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PAPER

A Specification Translation from Behavioral Specifications to
Rewrite Specifications∗

Masaki NAKAMURA†a), Member, Weiqiang KONG†, Nonmember, Kazuhiro OGATA†, Member,
and Kokichi FUTATSUGI†, Nonmember

SUMMARY There are two ways to describe a state machine as an al-
gebraic specification: a behavioral specification and a rewrite specification.
In this study, we propose a translation system from behavioral specifica-
tions to rewrite specifications to obtain a verification system which has the
strong points of verification techniques for both specifications. Since our
translation system is complete with respect to invariant properties, it helps
us to obtain a counter-example for an invariant property through automatic
exhaustive searching for a rewrite specification.
key words: specification translation, verification, algebraic specification,
behavioral specification, rewirte specification, CafeOBJ, Maude

1. Introduction

There are many kinds of formal specification languages to
support formal methods. Algebraic specification languages,
e.g. OBJ3, CafeOBJ, Maude, are formal specification lan-
guages whose specifications denote algebras. Unlike spec-
ification languages based on first-order predicate logic, for
example, Z notation, algebraic specification languages have
been developed with initial algebras as a mathematical the-
ory of abstract data types together with term rewriting as a
computational theory of abstract data types. In this paper
we focus on two kinds of algebraic specifications: behav-
ioral specifications and rewrite specifications.

A behavioral specification specifies behaviors of a sys-
tem, and it denotes a set of all algebras satisfying the de-
scribed behavior, that is, it specifies all implementations sat-
isfying the behavior. A rewrite specification specifies local
concurrent transitions of a system, and it denotes the term
algebra (or an initial algebra) with the rewrite relation, that
is, it specifies essentially just one implementation. Roughly
speaking, we can specify a system in a higher abstract level
by a behavioral specification than a rewrite specification.
When we verify a property for a behavioral specification,
all its implementations are guaranteed to satisfy the prop-
erty. A fully-automatic verification system, for example, the
search command and a model checker, can be applied to
rewrite specifications and cannot be applied to behavioral
specifications directly. It gives us a way not only to prove
a property but also to disprove it with a counter-example.
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For example, we describe a semaphore system in this paper.
In a behavioral specification the set of processes can be an
abstract set, and any kind of processes sets can be a model
of the specification. On the other hand, to describe a rewrite
specification, we need to decide a concrete set of processes.
In addition we need to restrict the number of processes to
finite to apply a fully-automatic verification system.

We propose a translation system from behavioral spec-
ifications to rewrite specifications, and show the translation
is complete w.r.t. invariant properties. The invariant prop-
erty is a foundational property for state transition systems.
If a state property is invariant, the property holds for ev-
ery reachable state. The invariant property is often used to
express safety properties, for example, the property that no
intruder can decrypt any encrypted data in a security pro-
tocol. Our translation system takes a behavioral specifica-
tion written in CafeOBJ language∗∗ [4] and returns a rewrite
specification written in Maude language∗∗∗. The CafeOBJ
system has a semi-automatic equational reasoning, which
helps to verify a property interactively. The Maude sys-
tem supports fully-automatic exhaustive search command
and a model checker. By our translation system, we may
find a counter-example of a CafeOBJ behavioral specifica-
tion through translating it into a Maude specification and
applying the Maude search command.

2. Preliminaries

A finite sequence of a1, a2, . . . an is denoted by −→a , whose
length is observed by ln(−→a ) = n. We may use set notations

for a sequence if there is no confusion, e.g., a ∈ −→b stands for
∃i.a = bi, {ai | 0 < i < 4} stands for a1 a2 a3, etc. For a set S ,
an S -sorted set A is a family {As | s ∈ S } whose element is a
set associated to each s ∈ S . In this section we introduce the
notion of basic algebraic specifications which is a common
part of both CafeOBJ and Maude specifications, and is used
for data types of a target system.

An algebraic specification consists of modules. The
following is an example of CafeOBJ modules which specify
natural numbers and the addition operation on them.

mod! BASIC-NAT{

[Zero NzNat < Nat]

op 0 : -> Zero

∗∗http://www.ldl.jaist.ac.jp/cafeobj/
∗∗∗ http://maude.cs.uiuc.edu/
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op s_ : Nat -> NzNat

}

mod! NAT+{

pr(BASIC-NAT)

op _+_ : Nat Nat -> Nat

vars M N : Nat

eq N + 0 = N .

eq N + s M = s(N + M) .

}

A module consists of an import part, a signature part, an
axiom part. In the import part, submodules Mi imported
by the main module are listed with their import modes, e.g.
pr(M1) ex(M2)· · · . In the signature part, sorts and op-
erations are declared. A sort s is a kind of types, which
interpreted into a carrier set Ms in its denotational model
(algebra) M. An inclusion relation can be given on sorts.
An operation symbol f with an arity �s of a sequence of sorts
and a coarity s of a sort denotes an operation or a function
M f : Ms1 × · · · × Msn → Ms. For example, the algebra N of
natural numbers is a model of BASIC-NAT, whose interpre-
tation is the following: NZero = {0}, NNzNat = N+ = N −{0},
NNat = N = {0, 1,2, . . .}, N0 = 0 and Ns(n) = n + 1. A term
is a well-sorted tree whose nodes are operation symbols and
leaves are variables. For a given S -sorted set V of variables,
an assignment a : V → M is an S -sorted map where as is a
map from Vs to Ms. For a term t of a sort s and an assign-
ment a : V → M whose V is the set of all variables in t, t
is interpreted into an element of Ms, denoted by a(t), as fol-
lows: a(t) = a(x) if t = x ∈ V and a(t) = Mf (a(t1), . . . , a(tn))
if t = f (�t). An equation is a pair of terms of a same sort. A
conditional equation is a pair of an equation and a condi-
tional term of Boolean sort. They are declared after eq and
ceq respectively. We may call both of them just equations.
In the axiom part equations are declared. An algebra is a
model of a specification if and only if the left-hand side and
the right-hand side of each equation are interpreted into a
same element for any assignment. The algebra N can also
be a model of NAT+ if + is interpreted into N+(m, n) = m+n.

CafeOBJ has two kinds of denotations: loose and tight.
A specification with the loose denotation, written by mod*,
denotes the set of all models. A tight specification, mod!,
denotes the set of all initial models. An initial model is a
model M satisfying that each element e ∈ Ms has a corre-
sponding term t, i.e. Mt = e, and that t = t′ can be deduced
from the axiom whenever Mt = Mt′ . The algebra N is an
initial model of NAT+. For example, Boolean algebra (with
B0 = f alse, B+ = ∨, etc) or the algebra of integers can be
a model of NAT+ but is not an initial model. CafeOBJ sup-
ports imports of modules. A CafeOBJ specification can im-
port several modules, which already have been described or
are built-in modules of CafeOBJ system. There are several
kinds of imports. Specifications with import declarations
also have loose or tight denotation declarations. Formal se-
mantics of specifications with imports can be found in [4].
In this study, we mainly treat a loose specification with pro-
tected imports, denoted by pr(SP). Roughly speaking, the

denotation of a loose specification SP which imports SP′
with the protect mode is a set of all algebras M which sat-
isfy (1) all equations in SP as well as SP′, and (2) that M is
an expansion of M′ for some M′ in the denotation of SP′,
where an expansion means that Me = M′e for all sorts and
operation symbols e of SP′†.

A Maude data type specification, called a functional
specification, denotes the term algebra, which is one of the
initial algebras. In the term of CafeOBJ denotations, any
Maude specification has the tight denotation. Maude does
not support a loose denotation. Another limitation of Maude
functional specifications is that they should be complete in
the meaning of the term rewriting system (See [1] for the
definition of the completeness). Roughly speaking, if a
specification is complete, (i) it is decidable whether t = t′
can be deduced from the equations in the specification or
not, (ii) each term has its unique normal form, which can
be seen as a representative term of an interpreted element
or an equivalence class of terms [t] = {t′ | t = t′}. For ex-
ample, NAT+ is complete, and s s 0 is a (unique) normal
form of terms s 0 + s 0, s s 0 + 0 and 0 + s s 0, all
of which are interpreted into 2. Thanks to the limitation of
the tightness and the completeness, Maude supports useful
automatic verification tools. For a complete specification
SP, one of the denotation of SP is an algebra whose carrier
set of sort s is the set of all ground (i.e. variable-free) normal
forms of sort s (denoted by NFs), called the term algebra.
The term algebra is an initial model of SP.

3. Algebraic Description of State Machines

In this section, we introduce how to describe a state machine
in CafeOBJ and Maude.

3.1 State Machines

A state machine consists of a set S of states, a set I of initial
states and a set T of transitions, where τ ∈ T is a binary
relation on S . We write τ(s) = s′ if (s, s′) ∈ τ for τ ∈ T .
For a state machine S = (S , I, T), the set ReS of reachable
states is defined as the smallest set satisfying the following:
I ⊆ ReS and s′ ∈ ReS if τ(s) = s′ for some s′ ∈ ReS and
τ ∈ T . A state property P is a predicate on S . We say P is
invariant, denoted by S |= InvP, if and only if P(s) for any
s ∈ ReS.

3.2 OTS/CafeOBJ Specifications

Observation Transition System (OTS) is a useful no-
tion to describe a state machine in CafeOBJ [10]. An
OTS/CafeOBJ specification has a special sort, called a hid-
den sort, and special operation symbols, called observation

†It is possible that there is no algebra which satisfies the condi-
tions (1) and (2). For that case, the specification denotes the empty
set, and we call the specification inconsistent. We assume that an
input specification is not inconsistent in this paper.
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symbols and transition symbols whose arities include ex-
actly one hidden sort. We call a non-hidden sort a visible
sort. The co-arity of an observation symbol (or a transi-
tion symbol) is a visible sort (or a hidden sort). In a de-
notational model M of an OTS/CafeOBJ specification, the
carrier set MH of the hidden sort H is called a state space,
and an element s ∈ MH is called a state. States s and t
are observationally equivalent, denoted by s ∼ t, if and
only if Mo(s, �u) = Mo(t, �u) for each observation symbol o
and each elements �u corresponding to the visible arguments
of o. Without loss of generality, each observation sym-
bol (and transition symbol) is assumed to have the hidden
sort at the first argument. A transition symbol τ must pre-
serve the observational equivalence, i.e. Mτ(s, �u) ∼ Mτ(t, �u)
whenever s ∼ t. In this section, we give a syntactical def-
inition of inputs of our translation system, and show that
each input specification is an OTS/CafeOBJ specification.
We can say the syntactical definition is another definition
(in the narrow sense) of OTS/CafeOBJ specifications since
the OTS/CafeOBJ specifications satisfy the definition or can
be easily modified into those satisfying it in most practical
applications of OTS [11]–[14]. Hereafter, we use the word
“an OTS/CafeOBJ specification” for a specification satisfy-
ing the following definition.

Definition 3.1: An OTS/CafeOBJ specification has the fol-
lowing syntax:

OTS ::=
−−−−−−−−−−→
SubModule MainModule

SubModulei ::= mod(!|*) S Mi { · · ·}
MainModule ::= mod* M {

pr(S M1) · · · pr(SMl)

*[H]*

Signature

Axiom

}

Signature ::= Init
−−→
Obs

−−−−→
Trans

Init ::= op init : -> H.

Obsi ::= bop oi : H
−→
Voi -> Voi

Transi ::= BTi CTi

BTi ::= bop τi : H
−→
Vτi -> H

CTi ::= bop c-τi : H
−→
Vτi -> Bool

Axiom ::= Vars Ainit Aτ1 · · ·Aτm

Vars ::= VH
−−−→
VO1 · · · −−−→VOm

−−−→
VT1 · · · −−−→VTn

VH ::= var S:H

VOi j ::= var Xi j: Voi j

VTi j ::= var Yi j: Vτi j

Ainit ::= Ao1
init · · · Aom

init

Aoi
init ::= eq oi(init,Xi) = riniti.

Aτi ::= Ao1
τi
· · ·Aom

τi
A⊥τi

AC
τi

A
oj
τi

::= ceq o j(τi(S,Yi),X j) = ro jτi

if c-τi(S,Yi) .

A⊥τi
::= bceq τi(S, Yi) = S

if not(c-τi(S,Yi)) .

AC
τi

::= eq c-τi(S,Yi) = crτi.

Xi ::= Xi1,Xi2 . . .Ximi

Y j ::= Y j1,Y j2 . . .Y jn j

where each SubModulei is a module specifying data type,
explained in the previous section. SMi is a name of the
module SubModulei. H is a hidden sort. oi is an obser-
vation symbol and τi is a transition symbol. Any identifier
can be used for H, oi and τi. Voi , Vτi are visible sorts which
are declared in the submodules. riniti are terms constructed
by operation symbols declared in submodules and variables
occurred in the left-hand sides, which means that no obser-
vation symbols and transition symbols occur. ro jτi and crτi

are terms constructed by the observation symbols, operation
symbols declared in submodules, and variables occurred in
the left-hand sides, which means that no transition symbols
occur. All terms should not have nested observation sym-
bols, which means that in any path from the root to a leaf at
most one observation symbol exists, e.g. o j(S, ok(S)) is not

allowed. ln(
−−−−−−−−−−→
SubModule) = l, ln(

−−→
Obs) = m, ln(

−−−−→
Trans) = n,

ln(
−→
Voi) = mi, ln(

−→
Vτi ) = ni. Note that beq and bceq are used

for equations on hidden terms, called behavioral equations.
In OTS, the behavioral equation is identified with the obser-
vational equation ∼. �

Hereafter, all definitions and proofs are built on the notation
of Definition 3.1, for example, when we take an observation

symbol oi, its sort is H
−→
Voi ->Voi .

Theorem 3.2: Each OTS/CafeOBJ specification satisfies
the OTS condition, i.e. transitions preserve the observational
equivalence.

Proof. Let τi be a transition symbol and o j an obser-
vation symbol. Let M be a denotational model of the
OTS/CafeOBJ specification, (s, s′) a pair of observation-
ally equivalent states, i.e. s ∼ s′, and �u, �v sequences of
elements of M such that uk ∈ MVτik

and vk ∈ MVo jk
. It

suffices to show that Moj (Mτi (s, �u),�v) = Moj (Mτi(s′, �u),�v).
Let a, a′ be assignments such that a(S) = s, a′(S) = s′,
a(X jk) = a′(X jk) = vk and a(Yik) = a′(Yik) = uk. Note
that those variable symbols S, X jk and Yik are declared in
the OTS/CafeOBJ specification (See Definition 3.1). First
we prove Mc-τi(s, �u) = Mc-τi (s′, �u). Since M is a deno-
tational model, a(l) = a(r) holds for each equation l = r
in OTS . Thus, Mc-τi(s, �u) = a(c-τi(S, X j)) = a(crτi)
and Mc-τi(s′, �u) = a′(crτi) hold. The only difference be-
tween a(crτi) and a′(crτi) is s and s′. Since the term crτi

has no transition symbols, s (and s′) should be directly un-
der an observation symbol, i.e. like o(s, . . .) and o(s′, . . .).
Since s ∼ s′, Mo(s, . . .) = Mo(s′, . . .). Thus, Mc-τi(s, �u) =
Mc-τi(s′, �u).
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Case 1: Assume Mc-τi (s, �u) = Mc-τi (s′, �u) = f alse†. Be-
cause of the equation A⊥τi

, Mτi(s, �u) = s and Mτi (s′, �u) =
s′. Thus, Moj (Mτi (s, �u),�v) = Moj (s,�v) = Moj (s′,�v) =
Moj (Mτi(s′, �u),�v). The second equation comes from s ∼ s′.
Case 2: Assume Mc-τi (s, �u) = Mc-τi(s′, �u) = true. From
the equation A

oj
τi

, Moj (Mτi(s, �u),�v) = a(o j(τi(S, Yi), X j)) =
a(ro jτi) and Moj (Mτi(s′, �u),�v) = a′(ro jτi). The equation
a(ro jτi) = a′(ro jτi) holds from the same reason with the
above equality a(crτi) = a′(crτi). �

Since the observational equivalence is an equivalence
relation in each model M, we can define an equivalence
class of states as s = {s′ ∈ MH | s ∼ s′}. The set of the equiv-
alent classes is denoted by MH . For a sequence of visible el-
ements �v, we can define the function Moi�v : MH → MVoi

as
Moi�v(x) = Moi (x,�v). Mτi�u is defined similiarly. A transition
Mτi

−→a on MH can be defined straightforwardly. We define the

state machine SM as (MH ,Minit, T ) where T = {Mτi�u | τi ∈
OTS , u j ∈ MVτi j }. To avoid complex notations, we often use
a notation x instead of Mx for some model M, where x is a
sort, a constant, an operation and so on, and o(�v) and τ(�u)
instead of Mo�a and Mτ�a.

Example 3.3: Semaphore is a mechanism for restricting
access to shared resources to a fixed number of processes
at a time. We call the place where a process can use the
shared resources the critical section. Semaphore has an in-
teger variable x. To enter the critical section, a process p
executes P operation: When x > 0, p enters the critical sec-
tion and x is decreased. When x ≤ 0, nothing happens. To
leave the critical section, p executes V operation: It makes
p leave and x increased. We give an OTS/CafeOBJ spec-
ification of Semaphore. The built-in module INT specifies
integers with usual operations, like +, -, >, etc. The follow-
ing module PROCESS specifies process identifiers.

mod* PROCESS { [Pid] }

Since PROCESS is loose and has only one sort, no operation
symbols and no equations, any set can be a denotational
model of PROCESS. A main module SEMAPHORE specifies
Semaphore.

mod* SEMAPHORE {

pr(INT)

pr(PROCESS)

*[Sys]*

op init : -> Sys

bop using : Sys Pid -> Bool

bop semaphore : Sys -> Int

bops down up : Sys Pid -> Sys

ops c-down c-up : Sys Pid -> Bool

var S : Sys

var X11 : Pid

var Y11 : Pid

var Y21 : Pid

eq using(init,X11) = false .

eq semaphore(init) = 1 .

ceq using(down(S,Y11),X11) = (if X11 == Y11

then true else using(S,X11) fi)

if c-down(S,Y11) .

ceq semaphore(down(S,Y11)) =

semaphore(S) - 1

if c-down(S,Y11) .

bceq down(S,Y11) = S if not(c-down(S,Y11)) .

eq c-down(S,Y11) = not using(S,Y11) and

semaphore(S) > 0 .

ceq using(up(S,Y21),X11) = (if X11 == Y21

then false else using(S,X11) fi)

if c-up(S,Y21) .

ceq semaphore(up(S,Y21)) = semaphore(S) + 1

if c-up(S, Y21) .

bceq up(S,Y21) = S if not(c-up(S,Y21)) .

eq c-up(S,Y21) = using(S,Y21) .

}

Submodules INT and PROCESS are imported. A sort Sys
stands for a state space. Observations identify a system
state. An observation using(s,p) checks whether Process
p is using the shared resource or not at the state s. An obser-
vation semaphore(s) is the value of Semaphore variable.
At the initial state init, no process is using the shared re-
source and the semaphore value is 0 (See the first two equa-
tions). P and V operations are denoted by down and up. The
states down(s,p) and up(s,p) stand for the result states
after applying down and up to s respectively. For example,
the state down(down(init, p0), p1) is the state after the
following executions: p0 executes P operation at the ini-
tial state, then p1 executes P operation. We can observe
the state via obsevations, like using(down(down(init,
p0), p1), p1). The CafeOBJ system reduces this term
into false : Bool, which means that the observed value
by using( ,p1) for that state is false, i.e. the try to en-
ter the critical section by p1 has been failed. When the
initial semaphore value is n, n processes can enter. If
semaphore(init) = 2, the above p1’s try succeeds, and
CafeOBJ returns true : Bool. �

3.3 State Property

A state property is given by a Boolean term. In this paper,
we express a state property as a Boolean term t which satis-
fies that (i) t has exactly one hidden variable, (ii) the sort of
each variable in t should be involved in the arity of an obser-
vation symbol, and (iii) no transition symbol occurs. Thus,
the hidden variable S should occur directly under observa-
tion symbols, like oi(S, . . .). For SEMAPHORE, only a variable

†Any CafeOBJ specification implicitly imports the built-in
module BOOL. The denotational model of BOOL is Boolean alge-
bra ({true, f alse}, {∧,∨,¬, . . .}). BOOL is imported with the pro-
tect mode. Thus, any denotational model of any CafeOBJ spec-
ification must have Boolean algebra itself. Hence, for example,
a = true ∨ a = f alse is true for any Boolean constant a.
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of the hidden sort and variables of Pid can be involved in a
state property, since Pid is in the arity of using. The transi-
tion symbols down and up are not allowed to occur in a state
property. The following is an example of state properties:

using(S, P) and using(S, Q) implies P == Q

which means that if processes P and Q are using the resource
then they should be identical, that is, at most one process
is using the resource. Operation symbols and, implies,
== are involved in the built-in module BOOL. Let SP be an
OTS/CafeOBJ specification, and P a state property whose
non-hidden variables are of sort �S . For a denotational model
M of SP, P is interpreted into a predicate MP which takes
elements including a state and returns true or false. We write
SP |= InvP if SM |= InvQ for any denotational model M of

SP and the state property Q on SM defined as Q(s)
def⇐⇒ ∀�t ∈

MS 1 × · · · × MS x .MP(s, �t).

3.4 Maude Rewrite Specification

In Maude, besides equations, rewrite rules can be declared
in a rewrite specification, also called a system specification
in Maude manual. A rewrite rule has the following syntax:
crl [Label] l => r ifC . The condition part can be omitted
if it is true. In that case, the rewrite rule is written with rl.
The following is an example of rewrite specifications:

mod NNAT is

inc NAT+ .

sort NNat . subsort Nat < NNat .

op _|_ : NNat NNat -> NNat [assoc] .

vars M N : Nat .

rl [L] : N | M => N .

rl [R] : N | M => M .

endm

For a Maude rewrite specification SP, the rewrite rela-
tion →S P is defined as follow: s →S P t if and only if (1) s
has a subterm s′, (2) s′ =E lθ for a rewrite rule l => r if
C ∈ S and a ground substitution θ, (3) Cθ =E true, (4) t′
is the result term of replacing s′ into rθ, and (5) t =E t′,
where a ground substitution θ is a map from variables to
ground terms and tθ is the result term with replacing all
variable x with θ(x). The binary relation =E is the con-
gruent relation on the set E of all equations in SP. Here-
after we sometimes omit the subscript E from =E . E.g.
1+1 | 2+2 | 3+3→NNAT 4 | 6→NNAT 2. We can say a Maude
rewrite specification SP with a sort State and a term init
of State specifies a state machine (TState, {init},→SP)
where T is the term algebra of SP.

4. Definition of Translation System

We define a translation system from OTS/CafeOBJ specifi-
cations to Maude specifications. We call a Maude specifi-
cation in the range of our translation system an OTS/Maude
specification.

4.1 OTS/Maude Specification

We describe an OTS in Maude in the following way. An
observed value is represented by a term of the sort OValue.
Each OValue term has the syntax: (o[�s]:t), where o is
a name of the observation with parameters, �s are terms for
the parameters and t is the observed value. Only t may be
changed by an application of a transition. The following
Maude module STATE specifies states.

mod STATE is

sorts OValue State .

subsorts OValue < State .

op __ : State State -> State [assoc comm] .

op init : -> State .

endm

A snapshot of a state is represented by a term of State,
which is a (multi)set of OValue terms: O1 O2 · · ·On. A state
init is prepared for an initial state. A state is identified by a
set of observed values. Each rewrite rule has the form: crl
[Label] Oi1 · · · Oik => O′i1 · · · O′ik if C, where O j and O′j
are OValue terms and only their difference is its observed
value, like O j =(o[�s]:t) and O′j =(o[�s]:t

′).

4.2 Refinement of Loose Specification

Since an OTS/CafeOBJ specification may have loose sub-
modules and Maude does not deal with them, we need to
translate loose modules to tight ones. Moreover Maude re-
quires data modules to be complete.

Definition 4.1: Let SP be a loose CafeOBJ module and SP′
a tight CafeOBJ module. SP′ is a refinement module of SP
if and only if (1) SP′ is tight and complete, (2) S S P ⊆ S S P′ ,
≤S P⊆≤S P′ and ΣS P ⊆ ΣS P′ , (3) for each equation l = r (or
l = r if c) in SP and ground substitution θ from variables to
ground terms of SP′, lθ = rθ can be deduced from equations
in SP′, i.e. lθ =E′ rθ (whenever cθ =E′ true). �

Since SP′ has all operation symbols of SP, each state
property P of SP is also a state property for a refinement
module SP′.

Example 4.2: Consider the following module:

mod* COMM+{

[Nat]

op _+_ : Nat Nat -> Nat

vars M N : Nat

eq M + N = N + M .

}

NAT+ is a refinement module of COMM+ since NAT+ is com-
plete and + is commutative for any ground terms of Nat,
i.e. ∀m, n ∈ N . sm(0) + sn(0) = sn(0) + sm(0) can be
deduced from the equations of NAT+. We omit a proof. �

Example 4.3: The following module is a refinement mod-
ule of mod* PROCESS{[Pid]}:



NAKAMURA et al.: A SPECIFICATION TRANSLATION FROM BEHAVIORAL SPECIFICATIONS TO REWRITE SPECIFICATIONS
1497

mod! PROCESS{

pr(INT)

[Pid]

op p : Nat -> Pid

}

The imported module INT is a built-in module of CafeOBJ
(and Maude). We assume built-in modules are complete.
The tight PROCESS is complete since it has no equation. �

In our translation system, we use same module name for an
original and a refinement modules.

4.3 Specification Translation

We give a translation from an OTS/CafeOBJ specifi-
cation whose submodules are tight and complete into
an OTS/Maude specification. Precisely we give a
function F which takes an OTS/CafeOBJ specifica-
tion and returns an OTS/Maude specification. We
write X′ Instead of F(X). For example, we write

Signature′ =
−−−→
Obs′

−−−−−→
Trans′ instead of F(Signature) =

F(Obs1) F(Obs2) · · ·F(Trans1) F(Trans1) · · · , which means
that a signature of the translated OTS/Maude specification
F(OTS ) = OTS ′ consists of symbols which are obtained
by applying F to observation and transition symbols of the
input OTS .

For an OTS/CafeOBJ specification OTS , the translated
OTS/Maude specification OTS ′ is defined as follows:

OTS ′ = mod STATE · · · endm−−−−−−−−−−→
SubModule′ MainModule′

SubModule′i = fmod S Mi · · · endfm
MainModule′ = mod M is

inc STATE.

pr S M1. · · ·pr S Ml.

Signature′

Axiom′

endm

Signature′ =
−−−→
Obs′

−−−−−→
Trans′

Obs′i = op (oi[ . . .] : )

:
−→
Voi Voi-> OValue .

Trans′i = op c-τi :
−→
Vτi -> Bool .

If
−→
Voi is empty, the square bracket “[. . .]” is omitted in Obs′i .

This is a signature part of the translation system. Note that
we do not need transition symbols in OTS/Maude specifica-
tions. A rewrite rule itself denotes a transition. The name of
a transition symbol in OTS appears as the label of a rewrite
rule in OTS ′.

Example 4.4: The following is the first half of the trans-
lated SEMAPHORE:

mod SEMAPHORE is

inc STATE . pr INT . pr PROCESS .

op (using[_]:_) : Pid Bool -> OValue .

op (semaphore:_) : Int -> OValue .

�

Next, we give an axiom part of our translation sys-
tem. In a model of an OTS/CafeOBJ specification, infinitely
many observations and transitions may exist even if those
symbols are finite since the number of elements for parame-
ters may be infinite. e.g. Mdown(p 1), Mdown(p 2), . . . , Mdown(p n),
. . .. In order to obtain a finite OTS/Maude specification,
we need to choose a suitable finite set for each parame-
ter sort. For the sort Vok (or Vτk) of the k-th parameter
of each observation symbol o (or transition symbol τ), we
give a finite subset FTVok ⊆ NFVok (or FTVτk ⊆ NFVτk) of
ground normal forms. We write FTVτ instead of the se-
quence FTVτ1 × FTVτ2 × . . . × FTVτm where m is the number
of parameters of τ. Observation and transition symbols may
share sorts, like o : H Nat -> Bool and τ : H Nat -> H.
For such cases, we give one FTNat for both parameters, i.e.
if Vxi = Vy j then FTVxi = FTVy j (x, y = o or τ). Hereafter, O
is the set of all observation symbols of OTS , i.e., oi ∈ O if
and only if there exists bop oi :· · · in the signature part of
the input OTS . To define Axiom′, we define each compo-
nent first, and then we give a definition of Axiom′ lastly. For
given FTs, Vars′ is defined as follows:

Vars′ = Vars′1 Vars′2 · · · Vars′m
Vars′j = {var Zoj(�s) : Voj . | �s ∈ FTVo j

}
For a transition symbol τi of a given OTS/CafeOBJ specifi-
cation, the rewrite rule A′

τi(�t)
is defined as follow:

A′τi
= {A′

τi(�t)
| �t ∈ FTVτi

}
A′
τi(�t)
= crl [τi(�t)] :L

o1

τi(�t)
· · · Lom

τi(�t)

=> Ro1

τi(�t)
· · ·Rom

τi(�t)
if crτ�ti

′ .

L
oj

τi(�t)
= {(o j[�s]:Zoj(�s)) | o j ∈ O, �s ∈ FTVo j

}
R

oj

τi(�t)
= {(o j[�s]:ro�sjτ

�t
i
′) | o j ∈ O, �s ∈ FTVo j

}
ro�sjτ

�t
i
′ = ro�sjτ

�t
i

[o j(S, �s)← Zoj(�s↓) | o j ∈ O, �s↓ ∈ FTVo j
]

ro�sjτ
�t
i = ro jτi

[
X j ← �s, Yi ← �t

]
crτ�ti

′ = crτ�ti
[o j(S, �s)← Zoj(�s↓) | o j ∈ O, �s↓ ∈ FTVo j

]

crτ�ti = crτi

[
Yi ← �t

]

where �u↓ stands for the sequence of the normal forms of
terms ui. s[�t ← �u] or s[t1 ← u1, . . . , tn ← un] stands for
the result term of replacing all occurrences of �t in s into �u†.

†In general such replacement is not well-defined since a pattern
t may overlap, e.g. s(s(0))[s(t)← 0] can be both 0 and s(0). In our
case it is well-defined since observation symbols are not nested.
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Note that a variable name in a label is not a variable but we
let them be instantiated by this definition. The following is
A′
down(p(0))

:†

crl [down_p_0] :

(using[p(0)]: Zp0) (using[p(1)]: Zp1)

(semaphore: Zs)

=>

(using[p(0)]:

(if p(0) == p(0) then true else Zu0 fi))

(using[p(1)]:

(if p(1) == p(0) then true else Zu1 fi))

(semaphore: (Zs - 1))

if

not Zu0 and Zs > 0 .

Unfortunately, even if we instantiate all parameter variables,
some terms may not be well-formed. For example, if there
exists a subterm o(S, I+1) in the right-hand side of an
equation in the original OTS/CafeOBJ specification, where
I is a variable of Int. For any FTInt, there exists the max-
imal integer m ∈ FTInt. Thus, the variable Zo(m+1) for o(S,
m+1) does not included in Vars′. To obtain a feasible Maude
specification, we need remove such rewrite rules. We let
Filter be a function which takes a set of rewrite rules trans-
lated by A′τ and returns the set of all well-formed and feasi-
ble (no extra variables) rewrite rules.

Next, we give an rewrite rule for the initial state.

A′init = eq init = Ro1
init · · ·Rom

init

R
oj

init = {(o j[�s]:rinit�sj) | o j ∈ O, �s ∈ FTVo j
}

rinit�sj = rinit j

[
X j ← �s

]
Finally we define Axiom′ as follow:

Axiom′ = Vars′ ∪ A′init ∪ Filter(A′τ1
∪ · · · ∪ A′τn

)

Example 4.5: When FTPid = {p(0), p(1)}. The latter half
of Maude SEMAPHORE is obtained as follows:

mod SEMAPHORE is

...

var Zu0 : Bool . var Zu1 : Bool .

var Zs : Int .

eq init = (using[p(0)]: false)

(using[p(1)]: false)

(semaphore: 1) .

crl [down_p_0] :

(using[p(0)]: Zp0) (using[p(1)]: Zp1) ...

=>

(using[p(0)]: (if p(0) == p(0) then ...))

(using[p(1)]: (if p(1) == p(0) then ...))

(semaphore: (Zs - 1))

if

not Zu0 and Zs > 0 .

crl [down_p_1] : ..

crl [up_p_0] : ...

crl [up_p_1] : ...

endm

�

4.4 Property Translation

For an OTS/Maude specification SP′, a state property P′ is
defined as a Bool term which includes only Zoj(�s)s (for j ∈
{1, . . . ,m} and �s ∈ FToj ) as variables. We write SP′ |= InvP′

if and only if P′[Zoj(�s) ← to j(�s) | o j ∈ O, �s ∈ FTVo j
] = true

for any state {(o j[�s] : to j(�s)) | o j ∈ O, �s ∈ FTVo j
} reachable

from init by applying rewrite rules.
We define the translated state property P′ from a state

property P of an OTS/CafeOBJ specification as follows:

P′ =
{

Q1 and · · · and Qk if all Qi are well-formed
true o.w.

Qi = Ri

[
o j(S, �s)← Zoj(�s↓) | o j ∈ O, �s↓ ∈ FTVo j

]
�R =
{
P[ �W ← �w] | wi ∈ FTS i , i = 1, 2, . . .

}

where { �W} are the set of all variables except the hidden vari-
able S in P, and S i is the sort of Wi. Thus, Ri is an instance
of P w.r.t. FT s. �R is the set of all instances of P w.r.t. FT s.
Qi is the result of replacing all occurrences of o(S, �s) with
the corresponding variables Zo(�s). From the same reason of
the specification translation, Qi may not be well-formed, i.e.
there may be o(S, �s) in P such that si↓ is not in FTS .

Example 4.6: For FTPid = {p(0), p(1)}, using(S,P)
and using(S,Q) implies P == Q is translated into

Zu0 and Zu0 implies p(0) == p(0)

and Zu0 and Zu1 implies p(0) == p(1)

and Zu1 and Zu0 implies p(1) == p(0)

and Zu1 and Zu1 implies p(1) == p(1)
For the translated specification and property we can apply
search command to prove the state property invariant as fol-
lows:

search in SEMAPHORE :

init =>* (using[p(0)]:Zu0)(using[p(1)]:Zu1)

(semaphore:Zs)

such that

not((Zu0 and Zu0 implies p(0) == p(0)) and

(Zu0 and Zu1 implies p(0) == p(1)) and

(Zu1 and Zu0 implies p(1) == p(0)) and

(Zu1 and Zu1 implies p(1) == p(1)) ) .

The Maude system returns no solution for this input,
which means the translated state property is invariant
for the translated OTS/Maude specification SEMAPHORE.

†Because of the limitation of Maude syntax, we cannot use the
bracket symbols in a label and a variable name. Thus, instead of
the bracket symbols we use the underbars in the translated specifi-
cation. Moreover, we use a simple name of a variable, e.g. the full
version of Zu0 is Zu p 0.
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If we rewrite the initial value of Semaphore into 2, i.e.
init = (using[p(0)]:false) (using[p(1)]:false)

(semaphore:2). Maude system returns the counter-
example as follows:

Solution 1 (state 3)

states: 4 rewrites: 162 ...

Zs --> 0

Zu0 --> true

Zu1 --> true

A path of the counter-example can be obtained as follows:

Maude> show path labels 3 .

down_P0

down_P1

�

5. Completeness

In this section we show that the existence of a counter-
example in the translated specification implies the existence
of a counter-example in the original one. That is equivalent
to the completeness of the translation. A translation is com-
plete w.r.t. a invariant property if and only if SP′ |= InvP′

whenever SP |= InvP. A translation is sound if and only if
SP |= InvP whenever SP′ |= InvP′ . If a translation is com-
plete and there is a counter-example in the translated spec-
ification, then the original specification should also have a
counter-example.

Lemma 5.1: Let SP be an OTS/CafeOBJ specification. Let
SP′ be a refinement specification of SP. Let P be a state
property for SP. If SP |= InvP then SP′ |= InvP.

Proof. It is trivial since any denotational model of SP′ is
also a denotational mode of SP. �

Lemma 5.2: Let SP be an OTS/CafeOBJ specification
whose submodules are tight and complete, and SP′ an
OTS/Maude specification obtained by our translation. As-
sume that

(i) {(o j[�s]:uoj(�s)) | o j ∈ O, �s ∈ FTVo j
} is rewritten into

{(o j[�s]:voj(�s)) | o j ∈ O, �s ∈ FTVo j
} by the rewrite

rule labeled by τi(�t) in SP′ where u and v are ground
normal forms of the submodules, and

(ii) each uoj(�s) is the normal form of o j(s, �s) for a ground
term s of the sort H in SP.

Then, o j(τi(s, �t), �s) = voj(�s) for each o j ∈ O and �s ∈ FTVo j
.

Proof. To prove o j(τi(s, �t), �s) = voj(�s), we show that a condi-
tional equation ceq o j(τi(S , Yi), X j) = ro jτi if c−τi(S , Yi)
in SP can be applied to obtain the equation, that means that
for a ground substitution θ = [S , X j, Yi ← s, �s, �t], we show
c−τi(S , Yi)θ = true and ro jτiθ = voj(�s).

From the assumption (i), the condition of the rewrite
rule is true, that is, we have crτ�ti

′σ = true for a ground
substitution σ = [Zoj(�s) ← uoj(�s) | o j ∈ O, �s ∈ FTVo j

] in

SP′ (and also in SP since they have common submodules).
From the definition,

crτ�ti
′σ

= crτ�ti[o j(S , �s)← Zoj(�s↓) | o j ∈ O, �s↓ ∈ FTVo j
]σ

= crτ�ti[o j(S , �s)← uoj(�s↓) | o j ∈ O, �s↓ ∈ FTVo j
]

· · · (a)

Note that �u↓ ∈ FTVo j
. From the assumption (ii), we have

o j(s, �s) = uoj(�s) in SP. Then, c−τi(S , Yi)θ = c−τi(s, �t) =

crτ�ti[S ← s] and

crτ�ti[S ← s]

= crτ�ti[S ← s]

[o j(s, �s)← uoj(�s) | o j ∈ O, �s ∈ FTVo j
]

= crτ�ti[o j(S , �s)← o j(s, �s) | o j ∈ O, �s ∈ FTVo j
]

[o j(s, �s)← uoj(�s) | o j ∈ O, �s ∈ FTVo j
]

= crτ�ti[o j(S , �s)← uoj(�s) | o j ∈ O, �s ∈ FTVo j
]

· · · (a′)
The second equation holds since the state variable S should
occur directly under some observation symbol. Since s = s↓
for any term s, (a) and (a′) are connected and c−τi(S , Yi)θ =
true holds. In a similar say, ro jτiθ = ro�sjτ

�t
i[o j(S , �s) ←

uoj(�s↓)] = ro�sjτ
�t
i
′σ = voj(�s) also holds. By applying ceq

o j(τi(S , Yi), X j) = ro jτi if c−τi(S , Yi) in SP, we obtain
o j(τi(s, �t), �s) = o j(τi(S , Yi), X j)θ = ro jτiθ = voj(�s). �

The following theorem is about a kind of completeness
of our translation system. The theorem says that if a state
property is invariant on an OTS/CafeOBJ specification the
translated state property is also invariant on the translated
OTS/Maude specification.

Theorem 5.3: Let SP be an OTS/CafeOBJ specification
and P a state property on SP. Assume SP′ and P′ are
translated from SP and P. Then, SP′ |= InvP′ whenever
SP |= InvP.

Proof. Assume SP′ �|= InvP′ . We show SP �|= InvP. As-
sume SPr is an intermediate refinement specification from
SP to SP′. There exists a conter-example state {(o j[�s] :
to j(�s)) | o j ∈ O, �s ∈ FTVo j

} reachable from init such
that P′[Zoj(�s) ← to j(�s) | o j ∈ O, �s ∈ FTVo j

] = false.
Assume the rewrite sequence from the initial state to the
counter-example in SP′ is created by applying the sequence
of the rewrite rules τi0 (�t0), τi1 (�t1), . . . , τix (�tx). By applying
Lemma 5.2 for each rewrite we obtain a state tx of SPr sat-
isfying that t0 = init, tk+1 = τik (tk, �tk), s = τix (tx, �tx) and
o j(s, �s) = to j(�s)

†. From the definition in Sect. 4.4 (Property
tanslation), we can write P′ = Q1 and Q2 and · · · and Qy.
Thus, P′[Zoj(�s) ← to j(�s) | o j ∈ O, �s ∈ FTVo j

] = false implies

†In the case of the length of the rewrite sequence in SP′ is 0,
s = init.
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Ql[Zoj(�s) ← to j(�s) | o j ∈ O, �s ∈ FTVo j
] = false for some l.

Let �w be the ground terms which instantiate P’s variables in
Rl. Then,

Ql[Zoj(�s) ← to j(�s) | o j ∈ O, �s ∈ FTVo j
]

= Rl[o j(S , �s)← Zoj(�s↓) | o j ∈ O, �s↓ ∈ FTVo j
]

[Zoj(�s) ← to j(�s) | o j ∈ O, �s ∈ FTVo j
]

= Rl[o j(S , �s)← to j(�s) | o j ∈ O, �s ∈ FTVo j
]

= Rl[o j(S , �s)← o j(s, �s) | o j ∈ O, �s ∈ FTVo j
]

= Rl[S ← s]

= P[S , �W ← s, �w]

The first equation comes from the definition of Ql in
Sect. 4.4. The second equation is from the transitivity of re-
placements and si = si↓ for each term si. The third equation
comes from o j(s, �s) = to j(�s). The forth equation holds since
S should occur under some o j. The last equation comes
from the definition of Rl. We obtain P(s, �w) = false in SPr.
For any denotational model M of SPr, PM(Ms, �Mw) = f alse,
and SPr �|= InvP. From Lemma 5.1 SP �|= InvP holds. �

Example 5.4: From Theorem 5.3 we can say that
the counter-example of the OTS/Maude specification
SEMAPHOREwith the initial value 2 in the previous section is
also a counter-example of the original OTS/CafeOBJ speci-
fication SEMAPHORE. �

The soundness of our translation system (the in-
verse of Theorem 5.3) does not hold since a refinement
OTS/CafeOBJ specification denotes a part of the denota-
tional models of the original OTS/CafeOBJ specification,
and a translated OTS/Maude rewrite specification does not
cover all transition relation of the original specification.

6. Improvement by Simplification

One of the most difficult part of our translation is to choose
suitable finite set of ground normal forms. We give a tech-
nique to reduce the task of instantiating parameter variables
of transition operation symbols. We call it Simplification.
First, we give an example in which a parameter variable of
a transition symbol makes translation hard.

Example 6.1: We give another OTS/CafeOBJ specifica-
tion of Semaphore.

mod! PSET {

pr(PROCESS) pr(INT)

[Pid < Pset]

op nil : -> Pset

op __ : Pset Pset -> Pset {assoc comm

idr: nil}

op rm : Pid Pset -> Pset

op ln : Pset -> Nat

vars P P’ : Pid

var Ps : Pset

eq rm(P, nil) = nil .

eq rm(P, P’) =

if P == P’ then nil else P’ fi .

eq rm(P, P’ Ps) =

if P == P’ then rm(P, Ps)

else P’ rm(P, Ps) fi .

eq ln(nil) = 0 .

eq ln(P) = 1 .

eq ln(P Ps) = 1 + ln(Ps) .

}

PSET specifies process sets with operation symbols rm
which removes an element from a set and ln which returns
the cardinality of a set. A set of processes P, Q and R is
represented by the sequence P Q R.

mod* SEMAPHORE {

pr(PSET)

*[Sys]*

op init : -> Sys

bop using : Sys -> Pset

bop semaphore : Sys -> Int

bop down : Sys Pid -> Sys

bop up : Sys Pid Pset -> Sys

var S : Sys

vars Y11 Y21 : Pid

var Y22 : Pset

eq using(init) = nil .

eq semaphore(init) = 1 .

ceq using(down(S, Y11)) = Y11 using(S)

if semaphore(S) > 0 .

ceq semaphore(down(S, Y11)) =

semaphore(S) - 1

if semaphore(S) > 0 .

bceq down(S, Y11) = S

if not(semaphore(S) > 0) .

ceq using(up(S, Y21, Y22)) =

rm(Y21, using(S))

if using(S) == Y21 Y22 .

ceq semaphore(up(S,Y21,Y22)) =

semaphore(S) + 1

if using(S) == Y21 Y22 .

bceq up(S, Y21, Y22) = S

if not(using(S) == Y21 Y22) .

}

The difference from the previous specifications is that
(i) using is defined for the whole system and returns all
processes which are using the share resource, (ii) up takes
a process p and a processes set ps and changes the state
only if p ∪ ps is the set of all using processes in the cur-
rent state. Since up takes the set of processes, the number
of interpreted functions is exponentially larger than that of
SEMAPHORE in the previous sections. However, because of
the guard condition using(S) == Y21 Y22 for the transition
up(S,Y21,Y22), the transition up do nothing for a set un-
related to the current state. Thus, most cases are ignored.
�

In order to give an improved translation system, we first
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give a translated rewrite rule A′τi(Yi)
in which all parameter

variables of observation symbols are instantiated but those
of the transition symbol τi are not.

A′τi(Yi) = crl [τi(Yi)] :L
o1
τi(Yi)
· · · Lom

τi(Yi)

=> Ro1
τi(Yi)
· · ·Rom

τi(Yi)
if crτ′i .

L
oj

τi(Yi)
= {(o j[�s]:Zoj(�s)) | o j ∈ O, �s ∈ FTVo j

}
R

oj

τi(Yi)
= {(o j[�s]:ro�sjτ

′
i ) | o j ∈ O, �s ∈ FTVo j

}
ro�sjτ

′
i = ro�sjτi

[
o j(S, �u)← Zoj(�u↓)

]
ro�sjτi = ro jτi

[
X j ← �s

]
crτ′i = crτi

[
o j(S, �u)← Zoj(�u↓)

]
The following is the rewrite rule A′

up(P,Ps) of the trans-
lated OTS/Maude SEMAPHORE:

crl [up P Ps] : (using:Zu) (semaphore:Zs)

=> (using: rm(P,Zu)) (semaphore:Zs + 1)

if Zu == P Ps .

To obtain feasible rewrite rules, we have to remove extra
variables P and Ps. However, since Ps is of the sort Pset, it
is hard to find suitable finite set of ground normal forms.

Before instantiating extra variables, we try to remove
them by applying the following simplification function. A
simplification function Simp, which takes a rewrite rule and
returns the simplified rewrite rule, is defined as the result of
applying the following procedure to the input rewrite rule:
Assume the input rewrite rule has the form: crl l => r if
C1 and C2 and · · · and Cn.

i := 1;
while(i ≤ n){
if (Ci = “Zo(�s) == t”) {

remove Ci from the conditional part, and
replace all the other occurrences of Zo(�s)

in the rewrite rule with t };
i := i + 1; }

Note that if all Ci are removed, if is also removed and crl
is changed into rl. The following is an example of simpli-
fied rewrite rules:

Simp(A′
up(P,Ps)) =

rl [up P Ps] : (using:P Ps) (semaphore:Zs)

=> (using: rm(P,Z)) (semaphore:Zs + 1) .

Variables P and Ps are not extra variables now. The new
definition of A′τi

is the set of all instances in which only the
extra variables in S imp(A′τi(Yi)

) are instantiated. The follow-
ing is an example of OTS/Maude specification translated by
our improved translation system:

mod SEMAPHORE is

inc STATE . pr INT . pr PSET .

op (using:_) : Pset -> OValue .

op (semaphore:_) : Int -> OValue .

var P : Pid . var Ps : Pset .

var Zu : Pset . var Zs : Int .

eq init = (using: nil)(semaphore: 1) .

crl[down_p_0] : (using: Zu) (semaphore: Zs)

=> (using: (p(0) Zu)) (semaphore: (Zs - 1))

if Zs > 0 .

crl[down_p_1] : (using: Zu) (semaphore: Zs)

=> (using: (p(1) Zu)) (semaphore: (Zs - 1))

if Zs > 0 .

rl[up_P_Ps] : (using: (P Ps)) (semaphore: Zs)

=> (using: rm(P, (P Ps)))

(semaphore: (Zs + 1)) .

endm

A state property for the new OTS/CafeOBJ specifica-
tion SEMAPHORE is written as P = ln(using(S)) < 2,
which means that the number of the processes using the
shared source is less than 2. The translated property is P′ =
ln(Zu) < 2. We can apply the Maude search command as
follows:

search in SEMAPHORE :

init =>* (using: Zu) (semaphore: Zs)

such that not(ln(Zu) < 2) .

Then, no solution is returned. The following is the case
that the initial Semaphore value is 2:

search in SEMAPHORE :

(using: nil) (semaphore: 2) =>*

(using: Zu) (semaphore: Zs) such that

not(ln(Zu) < 2) .

Maude returns three solutions. One of them is
Solution 2 (state 4)

Zu --> p(0) p(1)

Zs --> 0

which means P′ is not invariant. The show path command
returns the path of the counter-example, like
down_p_0

down_p_1.

7. Application

While describing a formal specification in an executable
specification language, we may test (candidates of) a spec-
ification to find an error before doing formal verifications.
Here a test stands for one example sequence of transitions,
for example. Although a test may be useful to know what
happen for an example of executions, we can check for only
finite executions. The search command of the Maude sys-
tem (or Maude model checker) may check possibly infinite
cases. Surely our translation system may restrict the num-
ber of transitions to be finite, however, our translation plus
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Maude may check possibly infinitely many executions. In
our example of Semaphore, only two processes are con-
sidered in the translated specification, but executions made
from them are infinite. Thus, our translation can be said to
be more useful to find errors than tests.

In verification by CafeOBJ, we may need some lemma
to verify an invariant property. A user should try to find
suitable lemma to prove the main property. Our translation
system may also be useful for that task. When a user thinks
some property is a candidate of a lemma, the user translates
it by our translation system, and applies Maude search com-
mand. If a counter-example is returned, the lemma is wrong.
The user avoids waste of time to prove the wrong lemma
and try to find next candidates. The literature [8] mentions a
special lemma, called a necessary lemma, which has a prop-
erty that if the lemma does not hold then the original the-
orem also does not hold. By combining the notion of the
necessary lemma and our translation system, we can obtain
a verification system which is strong in finding a counter-
example.

8. Conclusion

We proposed a translation system from OTS/CafeOBJ to
OTS/Maude, which is complete, and is useful in disprov-
ing a state property to be invariant. A specification transla-
tion between different formal specification languages bene-
fits the research area of integrated formal methods. Choco-
lat/SMV [15] is a tool which translate CafeOBJ specifica-
tion to SMV†, which is one of the most famous model
checker. In the literature [2], the use of SMV tool for rea-
soning about temporal properties of CommUnity designs
is studied. CommUnity is a formal specification language
based on Unity [3]. A translation from RAISE formal speci-
fication language [16], [17] to SAL††, another famous model
checker, is mentioned in [7]. An advantage of our transla-
tion system is that we can treat flexible user-definable ab-
stract data types. In the above translations, data types which
a system specification uses are restricted like a finite range
of integers. Since CafeOBJ initial modules and Maude func-
tional modules have essentially same syntax, our transla-
tion allows any abstract data type which can be given as a
CafeOBJ initial module, for example, arrays, lists, several
kinds of trees and so on.

A future work is to find a condition under which Maude
search command terminates. A Maude search command
does not always terminate in exchange for the expressive
power of data types. One of the sufficient conditions is the
termination of the rewrite relation. Termination is too re-
stricted to specify practical systems. We are interested in
non-terminating systems. Another future work is to find a
condition under which our translation system is sound and
complete. We are also interested in applying our translation
system for properties other than the invariant property, like

†http://www.cs.cmu.edu/˜modelcheck/smv.html
††http://sal.csl.sri.com/

the liveness property and so on.
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