 2004 IntI. Con! on Dependable Systems and Networks (DSN 2004), 
pages 753-761, Florence, Italy, Jun. 2004. 

[28]	 L. Fabio, R. Macedo. Adapting failure detectors to communication network 
load fluctuations using SNMP and artificial neural networks. In Proc. Second 
Latin-American Symposium on Dependable Computing (LADC 2005), pages 
191-205, Salvador, Brazil, Oct. 2005. 

[29]	 C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure detection protocol. 
In Proc. IEEE the 8th Pacific Rim Symposium on Dependable Computing 
(PRDC-8), pages 146-153, Seoul, Korea, Dec. 2001. 

27 



Appendix 

Proof of Theorem 1 

An FD of class <> Pac must verify the two properties represented by Property 1 and 
Property 2. 

Property 1 (Accruement) Ifprocess p is faulty, then eventually, the suspicion 
level slqp (t) is monotonously increasing at a positive rate. 

P E faulty(F) ~ 3K3QVk ~ K(slqp(trY(k)) ~ slqp(trY(k + 1))/\ 

slqp(trY(k)) < slqp(tqrY(k + Q))) 

Property 2 (Upper bound) If process p is correct, then the suspicion level 
slqp(t) is bounded. 

( 
p E correct(F) ~ 3SLmax : Vt(slqp(t) ~ SLmax ) 

The proof of Property 1: 
Prove: If process p is faulty, the most recent arrival time of heartbeat tlast is 

constant, at time slot t~ry (k), the suspicion level ed is 

slqp(qrY(k)) = ed(trY(k)) = F(trY(k) - tlasd = 1 - e-J-(trY(k)-tlastl. 

With time flying, in time slot trY(k + 1), the suspicion level is: 

slqp(trY(k+l)) = ed(trY(k+l)) = F(trY(k+l)-tlasd = l_e-J-(tr
Y

(k+l)-tlast ). 

Since trY(k) ~ trY(k + 1), we get 

-).(trY(k) - tlasd ~ -).(trY(k + 1) - tlast ), 

and 
e-J-(try (k)-tlast ) ~ e-J-(trY(k+l)-tlastl. 

Therefore, 
1 - e-J-(trY(k)-tlast ) < 1 _ e-J-(trY(k+l)-tlast )- , 

I.e., 

slqp(tgrY(k)) ~ slqp(trY(k + 1)). 

At time slot trY(k + Q), Q > 0, trY(k + Q) > trY(k). Using the above same 
method and conclusion, we can get 

slqp(trY(k)) < slqp(trY(k + Q)). 
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Therefore, ED failure detector satisfied the accruement property. 
The proof of Property 2: 
If process p is correct, based on the system model, the process p always make 

progress in finite step after Some global time GST, that means, the q eventually re­
ceives the heartbeat message from p. That is, there exists t max ' when the heartbeat 
message from p arrives at q. At any arbitrary time t, where t ::; t max . 

Slqp(tmax ) = ed(tmax) = F(tmax - tlast ) = 1 - e->.(tmct,,-tlctstl. 

Slqp(t) = ed(t) = F(t - 1 - e->.(t-tlctstl.tlast ) = 

Based on Property 1, we know slqp(t) ::; slqp(tmax ) = SLmax' 
From the above proof, we can make the following remarks: The proposed ED 

FD satisfied the class OPac of accrual failure detector. 0 

s 
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