JAIST Repository

https://dspace.jaist.ac.jp/

Title Shattering a set of objecfs in 2D
Nandy, Subhas C. ; Asano, Tet suo; Ha i

Author(s) :
Tomohiro

Citation Di screte Applied Mat hemat| cs, 122 (1-

Issue Date 2002-10-15

Type Journal Article

Text version aut hor

URL http://hdl . handle.net/ 101119/ 4894
NOTI CE: This is the authof's versi ol
accepted for publication py EIl sevi el

. Nandy, Tetsuo Asano and Tpmohiro Hal

2 Di screte Applied Mathemat]) cs, 122(1-
183-194, http://dx.doi.orpg/10. 1016/
218X(01)00315-8

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Shattering a Set of Objects in 2D

Subhas C. Nandy'
Indian Statistical Institute
Calcutta 700 035, India

e-mail: nandysc@Qisical.ac.in
and

Tetsuo Asano and Tomohiro Harayama
School of Information Science
Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi
Ishikawa, 923-1292 Japan
e-mail: {t-asano,tharayam }@jaist.ac.jp

Address for correspondence

Dr. Subhas C. Nandy
Computer and Statistical Service Center
Indian Statistical Institute
203 B. T. Road
Calcutta 700 035, India

e-mail: nandysc@isical.ac.in

!This work was done when the first author was visiting Japan Advanced Institute of Science and
Technology, Ishikawa, Japan

Shattering a Set of Objects in 2D

Abstract: In this paper, we propose an algorithm for shattering a set of disjoint line
segments of arbitrary length and orientation placed arbitrarily on a 2D plane. The time
and space complexities of our algorithm are O(n?) and O(n) respectively. It is an im-
provement over the O(n?logn) time algorithm proposed in [7]. A minor modification
of this algorithm applies when objects are simple polygons, keeping the time and space

complexities invariant.

Keywords: Duality, topological line sweep, separator, shattering.

1 Introduction

Given a set S of n non-intersecting line segments of arbitrary length and orientation in
the plane, we say that a line £ is a separator of S if it does not intersect any member in §
and partitions S into two non-empty subsets lying on both sides of £. A set of separators
L is said to shatter S if each line in L is a separator of S and every pair of line segments
in S are separated by at least one line in L. In other words, each cell of the arrangement
of the lines in L contains at most one member of S (see Figure la for illustration). For a
given set S, a set of separators may not always exist which can shatter S (see Figure 1b).
In [6, 7], an O(n?logn) time algorithm is proposed for reporting the existence of a shatter.
Of course, the problem of finding a minimum cardinality shatter for S is NP-complete [7].
The same problem in higher dimension is studied in [5]. In 2D, for each member in S, if
the ratio of its length and the diameter of the set S is larger than a predefined constant
J, the set of shattering lines for S can be obtained in O(nlogn) time [4]. In this paper,
we consider the general case of the problem as in [7], and propose an algorithm which
decides the existence of a set of lines shattering S. In case of an affirmative answer, it
outputs a set of lines shattering S. Our algorithm is based on sweeping a topological line
through the arrangement of the duals of the members in S. The time complexity of our
algorithm is O(n?), which is an improvement over the O(n%logn) algorithm of [7] in the
general case. The space complexity of our algorithm is O(n). The general version of the
shattering problem for a set of disjoint line segments is shown to belong to the class of
so called three-sum hard problem [8] by an O(nlogn) time reduction from GEOMBASE
problem [6] which is stated as follows: given n points on three horizontal lines y = 0,
y=1andy =2 in R?, does there exist a non-horizontal line containing three of the points
¢ Thus the time complexity of our proposed algorithm is optimum in the sense that the

existence of an algorithm for this problem with time complexity better than ©(n?) seems
to be impossible [8]. We also show that our proposed algorithm can easily be extended to
shattering of disjoint polygons keeping the time and space complexities invariant. Possible
applications of the shattering problem are mentioned in [4, 6, 7].

2 Preliminaries

As an initial step, we find whether there exists a set of vertical separators which can shatter
S, by sweeping a vertical line on the plane in O(nlogn) time. If such an attempt fails, we
need to check whether a set of non-vertical lines exist which can shatter S following the
method discussed below.

Without loss of generality, we may assume that all the line segments in S are non-vertical,
and we shall use geometric duality for solving this problem. It maps (i) a point p = (a, b)
to the line p*: y = az — b in the dual plane, and (ii) a non-vertical line £: y = mz — ¢
to the point £* = (m,c) in the dual plane. The incidence relation of the primal plane is
preserved in the dual plane also. In other words, p is below, on or above £ if and only if
p* is above, on or below £* respectively. The dual of a non-vertical line segment s € S
is a double wedge s* formed by the union of duals of all the points on s. All these lines
pass through the dual (point) of the line containing s, and s* is bounded by a pair of
lines which are duals of the end points of s. The area inside the double wedge s* will be
referred to as the active zone of s*. Obviously, a non-vertical line £ stabs s if and only if

the corresponding dual point £* lies in the active zone of s*.

Let us consider the arrangement of the duals of the members in S, and choose a point
Z* in the complementary region of the union of active zones of all the double wedges
{s} | s; € S}. The line ¢ corresponding to ¢* in the primal plane will not stab any of the

members in S. Again, if such a point £* is chosen above the upper envelope or below the

lower envelope of |J;L; s}, then all the members in S will lie on one side of £. Thus, the
set of all possible separators can be obtained as follows: construct the arrangement of the
duals of the members in S; then for each face of the arrangement, test whether it is in
the complement of the union of active zones of all the double wedges. In [1], it is shown
that for a set of n fat wedges (i.e., if the acute interior angle of the wedge is bounded
from below by a constant «) the combinatorial complexity of their union is linear in n.
But, for a set of arbitrary line segments, we cannot assure such a property. In fact, there
may exist a set of line segments such that the combinatorial complexity of the union of
the active zones of their corresponding double wedges in the dual plane is Q(n?). Hence,

the complexity of the complement regions in the arrangement will be Q(n?), and the same

will be the cardinality of the set of all possible separators.

It is easy to observe that, for a given set S of line segments, there may not exist a set
of separators which can shatter S. For example, see Figure 1b where not even a single
separator for the given set of line segments exists. An easy way to check whether the set
of all possible separators L, obtained above, shatter S or not, is as follows:

(a) (b)

Figure 1: (a) Demonstration of shattering for a set of line segments S, (b) An example
where a set of lines shattering S does not exist

Consider the arrangement of the lines in L. As the members of L are the separators of S,
each member in S completely lies in one cell of the said arrangement of L (see Figure
la). So, we consider a set of points P that contains one end point of each of the line
segments in S. If any of the cells in the arrangement contains more than one point of
P, it indicates the non-existence of a shatter for S. The time required to locate the
cell containing a given point is O(|L|log?(|L|)) [11] which is O(n?log?n) as |L| may
be O(n?) in the worst case. Thus the overall time complexity is O(n?log?n) since we
need to check for all the elements in P. A randomized algorithm of expected time
complexity O(m%/?’mg/?’log(ml) + mylog(mq)log(ms)) exists which outputs the cells
of an arrangement of m; lines that contain a specified set of mg points [3]. In our
case, m; = |L|, and ma = n. So, the expected time complexity of this method is

also O(n’log”n).

In the following section, we propose a simple algorithm using topological line sweep through
the arrangement of the lines defining the wedges corresponding to the line segments of S
in the dual plane.

3 Outline of the algorithm

Let S be a set of n non-intersecting line segments on a plane. Initially, the members in
S are not separated by any separator. During the execution of the algorithm, as soon as
a separator £ is detected, S is split into two disjoint subsets S; and Ss. Subsequently, if
another separator ¢’ is located which partitions S into S3 and Sy such that the subsets
S1NS3, S1NS4, S2NS3 and S2(S4 are not all empty, then S; is split into at most two
disjoint subsets, namely S1()S3 and S1(\S4, and Sy is split into at most two disjoint
subsets, namely S5(\S3 and S2(S4. The process continues till a shatter is found for S if
it at all exists, or the non-existence of the shatter is detected.

Lemma 1 [7] If S is shatterable, then at most n — 1 lines is sufficient to shatter S. O

We consider the set S* of double wedges in the dual plane corresponding to the set S of
line segments in the primal plane. From now on, the set of lines in S* will also be referred
to as S*. We shall denote the arrangement of the members in S* by A(S*). The number
of vertices, edges and faces in A(S*) are all O(n?). From now onwards, a face in the
arrangement A4(S*) will be referred as a cell.

Definition 1 A cell in A(S*) is said to have degree § if and only if the active zones of §
double wedges of S* overlap on it. A cell of degree zero will be referred as a zero-degree
cell.

We use topological line sweep technique [2] for identifying the zero-degree cells in A(S™).
A topological sweep line £ is y-monotone; when £ encounters a zero-degree cell C', any
point /* inside C' separates S* into two subsets S} and S5 of double wedges which lie above
and below £* respectively. For each element s; € S, the dual lines of both the end points
of s; will either belong to ST or S5. Here, the line ¢ in the primal plane corresponding
to £* separates the set of line segments S into two subsets corresponding to ST and S35
respectively, of the dual plane.

3.1 Data structure

The input to our algorithm is an array containing the set of non-intersecting line seg-
ments S. We use the standard data structures for sweeping a topological line through the
arrangement of a set of lines as described in [2]. In addition, we need to maintain the
following data structures during the execution of our algorithm.

list_1: 1t is a linear link list whose elements alternately contain the lines in S* and the
cells in A(S*), intersected by the sweep line £ in its current position, and ordered
from top to bottom. To ignore the cells above the upper envelope and below the
lower envelope of S*, the first and the last elements of this list are the two members
in S* that intersect £ at maximum and minimum y-coordinates.

An element representing a line contains (i) an identifier indicating the corresponding
member in S, and (ii) a pointer, called self_ptr, indicating its own occurrence
in the cluster data structure, which is described below.

An element representing a cell contains its degree.

cluster: Tt is a list of subsets of S* partitioned by the zero-degree cells obtained so far.
Initially, it contains only one cluster having the entire set S*, and its identifier is
1. As soon as an old cluster splits into two new clusters, one of them will carry
the identifier of the previous cluster and the other one is assigned a new identifier.
Finally, after considering all the cells in the arrangement, it contains at most n
clusters. An element representing a cluster S} contains a member_list and a header
as described below.

member_list: A bidirectional link list containing the lines representing the double
wedges of the cluster S7. The lines in S;" are stored in this list in a top to bottom
order with respect to their appearance on the topological line £. In order to
reach the cluster header from any element in this list in O(1) time, each node
is attached with a head_ptr which points to the header of the corresponding
cluster.

header: This contains the following information regarding the cluster.

id: A cluster identifier which is a natural number from 1...k, if k£ clusters have
been generated so far.

t,b: The top-most and bottom-most lines in member_list.

separator_list: A list of points in the dual plane. Each point corresponds to a separator of
S in the primal plane.

3.2 Algorithm

We shall follow the algorithm of sweeping a topological line £ through the arrangement
A(S*) as described in [2]. During the execution, let v be the new vertex (generated by
the intersection of two consecutive lines, say 1 and /5, in list_1) encountered by L.

We now need to take the following actions:

Step 1: /1 and /5 need to be swapped in lisi_I. The sweep line leaves the cell to the
left of v and enters the cell to the right of v. Note that, the vertex v may be of
two types depending on whether it is generated due to the intersection of two lines
corresponding to the end points of the same line segment in S or of two different line
segments in S. In the former case, the degree of the new cell will remain the same
as that of the previous cell (see Figure 2a). In the latter case, the degree of the new
cell needs to be determined observing the sides of ¢; and /s containing the active
zones (see Figure 2b, 2¢ and 2d). In Figure 2, the expression within paranthesis in
a cell indicates the degree of that cell.

h

®) (5/)
: (©

@

(d

Figure 2: Degree computation for a new cell

Step 2: We use self ptr attached to £; and ¢5 in list_1 to reach their own occurrences in
cluster data structure.

If ¢, and ¢5 belong to different clusters, no action needs to be taken in this step.

If ¢, and 45 belong to the same cluster, they must be consecutive in the member_list
of that cluster. Here, the following actions need to be taken:

2.1: They need to be swapped in the member_list of cluster data structure.

2.2: If one of #1 or /5 is either the top line or the bottom line of that cluster, ¢ or b
field of that cluster needs to be changed. It can easily be checked by comparing
¢1 and ¢y with the existing ¢ and b fields of the cluster.

Step 3: If the degree of the new cell, observed in Step 1, is zero, any point inside this cell
is a separator for S*. In order to check whether this separator splits at least one of
the existing clusters, we need to execute the following sub-steps:

3.1: We traverse the cluster list to inspect all the clusters obtained so far. If the
generated cell is within the lines indicated by the ¢ and b fields of a cluster, that
cluster needs to be partitioned by the separator corresponding to that cell.

3.2: If a cluster is observed to be split, we visit the member_list from top to bottom
to find a pair of lines /; and /; within which the currently generated zero-degree
cell lies. The former cluster is shortened by deleting the link between ¢; and /;
in the member_list of that cluster. A new cluster is formed whose member_list
contains all the lines below and including /;. If k clusters are present prior to
the split of the current cluster, then the identifier of the new cluster will be
k + 1. The head_ptr fields of all the members in the newly formed cluster will
now point to the header of that cluster. Finally, the ¢t and b fields of both the
clusters are appropriately set.

Step 4: If at least one of the existing clusters split, we insert a new separator (i.e., a
representative point of the current cell) in the separator_list. Otherwise, we do not
introduce any separator for the current cell.

Finally at the end of entire sweep, if the number of clusters is observed to be n, the
shatter exists for S (by Lemma 1), and the set of separators shattering S is obtained from
the separator_list. The proof of correctness of our algorithm follows from the following
theorem.

Theorem 1 The algorithm stated above decides the decision problem — whether S is
shatterable or not.

Proof: Suppose there exists a shatter, but at the end of the execution of our algorithm at
least one cluster exists which has two or more members in S*. Since all the separators in
that shatter must correspond to some zero-degree cell of A(S*), and our algorithm visits
all the cells of A(S*), the aforesaid cluster must split when our algorithm encountered
that cell during the topological sweep. Hence a contradiction. O

Lemma 2 The space complexity of our algorithm is O(n).

Proof: The space required for maintaining the required data structure for topological
sweep is O(n) in the worst case [2]. The list_1 and separator_list data structures require
O(n) space. As the clusters are disjoint, the space required to store the member_lists for
all the clusters is also O(n). O

Lemma 3 The time complezity of the above algorithm is O(n3) in the worst case.

Proof: The topological line sweep requires O(n?) time [2], and it traverses all the O(n?)
cells in A(S*). Now, we need to consider the time complexity of processing each cell. As
the topological sweep line crosses a vertex and enters a new cell, Step 1 consumes O(1)
time for swapping two lines in list_1 and adjusting the degree of the newly encountered
cell; in Step 2, updating a constant number of links in list_1 and cluster data structure also
require O(1) time. The time complexity of the algorithm depends on the total execution
time of Step 3 for all the zero-degree cells in A(S*). For each zero-degree cell, Step 3.1
requires O(k) time to check the ¢ and b fields of all the & clusters present in the cluster data
structure to explore the possibility of their split. If Step 3.1 returns at least one splittable
cluster, Step 3.2 takes O(n) time in the worst case for splitting all those clusters. By
Lemma 1, Step 3.2 is invoked n — 1 times; so the total time required for the splitting of
clusters during the entire execution is O(n?) in the worst case. The lemma follows from
the fact that the number of clusters (k) may be O(n) at any instant of time, and the
number of zero-degree cells may be O(n?) in the worst case. ad

4 A further refinement

In the earlier section we observed that, during the processing of a zero-degree cell, O(n)
time may be required in the worst case to locate the splittable clusters, irrespective of
whether such a cluster is detected. A better time complexity can be achieved if we can
avoid the checking of the existence of a splittable cluster for all the zero-degree cells.

As mentioned earlier, a cluster is represented on a sweep line by its top-most and bottom-
most lines (indicated by ¢ and b fields). A data structure maintaining the overlapping
information among the clusters will be helpful in avoiding the above-mentioned checking.
Below, we introduce the data structure list_2, and a few modifications in the existing data
structures for the said purpose.

list_2: Tt is a linear link list similar to list_I; the lines stored in this list are only the top-
most and bottom-most lines of each of the clusters recognized so far. Two consecutive
lines stored in list_2 define a cell. The degree of a cell in list_2 implies the number of
clusters overlapped on that cell, and is denoted by A. As the top-most and/or the
bottom-most lines of a cluster may change after encountering a vertex of A(S*), the
members in this list sometimes change during the execution as described in Step 2.2
of the algorithm of Section 3.2. When a new cluster is generated, two new lines are
added in this list.

In addition, we need the following modifications in the existing data structures:

(i) With each element of list_1 we attach a single character field which may contain ¢ or
b if that line is a top line or a bottom line of any cluster recognized so far, otherwise
it contains 0. The role of this field is as follows: we can prepare list_2 data structure
at any position of the sweep line £ by traversing list_1 and considering only those
lines which are marked as ¢ and b in O(n) time.

(ii) Each line in the member_lists of the cluster data structure will have a pointer, called
list1_ptr, which points to its own occurrence in /list_1.

(iii) A pair of pointers (¢, by) is attached with the header of each cluster. These two
pointers indicate the lines corresponding to ¢ and b in the list_2 data structure.

The following lemma describes the role of list_2 data structure in deciding whether or not
a newly encountered zero-degree cell splits at least one of the existing clusters.

Lemma 4 If the topological sweep line enters a zero-degree cell after encountering a vertex
generated by

(a) the intersection of a pair of lines of the same cluster, then at least one cluster is sure
to be split.

(b) the intersection of a pair of lines of different clusters, then the existence of cluster(s)
which will be split depends on the value of the A parameter of the corresponding cell
on list_2 to be non-zero or zero.

Proof: The proof of the part (a) is obvious. In order to prove part (b), we need to
consider the following cases which arise when the vertex is obtained by the intersection of
a pair of lines of different clusters:

Case 1: If the lines incident to the vertex corresponding to a zero-degree cell are top most
and the bottom most lines of their corresponding clusters, both of them are present
in list_2. In such a case, an old cell in list_2 is replaced by a new cell.

Case 1.1: Now, if the A parameter of the new cell in list_2is 0 (as shown in Figure
3a) then no cluster splits.

Case 1.2: But if the A parameter of the new cell in list_2 is non-zero, the number
of clusters overlapping in the current cell is A, and all of them will split by a
representative point inside the new cell.

Case 2: If either one or none of the participating lines is present in list_2, then at least
one of the existing clusters overlap on the observed zero-degree cell on list_1. These
clusters are sure to be split. a

Topological line

- -
-

-
-

top & bot’Eom > TS L \top& bottom
T R e Y N [. *
linefors \ ----------9--""7" -----q-" linefor §

top & bottom

! : "\ top & bottom
linefor § [

----------------- line for S*

..................

@ (b)
list_2 data structure - Lines in the two clusters are differently shaded

Figure 3: Proof of the (b) part of Lemma 5

Lemma 4 tells that, while processing a zero-degree cell of list_1, two cases may arise -
(i) either one or none of the participating lines are present in list_2, and (ii) both the
participating lines are present in list_2. In the former case at least one of the existing
clusters is sure to be split. In the latter case, we must reach the corresponding cell in
list_2 as described in the proof of Lemma 5. The A parameter of that cell determines the
splitting criterion of any cluster. It is already mentioned in the proof of Lemma 3 that in
O(1) time a non-zero degree cell of A(S*) can be processed. The following two lemmas
prove that if a zero-degree cell does not split any existing cluster, its processing time is
O(1); but if it splits at least one of the existing clusters, then its processing may require
O(n) time in the worst case.

Lemma 5 While processing a zero-degree cell in the arrangement of S*, an O(1) time is
enough to check whether any splittable cluster exists.

Proof: We note the lines participating in a zero-degree from the list_1 data structure. The
same lines in cluster data structure are reached by using the self ptr pointers attached to
them in list_1. Using the head_ptr of those two lines in cluster data structure, we can reach
the header of the corresponding clusters in O(1) time.

If the id field of both of them are same, i.e., both the lines belong to the same cluster,
then by Lemma 4(a) at least one cluster splits.

If the id field of these two clusters are different, then in O(1) time we can check whether

10

those lines are the top most line or the bottom-most line of their corresponding
clusters by observing the ¢ and b fields stored in the respective cluster headers.

(i) if both of them are the top-most and the bottom-most lines of their corre-
sponding clusters, they are present in the list_2 data structure, and they can be
reached in list_2 using the pointers t,4 and by, stored in the header of those
clusters. We swap those two lines in list_2 and adjust the A field of the new
cell in list_2. This requires O(1) time.

(ii) If the A parameter of the new cell in list_2 is observed to be zero, no cluster
will be split by Case 1.1 of Lemma 4(b).

(iii) Otherwise, at least one cluster is sure to be split (see Case 1.2 and Case 2 of
Lemma 4(b)). O

Lemma 6 If o zero degree cell causes a split of at least one cluster, then the processing
of that cell can be done in O(n) time.

Proof: The proof follows from the following four points:

e If k clusters are present in the cluster data structure, we spend O(k) time to check
their ¢ and b fields to recognize the splittable clusters.

e In order to split those clusters, we traverse the member_list of all the splittable
clusters as described in the step 3.2 of the algorithm of Section 3.2. This requires
O(n) time in the worst case.

e The newly introduced top- and bottom-lines are marked in the list_1 data structure
using the list1_ptr attached to those lines in member_list data structure.

e Finally, we rebuild list_2 for the new position of the topological sweep line by travers-
ing list_1 in O(n) time. O

Lemma 7 If the search in the cluster data structure is performed only when there ezists
at least one splittable cluster, the total time complezity is O(n?).

Proof: The proof follows from the fact that (i) at most n — 1 separators may exist in a
shatter and for each of them the number of clusters has increased by at least one (Lemma
1), and (ii) O(n) time search is required for a separator if splittable cluster(s) exists for
that separator (Lemma 6). O

We are now in a position to state the complexity results of our algorithm.

11

Theorem 2 The time and space complezities of our proposed algorithm are O(n?) and
O(n) respectively.

Proof: The time complexity result follows from Lemma 7. The space complexity result
follows from Lemma 2 and the fact that the size of the newly introduced list_2 data
structure may be O(n) in the worst case. O

5 Shattering of arbitrary polygons

In this section, we describe how our algorithm can be tailored if the set S of objects are
arbitrary simple polygons. A pair of polygons can be separated by a line if and only if
their convex hulls are non-overlapping. So, as a first step of this problem, we need to
compute the convex hulls of all the polygons, which takes O(n) time [9], if n be the total
number of vertices of all the m polygons placed on the floor. Now our problem boils down
to deciding whether shatter exists for the convex hulls of those polygons. From now on, S
will denote the set of convex hulls obtained above. In O(nlogn) time we can check whether
any pair of S overlap by sweeping a vertical line from left to right [10]. This also finds
whether a set of vertical lines exists which can shatter S. Below we explain the method
of checking the existence of a set of non-vertical lines shattering S. This method will be
invoked if and only if the members in S are non-overlapping and a set of vertical lines
shattering S do not exist.

Here also, we shall work with the duals of the convex polygons in S. The dual of a convex
polygon s; € S is a set of points whose corresponding lines in the primal plane stabs
s;- As in the case of line segments, we refer the dual region of s; as its active region,
and it is bounded by two piecewise linear curves obtained respectively by the lower and
upper envelopes of the dual lines corresponding to the vertices of s;. In Figure 4, we
demonstrate the dual of a convex polygon. The dual of a convex polygon with k vertices
can be computed in O(k) time as follows:

Let {a1,aq,...,a;} be the sequence of vertices of the upper chain of a convex polygon in
a left to right (clockwise) order. By the property of the duality transform, the dual
of these points, say {a},a3,...,a}}, will appear in the lower envelope of the dual of
the vertices of this polygon in a right to left order. The dual of the lower chain of a
convex polygon can be obtained in a similar manner.

Thus, if n be the total number of vertices in all the polygons in S then the duals of all the
members in S can be obtained in O(n) time.

12

Figure 4: A convex polygon and its dual

Note that the dual line of a vertex of a convex polygon s; € S can appear at most twice
on the boundary of the active zone of s;. Again, since the members of S are disjoint, the
lines participating in the dual of one polygon are different from that of any other polygon
in §. Thus, the number of line segments participating in the arrangement of the duals
of m polygons may be O(n) in the worst case, and the complexity of the union of active
zones in the dual plane of all the members in S is also O(n?) in the worst case.

As in the earlier problem, we sweep a topological line in the arrangement of the duals of
the members in S. Here we need to consider two types of event points: (i) the vertices on
the boundaries of the active zones, (ii) vertices generated by the intersection of the duals
of a pair of members in S. When the sweep line encounters a vertex of type (i), the line
segment preceding that vertex will be replaced by the line segment following that vertex
in each of list_1, list_2 and cluster data structures, and the intersection of it with its two
neighboring members in list_1 (if exists) is computed to find a vertex of type (ii). When a
vertex of type (ii) is faced by the sweep line, the actions are exactly same as described in
the earlier problem. As the total number of vertices of both type (i) and type (ii) is O(n?)
in the worst case, the worst case time complexity of our algorithm for polygonal objects
remains O(n?).

Acknowledgment: We greatly acknowledge the two anonymous referees and Mr. Arijit
Bishnu for their comments which have improved the presentation of the paper.

References

[1] A.Efrat, G. Rote and M. Sharir, On the union of fat wedges and separating a collection
of segments by a line, Computational Geometry: Theory and Applications, vol. 3, pp.
277-288, 1993.

13

2]

3]

[11]

H. Edelsbrunner and L. Guibas, Topological sweeping an arrangement, Journal of
Computer and Systems Sciences, 38 (1989), 165-194.

H. Edelsbrunner, L. Guibas and M. Sharir, The complexity and construction of many
faces in arrangements of lines and of segments, Discrete Computational Geometry, 5
(1990), 161-196.

A. Efrat and O. Schwarzkopf, Separating and shattering long line segments, Informa-
tion Processing Letters, 64 (1997), 309-314.

R. Freimer, Shattering configurations of points with hyper-plane, Canadian Conference
on Computational Geometry, 1991, pp. 220-223.

R. Freimer, Investigations in geometric subdivisions: linear shattering and carto-
graphic map coloring, Tech Report No. TR2000-1784, Dept. of Computer Science,
Cornell University, February 2000.

R. Freimer, J. S. B. Mitchell and C. D. Piatko, On the complexity of shattering using
arrangements, Canadian Conference on Computational Geometry, 1990, pp. 218-222.

A. Gajentaan and M. H. Overmars, On a class of O(n?) problems in computational
geometry, Computational Geometry: Theory and Applications, vol. 5, pp. 165-185,
1995.

D. T. Lee, On finding the convex hull of a simple polygon, Int’l Journal on Computer
and Information Science, vol. 12(2), pp. 87-98, 1983.

F. P. Preparata and M. I. Shamos, Computational Geometry - an Introduction,
Springer Verlag, 1985.

M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequence and Their Geometric
Applications, Cambridge University Press, 1995.

14

