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Soft Iterative Channel Estimation
With Subspace and Rank Tracking

Simone Ferrara, Student Member, IEEE, Tad Matsumoto, Senior Member, IEEE, Monica Nicoli, Member, IEEE,
and Umberto Spagnolini, Senior Member, IEEE

Abstract—This letter presents an adaptative soft-based method
for channel estimation in turbo receivers. The proposed ap-
proach is based on the particular algebraic structure of multipath
Rayleigh-fading channels, and it is suited for mobile systems
where the multipath pattern (namely, the times of delay) changes
slowly over the time. The method is implemented through a
rank-and-subspace tracking algorithm that allows to adapt the
estimate to the multipath variations and also to reduce the com-
putational cost with respect to the batch implementation based
on eigenvalue decomposition. A performance analysis, in terms
of mean square error of the channel estimate and bit error rate,
shows the advantages of the proposed technique in communica-
tions over time-varying wireless channels.

Index Terms—Channel estimation, equalization, mobile com-
munication, multipath channels, soft-iterative receiver, subspace
tracking, time-varying channels, turbo processing.

I. INTRODUCTION

PROVIDING a signal detector with accurate estimates
of channel parameters is a crucial requirement, espe-

cially for iterative signal detection techniques [1], where the
channel-state-information reliability makes significant influ-
ence on the convergence [2]. Recently, the use of soft feedback
has been proposed for re-estimation of the channel parameters
in the context of turbo equalization. This soft processing allows
to improve the estimate accuracy by increasing the number of
known symbols used for the estimate (i.e., by exploiting both
pilot and soft-valued detected symbols). Moreover, if the code
bits are first interleaved and then segmented into several bursts
before transmission, a further performance improvement can be
gained by jointly processing multiburst measurements, relying
on the long-term properties of the channel covariance matrix in
time-varying propagation environments [3]. It has been shown
in [4] that the use of a multiple burst (MB) technique, in addition
to soft feedback, is effective in reducing the mean-square error
(MSE) of the channel estimate. The soft-based MB estimation
therein proposed relies on the assumption that the second-order
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statistics of the channel are slowly varying, and they can be
considered as constant within a time interval spanning
bursts (e.g., the time interval used for interleaving in turbo
processing). However, the MB technique requires a high com-
putational complexity when extracting the subspace spanned
by the long-term channel covariance matrix as it requires an
eigenvalue decomposition (EVD). Furthermore, the rank of the
covariance matrix has to be estimated as well.

In this letter, we propose an adaptive version of the soft-based
MB maximum-likelihood (MB-ML) technique [4] that exploits
the a priori information on the coded bits available at the it-
erative receiver, and it uses a subspace tracking approach with
twofold aim: 1) reducing the computational complexity of the
EVD and 2) improving the tracking performance in a scenario
where the multipath pattern gradually changes over the time. We
assume that the path delays are slowly varying and also that the
number of paths can change (due to the birth-and-death process
of the paths). The low-rank adaptive filter (LORAF) [5] is em-
ployed to track the subspace spanned by the channel impulse
responses associated to the varying paths; both the MSE of the
estimate and the bit error rate (BER) performances are evaluated
through computer simulations. A rank-tracking technique [6] is
used in conjunction with subspace tracking. The sensitivity of
the tracking performance to the rank estimation uncertainty is
evaluated as well.

This letter is organized as follows. Section II defines the
signal model and the receiver structure. Section III presents
the channel model, and Section IV recalls the MB-ML soft
estimator. Tracking algorithms are illustrated in Section V, and
simulation results are given in Section VI. Finally, Section VII
draws the concluding remarks.

II. SYSTEM MODEL

We briefly recall the signal model from [4]. A sequence of
convolutionally coded bits is interleaved, mapped into
complex symbols , and then transmitted through
bursts over a frequency-selective burst-fading channel. The
data sequence contained in each burst is denoted as ,
where indicates the symbol index within the
burst, and is the burst index. A training se-
quence of symbols is also included in each burst
to allow channel estimation. At the receiver side, an itera-
tive structure is adopted for data detection and decoding; it
consists of a soft-in channel estimator, a soft-cancellation min-
imum-mean-square-error (SC-MMSE) equalizer [7], and a log
maximum a posteriori (log-MAP) single-input single-output
(SISO) decoder [8]. After the first iteration, the available a
priori statistics on the information-bearing data are used to
evaluate the mean value and the variance

, with , for
each code symbol . Within the th
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burst, these quantities will be indicated as and ,
respectively.

After matched filtering and symbol-rate sampling, the signals
measured within the training and data fields of the th burst are
gathered into the vectors and
that can be written as

Training
Data.

(1)

The vector denotes the discrete-time impulse
response of the channel (including also the filters at the trans-
mitter and receiver). Since its temporal support is ,
the first samples at the beginning of each field are not
considered in (1), to avoid overlapping between training and
data symbols, thus leading to the reduced field lengths

and . The convolution ma-
trices and are built from
the transmitted sequences according to the Toeplitz structures:

and
. The vectors and

collect uncorrelated complex-valued Gaussian
noise samples with zero mean and variance . The additional
term depends on the soft estimate error
matrix obtained from the sequence

. This sequence is treated as uncorrelated zero mean
with variance , while is mod-
eled as a complex white Gaussian noise vector, independent of

, with zero mean and variance [4], where
is the signal-to-noise ratio (SNR).

III. CHANNEL MODEL

A multipath propagation scenario is considered with
paths, delays , and mean powers ,
where fading complex envelope stays the same during the
burst and changes burst by burst. According to the wide
sense stationary uncorrelated scattering (WSSUS) and the
Rayleigh fading assumptions, the channel is modeled as

, with covariance that varies
slowly with respect to the fading amplitudes. It can be easily
shown that it is , where

contains the delayed
pulse waveforms (convolution of the transmitter and receiver
filter responses) and .

In many practical situations, the paths can be grouped
into a small set of clusters or macro-paths, each
gathering paths with comparable delays (i.e., with delay differ-
ence below the system resolution). This consideration implies
that the columns of are not necessarily independent, being

. Thus, the channel can be rewritten
using a model similar to that proposed in [3] in terms of the new
parameters

(2)

where is a full-column-rank matrix whose
columns represent the slowly changing modes of , while

collects the fast-changing fading amplitudes. The
channel modes can be evaluated by the eigenvalue de-
composition (EVD) of the long-term channel covariance matrix

Fig. 1. Burst-varying propagation scenario with a mobile station (MS) moving
in the direction of the arrow. During the position intervals A-B and C-D, the
channel is composed of two macro-paths (a main one generated by a cluster
of scatterers nearby the MS and a secondary one due to reflections on a far-
away obstacle), while from the position B to C, there is only one macro-path
(reflected) due to the presence of an obstacle (here depicted as a black box)
between MS and the base station (BS).

(i.e., through a modal analysis). Moreover, during the
transmission, paths can appear/disappear, due to the obstacles
between the mobile station and the base station, as illustrated in
Fig. 1, where it is in the interval and

in the interval . We assume that this shadowing
affects only the eigenvalues, leaving unchanged the temporal
modes . The slight variations of the modes from burst to
burst are related to the slow and continuous change of the delay
times due to the terminal movement.

IV. SOFT ITERATIVE CHANNEL ESTIMATION

We consider the ML estimation of from the MB en-
semble of measurements under the constraint
(2). Notice that can correspond to the number of interleaved
bursts used in the iterative structure as described in Section II.
The ML solution is here recalled from [4] for the case of channel
modes and rank being constant within the -bursts interval, i.e.,
for and . The extension to time-varying
scenarios will be then proposed in the next section. We indi-
cate by the training-sequence correlation
matrix, which is the same for all the bursts. The information-
bearing data symbols are considered as statistically in-
dependent, and their number is large enough so that

and .
Here, represents the effective number of
known data symbols depending on the average symbol variance

.
Soft channel estimation based on the model (1) is performed

in two steps. In step 1, the unconstrained ML estimate of
is obtained burst by burst from the single-burst (SB) measure-
ment based on the white Gaussian assumption

. The SB-ML estimate reads

(3)

with and . In step 2,
a reduced-rank ML approach is applied to the MB measure-
ments under the constraint (2), yielding the
MB-ML estimate. For ideal training sequence, i.e., for

, this estimate is given by

(4)
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where denotes the estimate for the projector onto
the channel subspace obtained from the leading eigenvectors

of the sample correlation matrix

(5)

with .

V. SUBSPACE AND RANK TRACKING ALGORITHM

When the multipath delays vary slightly from burst to burst,
the estimate of the modes , as well as the projector

and the rank , need to be adapted to
the channel variations. This can be accomplished by updating
burst by burst the matrix (5), using an exponential weighting

(6)

where denotes the forgetting factor.
The LORAF method, proposed in [5] for tracking the sub-

space spanned by the eigenvectors of the covariance matrix of a
parameter vector, has been adapted here to our problem. First, let

be the EVD of the matrix (6) trun-
cated to the leading eigenvalues. The algorithm is based on
the consideration that, since at convergence is ,
the projection of onto the column-space of the matrix

, defined as , tends by it-
erations to . The algorithm may be described
by two steps:

1) Estimation step: QR decomposition of the matrix to
obtain the estimate ;

2) Tracking step: updating the matrix as follows:

(7)

where is a rotation matrix that
realigns the axes of the matrix to those of the
modes , the same that the current channel covari-
ance matrix is projected onto.

It is easy to see that, for , the tracking
step (7) can be written as

(8)

which is fully equivalent to (6) projected onto .
The availability of the eigenvalue diagonal matrix

in allows us to employ the min-
imum description length (MDL) algorithm [6] to track the
variations of the rank . In order to perform subspace
tracking with varying subspace dimension, we assume that

is always upper-bounded by a known value . It is
understood that the subspace has to be tracked not only on the
main eigenvalues but also on all the dimensions.

A. Implementation Issues

We recall that the iterative method proposed above for sub-
space and rank tracking has to be used in a turbo equalizer;

thereby, there are two nested loops of iterations: the equaliza-
tion-decoding turbo loop and, within each detection-decoding
iteration, the channel estimation loop over the bursts contained
in the frame. This implies that all the variables needed for sub-
space tracking have to be initialized at the beginning of each
frame and also before starting each turbo iteration within the
frame. Since the modes vary burst by burst and since the sub-
space estimate for the last burst of the previous frame (at the
last turbo iteration) is available, when initiating the channel es-
timation for the new frame, we propose the following initializa-
tion: 1) for the first frame, at the beginning of each iteration,
we set , and

; 2) from the second frame, at each iteration,
we use the values obtained at the last iteration in the last burst
of the previous frame.

The implementation of the adaptive channel estimation tech-
nique requires the selection of the forgetting factor value ,
which affects both the memory and the convergence speed of
the tracking algorithm. The forgetting factor defines in fact the
effective length of the temporal window used for multiblock av-
eraging. This can be expressed in number of blocks as

[5]. Usually, delays are characterized by slow varia-
tions over the blocks, calling thereby for large values of (i.e.,
long memory length) so as to reduce the MSE of the channel
estimate. On the other hand, sudden changes on the number of
paths (i.e., on the channel rank) can occur due to the birth-and-
death path process, requiring small values to allow a fast
convergence to the new multipath pattern. The optimal value for
the parameter has to be selected as tradeoff between estimate
accuracy and convergence speed.

The complexity order of the straightforward EVD implemen-
tation is . In the LORAF approach, the order is reduced
to [i.e., the complexity required by the updating
of the matrix , according to (7)] providing a complexity
gain of . Moreover, a more efficient implementation
for the QR decomposition, the matrix and updating
processes, provides a further computational cost reduction to

[5].

VI. SIMULATION RESULTS

For simulations, we assume the following transmission
system. Each frame is obtained from 4000 randomly chosen
equiprobable information bits, which are coded by a four-state
convolutional code with generators and then permuted
by a random interleaver. The coded bits are mapped onto
4000 QPSK symbols and arranged into bursts with

symbols each. A training sequence of
QPSK symbols is added to each burst. The frame of bursts
is then transmitted over a burst-faded Rayleigh channel with
temporal support . A total number of ten frames
is sent. The multipath structure is simulated according to
the double-cluster channel model in Fig. 1: the multipath
pattern is composed of four paths, with power delay profile

and being lin-
early varying over from to

s. The paths are gathered
into clusters, each composed of two paths having similar
delays. The first cluster is shadowed from the 50th to the 150th
burst. The ratio between the bit energy and the noise power
spectral density is defined as while
the SNR is defined as in Section II.
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Fig. 2. According to the scenario in Fig. 1: (a) Rank (real and estimated) versus
the block number. (b) MSE of the channel estimate versus the block number. (c)
BER versus the frame number at first and third iterations of turbo equalization.
For MSE simulation, we set SNR = 6 dB, � 2 f0:83; 0:86;0:89g, and � �
0:55. For BER simulation, E =N = 6 dB and � = 0:89.

Fig. 2(a) shows the behavior of the rank estimator averaged
over 2000 realizations. While for a disappearing path the
tracking response is not immediate, due to the memory effect
of the algorithm, when a new path appears, the increasing rank
is quickly updated. This is because the eigenvalue generated
by a newly appearing path substitutes into the matrix an
eigenvalue that corresponds to a noise component. For high
SNR, the difference between these two eigenvalues is large
enough to allow the algorithm to adapt itself to the new rank.

The comparison, in terms of MSE, between the SB-ML es-
timator (3) and the MB-ML (4) is shown in Fig. 2(b). The MB
method is simulated both with the tracking algorithm for

(i.e., ) and with the EVD im-

plementation (as originally proposed in [4]) for . From
the MSE comparison, we can conclude that the LORAF ap-
proach allows to reduce the computational cost of the EVD im-
plementation, still preserving almost the same estimate accu-
racy. The proposed approach is also effective in tracking the
changes of the number of paths. Fig. 2(a) and (b) shows how the
forgetting factor affects the convergence speed of the tracking
algorithm. The smaller the value of (or, equivalently, the ef-
fective time window defined in Section V-A), the faster the
convergence and the higher the MSE at convergence.

Fig. 2(c) shows the BER performance of the complete turbo
receiver (as described in Section II). These results confirm that
the performance of the adaptive version of the MB-ML method
is very close to that of the EVD implementation. Furthermore,
the turbo equalizer with the MB method is shown to provide
remarkable gains for increasing number of iterations: this is
particularly evident (already at third iteration) in the interval

, where the intersymbol interference (due to
macro paths) is successfully cancelled by the iterative

processing. The low BER values reached in these conditions
are a combined result of the path diversity achieved by the
equalizer and the time diversity of the code (coded bits are al-
located over several frames having different fading variations).
Notice also that the path disappearance occurs in the middle of
frame 3, and each BER value in Fig. 2 denotes the error rate
measured over all the 20 blocks included in the frame. The
BER in frame 3 (average of the performances over the double-
and the single-cluster channels) is thereby higher than in frame
2 and lower than in frames 4-5-6-7.

VII. CONCLUSION

The results presented in this letter show that the MB
method, combined with soft feedback provided by iterative
equalization, can be efficiently implemented by means of a
subspace-tracking technique in scenarios with either fast or
slowly changing channel features. This tracking technique
allows a reduction of the computational complexity of the
MB method with negligible performance loss. Though the
method is here developed for a single-carrier SISO system, the
extension to multiple carrier and/or multiple antenna systems
is straightforward.
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